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We solve the general relativity (GR) field equations under the cosmological scope via
one extra postulate. The plausibility of the postulate resides within the Heisenberg in-
determinacy principle, being heuristically analysed throughout the appendix. Under
this approach, a negative energy density may provide the positive energy content of
the universe via fluctuation, since the question of conservation of energy in cosmol-
ogy is weakened, supported by the known lack of scope of the Noether’s theorem in
cosmology. The initial condition of the primordial universe turns out to have a natural
cutoff such that the temperature of the cosmological substratum converges to the ab-
solute zero, instead of the established divergence at the very beginning. The adopted
postulate provides an explanation for the cosmological dark energy open question. The
solution agrees with cosmological observations, including a 2.7K CMBT prediction.

1 Revisiting the Theoretical Assumptions

The study of the dynamics of the entire universe is known as
Cosmology [1–3]. The inherent simplicity in the mathemati-
cal treatment of the Cosmology, although the entire universe
must be under analysis, should be recognized as being due
to Copernicus. Indeed, since the primordial idea permeating
the principle upon which the simplicity arises is just an exten-
sion of the copernican revolution∗: the cosmological princi-
ple. This extension, the cosmological principle, just assever-
ates we are not in any sense at a privileged position in our uni-
verse, implying that the average large enough scale† spatial
properties of the physical universe are the same from point
to point at a given cosmological instant. Putting these in a
mathematical jargon, one says that the large enough scale spa-
tial geometry at a given cosmological instant t is exactly the
same in spite of the position of the observer at some point be-
longing to this t-sliced three-dimensional universe or, equiv-
alently, that the spatial part of the line element of the entire
universe is the same for all observers. Hence, the simplic-
ity referred above arises from the very two principal aspects
logically encrusted in the manner one states the cosmological
principle:

• The lack of a privileged physical description of the uni-
verse at a t-sliced large enough scale ⇒ large enough
scale⇒ one neglects all kind of known physical inter-
actions that are unimportant on the large enough scales
⇒ remains gravity;

• The lack of a privileged physical description of the uni-
verse at a t-sliced large enough scale ⇒ large enough
scale ⇒ one neglects local irregularities of a global t-
sliced substratum representing the t-sliced universe ∀

∗Copernicus told us that the Earth is not the center of our planetary sys-
tem, namely the solar system, pushing down the historical button leading to
the collapse of the established anthropocentric status quo.

†One must understand large enough scale as being that of cluster of
galaxies.

cosmological instants t ⇒ substratum modelled as a
fluid without t-sliced spatially localized irregularities
⇒ homogeneous and isotropic t-sliced‡ fluid.

One shall verify the t-local characteristic of the the cos-
mological principle, i.e., that non-privileged description does
not necessarily hold on the global time evolution of that t-
sliced spacelike hypersurfaces. In other words, two of such
t-sliced hypersurfaces at different instants would not preserve
the same aspect, as experimentally asseverated by the expan-
sion of the universe. Hence, some further assumption must
be made regarding the time evolution of the points belonging
to the t-sliced spacelike hypersurfaces:

• The particles of the cosmological fluid are encrusted in
spacetime on a congruence of timelike geodesics from
a point in the past, i.e., the substratum is modelled as a
perfect fluid.

Hence, the following theoretical ingredients are available
regarding the above way in which one mathematically con-
struct a cosmological model:

Gravity modeled by Einstein’s General Relativity field
equations (in natural units):

Gµν − Λgµν = 8πTµν. (1)

Homogeneity is mathematically translated
by means of a geometry (metric) that is the same from point
to point, spatially speaking. Isotropy is mathematically trans-
lated by means of a lack of privileged directions, also spatially
speaking. These two characteristics easily allow one to con-
sider spaces equipped with constant curvature K. From a dif-
ferential geometry theorem, Schur’s, a n-dimensional space
Rn, n ≥ 3, in which a η-neighbourhood has isotropy ∀ points

‡One shall rigorously attempt to the fact: the isotropy and homogeneity
are t-sliced referred, i.e., these two properties logically emerging from the
cosmological principle hold upon the entire fluid at t, holding spatially at t,
i.e., homogeneity and isotropy are spatial properties of the fluid. Regarding
the time, one observer can be at an own proper τ-geodesic. . .
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belonging to it, has constant curvature K throughout η. Since
we are considering, spatially, global isotropy, then K is con-
stant everywhere. Hence, one defines the Riemann tensor:

Rabcd = K (gacgbd − gadgbc) , (2)

spatially speaking.
As indicated before, homogeneity and isotropy are spatial

properties of the geometry. Time evolution, e.g.: expansion,
can be conformally agreed with these two spatial properties
logically emerging from the cosmological principle in terms
of Gaussian normal coordinates. Mathematically, the space-
time cosmological metric has the form:

ds2 = dt2 − [a(t)]2 dσ2. (3)

Since spatial coordinates for a spatially fixed observer do not
change, ds2 = dt2 ⇒ gtt = 1.

Regarding the spatial part of the line element, the
Schwarzschild metric is spherically symmetric, a guide to our
purposes. From the Scharzschild metric (signature + − − −):

ds2 = e2ν(r)dt2 − e2λ(r)dr2 − r2dθ2 − r2 sin2 θ dφ2, (4)

one easily writes down the spatial part of the spacetime cos-
mological metric:

dσ2 = e2 f (r)dr2 + r2dθ2 + r2 sin2 θ dφ2. (5)

One straightforwardly goes through the tedious calculation
of the Christoffel symbols and the components of the Ricci
tensor, finding:

e2 f (r) =
1

1 − Kr2 . (6)

Absorbing constants∗ by the scale factor in eqn. (3), one nor-
malizes the curvature constant K, namely k ∈ {−1; 0; +1}.
Hence, the cosmological spacetime metric turns out to be in
the canonical form:

ds2 = dt2 − [a(t)]2
(

dr2

1 − kr2 + r2dθ2 + r2 sin2 θ dφ2
)
. (7)

Now, regarding the fluid substratum, one sets in co-moving
coordinates (dt/dτ = 1, uµ = (1; 0; 0; 0)):

T µ ν= 0, µ, ν; T 0
0= ρ; T µ µ =− p , for µ ∈ {1; 2; 3} (8)

since the particles in the fluid are clusters of galaxies falling
together with small averaged relative velocities compared
with the cosmological dynamics, where the substratum turns
out to be averaged described by an average substratum den-
sity ρ and by an average substratum pressure p.

The Einstein tensor in eqn. (1), Gµν, is related to the Ricci
tensor Rµν = Rγµγν (the metric contraction of the curvature
tensor (Riemann tensor)), to the Ricci scalar R = Rµµ (the

∗Defining r′ =
√
|K| r, one straightforwardly goes through. . .

metric contraction of the Ricci tensor) and to the metric gµν
itself:

Gµν = Rµν −
1
2

Rgµν . (9)

The curvature tensor Rαβγδ is obtained via a metric connec-
tion, the Christoffel Γαβδ symbols in our case of non-torsional
manifold:

Rαβγδ = ∂γΓ
α
βδ − ∂δΓαβγ + ΓεβδΓαεγ − ΓεβγΓαεδ , (10)

where the metric connection is obtained, in the present case,
from the Robertson-Walker cosmological spacetime geome-
try given by eqn. (7) (from which one straightforwardly ob-
tains the metric coefficients of the diagonal metric tensor in
the desired covariant or contravariant representations) via:

Γαβγ = g
αδΓδβγ , (11)

being the metric connection (Christoffel symbols) of the first
kind Γδβγ given by:

Γδβγ =
1
2

(
∂gβγ

∂xδ
+
∂gγδ

∂xβ
−
∂gδβ

∂xγ

)
. (12)

These set of assumptions under such mathematical apparatus
lead one to the tedious, but straightforward, derivation, via
eqn. (1), of the ordinary differential cosmological equations
emerging from the relation between the Einstein’s tensor, Gµν,
the Robertson-Walker spacetime cosmological metric of the
present case, gµν via eqn. (7), and the stress-energy tensor, Tµν
via metric contraction of the eqn. (8) (signature + − − −):

Ṙ2 + kc2

R2 =
8πG
3c2 (ρ + ρ̃) ; (13)

2RR̈ + Ṙ2 + kc2

R2 = −8πG
c2 (p + p̃) , (14)

where we are incorporating the cosmological constant Λ
through the energy density and the pressure of the vacuum:
ρ̃ and p̃, respectively. One also must infer we are no more
working with natural units. The scale factor becomes R(t),
and one must interpret it as the magnification length scale of
the cosmological dynamics, since R(t) turns out to be length.
This measures how an unitary length of the pervading cos-
mological substratum at t0 becomes stretched as the universe
goes through a time evolution from t0 to t. One should not
literally interpret it as an increase of the distance between
two points, e.g., in a case of expansion, a stretched station-
ary wavelength connecting two cosmological points at a t0-
sliced spacelike substratum would remain stationarily con-
necting the very same two points after the stretched evolu-
tion to the respective t-sliced spacelike substratum, but less
energetically.
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2 A Cold Beginning?

Applying the following conservation criteria:

∇µT µt = ∂µT
µ
t + Γ

µ
µνT νt − ΓνµtT

µ
ν = 0, (15)

one finds via the diagonal stress-energy tensor (see eqn. (8)),
the metric connection (see eqs. (11) and (12)) and the space-
time cosmological geometry of the present case (eqn. (7)):

∂

∂t
(ρ + ρ̃) + 3

Ṙ
R

(ρ + ρ̃ + p + p̃) = 0. (16)

eqn. (16) is the first law of thermodynamics applied to
our substratum (including vacuum), since, despite of geome-
try, a spatial slice of the substratum has volume α(k) [R(t)]3,
density (ρ(t) + ρ̃)∗ and energy (ρ(t) + ρ̃)α(k) [R(t)]3, imply-
ing that dE + pdV = 0 turns out to be eqn. (16). α(k) is the
constant that depends on geometry (open, k = −1; flat, k = 0;
closed, k = 1) to give the correct volume expression of the
mentioned spatial slice of the t-sliced cosmological substra-
tum.

Now, we go further, considering the early universe as be-
ing dominated by radiation. In the ultrarelativistic limit, the
equation of state is given by:

ρ − 3p = 0. (17)

Putting this equation of state in eqn. (16) and integrating, one
obtains the substratum pressure as a function of the magnifi-
cation scale R:

4 ln ‖R‖ + ln ‖p‖ = C′ ⇒ ‖p‖ = eC′

R4 ⇒ p = ±C+

R4 , (18)

where C+ ≥ 0 is a constant of integration. In virtue of eqn.
(18), eqn. (14) is rewritten in a total differential form:

2RṘdṘ +
(
Ṙ2 + kc2 ± 8πG

c2

C+

R2 +
8πG
c2 p̃R2

)
dR = 0. (19)

Indeed, eqn. (19) is a total differential of a constant λ(R, Ṙ) =
constant:

dλ(R, Ṙ) =
∂λ(R, Ṙ)
∂Ṙ

dṘ +
∂λ(R, Ṙ)
∂R

dR = 0, (20)

since:

∂λ(R, Ṙ)
∂Ṙ

= 2RṘ ⇒ ∂2λ(R, Ṙ)
∂R ∂Ṙ

= 2Ṙ; (21)

∂λ(R, Ṙ)
∂R

= Ṙ2 + kc2 ± 8πG
c2

C+

R2 +
8πG
c2 p̃R2 ⇒ (22)

∗One shall remember the cosmological principle: on average, for large
enough scales, at t-sliced substratum, the universe has the same aspect in
spite of the spatial localization of the observer in the t-slice ⇒ ρ = ρ(t).
Also, since Λ is constant, ρ̃ and p̃ are constants such that ρ̃ + p̃ = 0.

∂2λ(R, Ṙ)
∂Ṙ ∂R

= 2Ṙ ∴
∂2λ(R, Ṙ)
∂R ∂Ṙ

=
∂2λ(R, Ṙ)
∂Ṙ ∂R

= 2Ṙ. (23)

Integrating, one has:∫
∂λ(R, Ṙ) =

∫
2RṘ ∂Ṙ = 2R

∫
Ṙ dṘ + h(R) ∴ (24)

λ(R, Ṙ) = RṘ2 + h(R), (25)

where h(R) is a function of R. From eqs. (22) and (25):

∂

∂R
λ(R, Ṙ) = Ṙ2 + kc2 ± 8πG

c2

C+

R2 +
8πG
c2 p̃R2 ⇒

h(R) =
∫ (

kc2 ± 8πG
c2

C+

R2 +
8πG
c2 p̃R2

)
dR ∴ (26)

h(R) = kc2R ∓ 8πG
c2

C+

R
+

8πG
3c2 p̃R3. (27)

Putting this result from eqn. (27) in eqn. (25):

λ(R, Ṙ) = RṘ2+kc2R∓ 8πG
c2

C+

R
+

8πG
3c2 p̃R3 = constant (28)

is the general solution of the total differential equation eqn.
(19). Dividing both sides of eqn. (28) by R3 , 0:

λ(R, Ṙ)
R3 =

Ṙ2 + kc2

R2 ∓ 8πG
c2

C+

R4 +
8πG
3c2 p̃, (29)

using the eqn. (13), one obtains:

λ(R, Ṙ)
R3 =

8πG
c2

(
ρ

3
∓ C+

R4

)
+

8πG
3c2 (ρ̃ + p̃) ∴ (30)

λ(R, Ṙ) = constant = 0, (31)

in virtue of eqns. (17), (18) and ρ̃ + p̃ = 0 for the back-
ground vacuum. Of course, the same result is obtained from
eqn. (13), since this equation is a constant of movement of
eqn. (14), being eqn. (16) the connection between the two.
Neglecting the vacuum contribution in relation to the ultrarel-
ativistic substratum, one turns back to the eqn. (28), set the
initial condition R = R0, Ṙ = 0, at t = 0, obtaining for the
substratum pressure:

p(R) = k
c4R2

0

8πGR4 , (32)

and for the magnification scale velocity:

Ṙ2 = −kc2
1 − R2

0

R2

 . (33)

Now, robustness† requires an open universe with k = −1.
Hence, the locally flat substratum energy is given by‡:

E+ = −4πR3 p(R)⇒ R0 = −
2GE+0

kc4 , (34)

†For, Ṙ2 ∈ R in eqn. (33) with R ≥ R0.
‡The Hawking-Ellis dominant energy condition giving the positive en-

ergy, albeit the expansion dynamics obtained via eqn. (32).
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in virtue of eqn. (32) and the initial condition E+ = E+0 ,
R = R0 at t = 0. Returning to eqn. (33), one obtains the
magnification scale velocity:

Ṙ = c

√√
1 −

4G2
(
E+0

)2

c8R2 , (35)

giving Ṙ → c as R → ∞. Rewriting eqn. (35), one obtains
the dynamical Schwarzchild horizon:

R =
2G
c4

E+0√
1 − Ṙ2/c2

. (36)

We will not use the eqn. (34) (now you should read the ap-
pendix to follow the following argument) to obtain the en-
ergy from the energy density and volume for t , 0, since we
do not handle very well the question of the conservation of
energy in cosmology caused by an inherent lack of applica-
tion of the Noether’s theorem. In virtue of the adopted initial
conditions, an initial uncertainty R0 related to the initial spa-
tial position of an arbitrary origin will be translated to a huge
uncertainty R at the actual epoch. Indeed, one never knows
the truth about the original position of the origin, hence the
uncertainty grows as the universe enlarge. The primordial
energy from which the actual energy of the universe came
from was taken as E+0 at the beginning. This amount of en-
ergy is to be transformed over the universe evolution, giv-
ing the present amount of the universe, i.e., the energy of an
actual epoch t-sliced hypersurface of simultaneity. But this
energy at each instant t of the cosmological evolution turns
out to be the transformed primordial indeterminacy E+0 , since
E+0 is to be obtained via the Heisenberg indeterminacy prin-
ciple. In other words, we argue that the energetic content
of the universe at any epoch is given by the inherent inde-
terminacy caused by the primordial indeterminacy. At any
epoch, one may consider a copy of all points pertaining to the
same hypersurface of simultaneity but at rest, i.e., an instan-
taneous non-expanding copy of the expanding instantaneous
hypersurface of simultaneity. Related to an actual R indeter-
minacy of an origin in virtue of its primordial R0 indetermi-
nacy, one has the possibility of an alternative shifted origin
at R. This shifted origin expands with Ṙ in relation to that
non-expanding instantaneous copy of the universe at t. Since
the primordial origin was considered to encapsulate the pri-
mordial energy E+0 , this energy at the shifted likely alternative
origin should be E+0 /

√
1 − Ṙ2/c2, since, at R, a point expands

with Ṙ in relation to its non-expanding copy. We postulate:

• The actual energy content of the universe is a conse-
quence of the increasing indeterminacy of the primor-
dial era. Any origin of a co-moving reference frame
within the cosmological substratum has an inherent in-
determinacy. Hence, the indeterminacy of the energy
content of the universe may create the impression that

the universe has not enough energy, raising illusions
as dark energy and dark matter speculations. In other
words, since the original source of energy emerges as
an indeterminacy, we postulate this indeterminacy con-
tinues being the energy content of the observational
universe: δE(t) = E+(t) = E+0 /

√
1 − Ṙ2/c2.

This result is compatible with the Einstein field equations.
The compatibility is discussed within the appendix. In virtue
of this interpretation, eqn. (36) has the aspect of the Schwarz-
child radius, hence the above designation. The t-instantan-
eous locally flat spreading out rate of dynamical energy at
t-sliced substratum is given by the summation over the ν-
photonic frequencies:

Ṙ
d

dR

 E+0√
1 − Ṙ2/c2

 =

=
8π2R2h

c2

∫ ∞

0

ν3

exp (hν/kBT ) − 1
dν =

8π6k4
BR2

15c2h3 T 4, (37)

where kB is the Boltzmann constant, h the Planck constant and
T the supposed rapid thermodynamically equilibrated t-sliced
locally flat instantaneous cosmological substratum tempera-
ture. Now, setting, in virtue of the Heisenberg principle:

E+0 R0

c
≈ h

(34)
⇒

(
E+0

)2
=

hc5

2G
, (38)

one obtains, in virtue of eqn. (37):

T 4 =
15c7h3

16π6Gk4
B

1
R2

√
1 − 2Gh

c3R2 . (39)

Hence, the temperature of the cosmological substratum van-
ishes∗ at t = 0, rapidly reaching the maximum ≈ 1032K, and
assintotically decreasing to zero again as t → ∞.

Indeed. R0 = R(t = 0) =
√

2Gh/c3, in virtue of eqs. (34)
and (38), giving T 4(R0) = T 4(t = 0) = 0. Also, the max-
imum temperature is T ≈ 1032K, from eqn. (39), occuring
when R = Rmax =

√
3/2R0 =

√
3Gh/c3, as one obtains by

dT 4/dR = 0 with d2T 4/dR2 < 0. Below†, one infers these
properties of eqn. (39).

∗We argue there is no violation of the third law of thermodynamics, since
one must go from the future to the past when trying to reach the absolute zero,
violating the second law of thermodynamics. At t = 0, one is not reaching
the absolute zero since there is no past before the beginning of the time. To
reach the absolute zero, in an attempt to violate the Nernst principle, one
must go from the past to the future.

†The eqn. (39) is simply rewritten to plot the graph, i.e.: T 4
max =(

5
√

3 c10h2
)
/
(
48π6G2k4

B

)
and, as obtained before, R0 =

√
2Gh/c3.
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0

1

1 2 3

T 4

T 4
max

x ≡ R/R0

(T/Tmax)4 =
(
3
√

3/2
) √

1 − 1/x2/x2

Now, one puts the result of eqn. (38) in eqn. (35) and inte-
grates: ∫ R

(2Gh/c3)1/2

R√
R2 − 2Gh/c3

dR = c
∫ t

0
dτ, (40)

obtaining:

t =
1
c

√
R2 − 2Gh/c3 ⇒ t(Rmax) =

√
Gh
c5 ≈ 10−43 s, (41)

for the elapsed time from t = 0 to the instant in which the sub-
stratum temperature reaches the maximum value T ≈ 1032 K.
The initial acceleration, namely the explosion/ignition accel-
eration at t = 0 of the substratum is obtained from eqn. (35):

R̈ = Ṙ
dṘ
dR
=

4G2
(
E+0

)2

c6R3
(38)
=

2Gh
cR3 ∴ (42)

R̈
(
R = R0 =

√
2Gh/c3

)
=

√
c7

2Gh
≈ 1051 m/s2. (43)

An interesting calculation is the extension of the eqn. (39)
formula to predict the actual temperature of the universe.
Since 2Ghc−3R−2 � 1 for actual stage of the universe, eqn.
(39) is approximately given by:

T 4 ≈ 15c7h3

16π6Gk4
B

1
R2 ⇒ R2 ≈ 15c7h3

16π6Gk4
B

1
T 4 . (44)

Also, for actual age of the universe, eqn. (41) is approxi-
mately given by:

t ≈ R
c

(44)
=

√
15c5h3

16π6Gk4
B

1
T 2 ∴ (45)

T 2
Now =

√
15c5h3

16π6Gk4
B

t−1
Now = 5.32 × 1020t−1

Now

(
K2s

)
. (46)

Before going further on, one must remember we are not in
a radiation dominated era. Hence, the left-hand side and the
right-hand side of eqn. (37) must be adapted for this situation.

The left-hand accomplishes the totality of spreading out en-
ergy in virtue of cosmological dynamics. It equals the right-
hand side in an ultrarelativistic scenario. But, as the universe
evolves, the right-hand side becomes a fraction of the totality
of spreading out energy. Rigorously, as the locally flatness
of the t-sliced substratum increases, one multiplies both sides
of eqn. (37) by (4/c) ×

(
1/4πR2

)
and obtains the t-sliced in-

stantaneously spreading out enclosed energy density. Hence
the right-hand side of eqn. (37) turns out to be multiplied by
the ratio between the total cosmological density∗ ρc and the
radiation density ρr. Hence, eqn. (46) is rewritten:√

ρc

ρr
T 2

Now = 5.32 × 1020t−1
Now

(
K2s

)
. (47)

The actual photonic density is ρr = 4.7× 10−31 kg/m3 and the
actual total cosmological density is ρc = 1.3 × 10−26 kg/m3.
For the reciprocal age of universe, t−1

Now in eqn. (47), one
adopts the Hubble’s constant, for open universe, H = t−1

Now =

2.3 × 10−18 s−1. Hence, by eqn. (47), one estimates the actual
temperature of the universe:

T 2
Now =

√
4.7 × 10−31

1.3 × 10−26 ×5.32×1020×2.3×10−18 K2 ∴ (48)

TNow = 2.7 K, (49)

very close to the CMB temperature.

3 Appendix

From eqns. (17) and (32):

ρ = 3p = −
3c4R2

0

8πG
1

R4 ⇒ Eρ = −
c4R2

0

2G
1
R
, (50)

since k = −1; Eρ is the energy (negative) obtained from vol-
ume and ρ. From eqn. (34), R2

0 = 4G2(E+0 )2/c8. Hence, eqn.
(50) is rewritten:

Eρ = −
2G
c4

(
E+0

)2 1
R
. (51)

With the eqn. (36), we reach:

Eρ = −E+0

√
1 − Ṙ2/c2. (52)

This negative energy arises from the adopted negative pres-
sure solution. But, its fluctuation is positive:

δEρ =
E+0√

1 − Ṙ2/c2

Ṙ δṘ
c2 , (53)

since both, Ṙ and δṘ, are positive within our model (see eqn.
(40)). Let δt be the time interval within this fluctuation pro-
cess. Multiplying both sides of the eqn. (53) by δt, we obtain:

δEρ δt =
E+0√

1 − Ṙ2/c2

(
ṘδṘ/c2

)
δt. (54)

∗Actually, the critical one, since observations asseverate it.
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The above relation must obey the Heisenberg indeterminacy
principle, and one may equivalently interpret it under the fol-
lowing format:

δEρ δt =
E+0√

1 − Ṙ2/c2
(δt)∗ ≈ h, (55)

An energy indeterminacy having the magnitude of the actual
cosmological energy content carries an indeterminacy δṘ ≈ c
about the magnification scale velocity Ṙ with Ṙ ≈ c. For
such an actual scenario in which Ṙ ≈ c (see eqn. (35) with
R→ ∞), we have:

δt ≈ (δt)∗ ⇒ δEρ
∣∣∣∞
R0
= E+ =

E+0√
1 − Ṙ2/c2

, (56)

if∗ Ṙ → c. Now, let’s investigate the primordial time domain
t ≈ 0. To see this, we rewrite ṘδṘ within the eqn. (54).
Firstly, from eqn. (35):

Ṙ = c
√

1 − R2
0/R

2 ⇒ Ṙ δṘ =
c2R2

0

R3 δR, (57)

where R0 =
√

2Gh/c3 as obtained before. Within the primor-
dial time domain t ≈ 0, we have R ≈ R0 and δR ≈ R0, as
discussed before. Hence, the eqn. (57) reads:

Ṙ δṘ ≈ c2. (58)

if t ≈ 0. Back to the eqn. (54) we obtain again:

δt ≈ (δt)∗ ⇒ δEρ
∣∣∣≈R0
= E+ =

E+0√
1 − Ṙ2/c2

, (59)

if t ≈ 0. This justify the use of E+ = E+0 /
√

1 − Ṙ2/c2 within
our postulate, emerging from the positive fluctuation of the
negative energy Eρ obtained from volume and the negative
energy density ρ stated via the fluid state equation, eqn. (17),
and entering within the field equations.
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