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In a seminal Masters’ dissertation [1] Pemper derived the relativistic electric and mag-
netic fields of a uniformly moving charge from the response of some continuum to
the perturbation from the charge’s Coulomb field. The results seem to imply that the
Maxwell equations and the Lorentz transformation are associated with some type of
vacuum state. Unbeknownst at the time, Pemper had discovered the Planck vacuum
(PV) quasi-continuum [2] and its interaction with the free charge. The importance of
this derivation, its obscurity in the literature, and its connection to the PV justifies the
following rework of that derivation.

1 Pemper Derivation

When a free, massless, bare charge e∗ travels in a straight line
at a uniform velocity v its bare Coulomb field e∗/r2 perturbs
(polarizes) the PV [2]. If there were no PV, the bare field
would propagate as a frozen pattern with the same velocity
and there would be no accompanying magnetic field. The
corresponding force perturbing the PV is e2

∗/r
2, where one of

the charges e∗ in the product e2
∗ belongs to the free charge

and the other to the individual Planck particles making up the
degenerate negative-energy PV.

This charge-vacuum interaction is described by Pemper
[1] as a series (n = 1, 2, 3, . . .) of electric and magnetic fields
(generated by the vacuum)

∇ × En = −
1
c
∂Bn

∂t
(1)

and
Bn+1 = ββ × En (2)

that respond in a iterative fashion to the bare charge’s
Coulomb field, leading to the well-known relativistic elec-
tric and magnetic fields that are traditionally ascribed to the
charge as a single entity. The serial electric and magnetic
fields are En and Bn and ββ = v/c. The curl equation in (1) is
recognized as the Faraday equation and the magnetic field in
(2) is due to the free-charge field rotating the induced dipoles
within the PV. The series of partial fields is not envisioned
as a series in time — the PV response is assumed to happen
instantaneously at each field point.

The initial magnetic field in the series is B1 = ββ × E0,
where the bare charge’s laboratory-observed Coulomb field
is

E0 =
er
r3 =

e
e∗

e∗r
r3 = α

1/2 e∗r
r3 , (3)

where α is Planck’s constant. The serial electric fields are
assumed to be radial; so the final electric field is radial with a
magnitude equal to the sum

E = E0 + E1 + E2 + E3 + . . . , (4)

where the En are the magnitudes of the Ens and the final mag-
netic field is ββ × E. Assuming that the En = En(r, θ), the
charge-PV feedback equations (1) and (2) reduce to

∂En

∂θ
=

r
c
∂Bn

∂t
(5)

and
Bn+1 = βEn sin θ (6)

in the azimuthal direction about the z-axis.
Calculating the first partial field E1 in the series begins

with (6)
B1 = βE0 sin θ (7)

and leads to (Appendix A)

Ḃ1 =
3cβ2E0 sin θ cos θ

r
, (8)

where the overhead dot represents a partial differentiation
with respect to time. Then from (5)

dE1 =
rḂ1

c
dθ = 3β2E0 sin θ cos θ dθ, (9)

which integrates over the limits (0, θ) to

E1 =
3β2E0 sin2 θ

2
− λ1E0, (10)

where the reference field E1(θ = 0) = −λ1E0 with λ1 a con-
stant to be determined.

The second iteration for the electric field begins with

B2 = βE1 sin θ =
3β3E0 sin3 θ

2
− λ1B1 (11)

and yields (Appendix A)

Ḃ2 =
15cβ4E0 sin3 θ cos θ

2r
− λ1Ḃ1 . (12)
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Equation (5) then leads to

dE2 =
rḂ2

c
dθ =

(
15β4E0 sin3 θ cos θ

2
− λ1rḂ1

c

)
dθ, (13)

which integrates to

E2 =
15β4E0 sin4 θ

8
− λ1

3β2E0 sin2 θ

2
− λ2E0, (14)

where again E2(θ = 0) = −λ2E0 .
The third iteration proceeds as before and results in (Ap-

pendix A)

Ḃ3 =
3 · 5 · 7cβ6E0 sin5 θ cos θ

8r
− λ1

3 · 5cβ4E0 sin3 θ cos θ
2r

−λ2
3cβ2E0 sin θ cos θ

r
(15)

and

E3 =
3 · 5 · 7β6E0 sin6 θ

6 · 8 − λ1
3 · 5β4E0 sin4 θ

2 · 4

−λ2
3βE0 sin2 θ

2
− λ3E0 (16)

for the third partial field.
Inserting (10), (14), and (16) (plus the remaining infinity

of partial fields) into (4) gives

E = E0 +
3β2E0 sin2 θ

2
+

3 · 5β4E0 sin4 θ

8

+
3 · 5 · 7β6E0 sin6 θ

48
+ . . .

−λ1

(
E0 +

3β2E0 sin2 θ

2
+

3 · 5β4E0 sin4 θ

8
+ . . .

)

−λ2

(
E0 +

3βE0 sin2 θ

2
+ . . .

)
− λ3(E0 + . . .) + . . .

= E0

(
1 +

3β2 sin2 θ

2
+

3 · 5β4 sin4 θ

2 · 4

+
3 · 5 · 7β6 sin6 θ

2 · 4 · 6 + . . .

)
(1 − λ) , (17)

where

λ ≡
∞∑

n=1

λn (18)

is a constant. The sum after the final equal sign in (17) is
recognized as the function (1 − β2 sin2 θ)−3/2; so E can be
expressed as

E =
(1 − λ)E0

(1 − β2 sin2 θ)3/2
. (19)

Finally, the constant λ can be evaluated from Gauss’ law
and the conservation of bare charge e∗:∫

D · dS = 4πe∗ −→
∫

E · dS = 4πe, (20)

where D = (e∗/e)E is used to arrive at the second integral.
Inserting (19) into (20) and integrating yields

λ = β2, (21)

which, inserted back into (19), gives the relativistic electric
field of a uniformly moving charge. That this field is the same
as that derived from the Lorentz transformed Coulomb field
is shown in Appendix B.

2 Conclusions and Comments

The calculations of the previous section suggest that the
Lorentz transformation owes its existence to interactions be-
tween free-space particles and the negative-energy PV. Free
space is defined here as “the classical void + the zero-point
electromagnetic vacuum” [3].

The fact that the bare charge is massless makes the Pem-
per derivation significantly less involved and more straight-
forward than the related case for the massive point charge
(Dirac electron). Nevertheless, the uniform motion of the
Dirac electron too exhibits electron-PV effects. When a bare
charge is injected into free space (presumably from the PV) it
very quickly (∼ 10−30 sec) develops a mass from being driven
by the random fields of the electromagnetic vacuum. The cor-
responding electron-PV connection is easily recognized in the
Lorentz-covariant Dirac equation [4, p. 90], [5]:(

ic~γµ∂µ − mc2
)
ψ = 0 −→

(
ie2
∗γ

µ∂µ − mc2
)
ψ = 0, (22)

where the PV relation c~ = e2
∗ is used to arrive at the equa-

tion on the right. A nonrelativistic expression for the electron
mass is given by Puthoff [3, 6]

m =
2
3

〈
ṙ2

〉1/2
c

m∗, (23)

where ṙ represents the random excursions of the zero-point-
driven bare charge about its center of (random) motion at r =
0 and m∗ is the Planck mass.

The massive point charge perturbs the PV with the two-
fold force [5]

e2
∗

r2 −
mc2

r
, (24)

where the first and second terms are the polarization and cur-
vature∗ forces respectively. It is the interaction of this com-
posite force with the PV that is responsible for the Dirac equa-
tion as evidenced by the e2

∗ and mc2 in (22) and (24). Thus
∗Using the PV relations G = e2

∗/m
2
∗ and e2

∗ = r∗m∗c2 in the curvature
force leads to mc2/r = mm∗G/rr∗ and shows the direct gravitational interac-
tion between the electron mass and the Planck particle masses within the PV.
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both the Pemper derivation and the Dirac equation argue com-
pellingly for the existence of the Planck vacuum state and its
place in the physical scheme of things. It is noted in pass-
ing that the force in (24) vanishes at the electron’s Compton
radius rc = e2

∗/mc2.

Appendix A: Galilean Coordinate System

The laboratory system in which the charge propagates is con-
sidered to be a Galilean reference system. In that system
(x, y, z) represents the radius vector from the system origin
to any field point (considered in the calculations to be fixed).
The position of the charge traveling at a constant rate v along
the positive z-axis is (0, 0, vt); so at time t = 0 the charge
crosses the origin. Since the field point is fixed, the vector in
the x-y plane

b = b b̂ ≡ x + y (A1)

is constant. The radius vector from the position of the charge
to the field point is then

r = (x, y, z − vt) . (A2)

Combining (A1) and (A2) gives

r =
[
b2 + (z − vt)2

]1/2
(A3)

for the magnitude of that vector.
If θ is the angle between the radius r and the positive z-

axis, it is easy to show from (A1)—(A3) that

r sin θ = b (A4)

and
r cos θ = z − vt (A5)

and from (A3)—(A5) that

ṙ = −v cos θ (A6)

and
rθ̇ = v sin θ, (A7)

where the overhead dot represents a partial derivative with
respect to time.

From (7) the initial magnetic field in the charge-PV inter-
action is

B1 = βE0 sin θ = β · e
r2 ·

b
r
=

βeb[
b2 + (z − vt)2]3/2 (A8)

whose time differential leads to

Ḃ1 =
3cβ2E0 sin θ cos θ

r
(A9)

in a straightforward manner.
From (11) in the text

B2 = βE1 sin θ =
3β3eb3

2
[
b2 + (z − vt)2]5/2 − λ1B1, (A10)

which leads to

Ḃ2 =
15cβ4Eo sin3 θ cos θ

2r
− λ1Ḃ1 . (A11)

From B3 = βE2 sin θ,

B3 =
15β5E0 sin5 θ

8
− λ1

3β3E0 sin3 θ

2
− λ2βE0 sin θ

=
15β5eb5

8
[
b2 + (z − vt)2]7/2 − λ1

3β3eb3

2
[
b2 + (z − vt)2]5/2

−λ2
βeb[

b2 + (z − vt)2]3/2 (A12)

and

Ḃ3 =
3 · 5 · 7cβ6E0 sin5 θ cos θ

8r
− λ1

3 · 5cβ4E0 sin3 θ cos θ
2r

−λ2
3cβ2E0 sin θ cos θ

r
. (A13)

Appendix B: Lorentz Transformed Fields

The Lorentz transformation coefficients aµν in the coordinate
transformation [7, pp. 380–381]

x′µ = aµνxµ =


1 0 0 0
0 1 0 0
0 0 γ iβγ
0 0 −iβγ γ




x
y
z

ict


=


x
y

γ(z − vt)
iγ(ct − βz)

 (B1)

lead to the Lorentz transformed fields

F′µν = aµσaντFστ, (B2)

where the F′µν, etc., are the electromagnetic field tensors. The
primed and unprimed parameters refer respectively to the
charge-at-rest and laboratory systems, where the charge sys-
tem travels along the z-axis of the laboratory system with a
constant velocity v.

Using the static Coulomb field in the charge system and
transforming it to the laboratory system with the inverse of
(B2) leads to the magnitude

E =
γe

[
b2 + (z − vt)2

]1/2[
b2 + γ(z − vt)2]3/2 (B3)

for the electric field, where γ = 1/(1− β2)1/2. (B3) reduces to
(19) in the following way:

E =
γe

[
b2 + (z − vt)2

]1/2

γ3 [
b2 + (z − vt)2 − β2b2]3/2
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=
e/

[
b2 + (z − vt)2

]
γ2 [

1 − β2b2/[b2 + (z − vt)2]
]3/2

=
(1 − β2) E0(

1 − β2 sin2 θ
)3/2 . (B4)
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