
October, 2011 PROGRESS IN PHYSICS Volume 4

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles

Vahan N. Minasyan and Valentin N. Samoylov

Scientific Center of Applied Research, JINR, Dubna, 141980, Russia.
E-mail: mvahan n@yahoo.com

We propose a novel approach for investigation of the motion of Bose or Fermi liquid (or
gas) which consists of decoupled electrons and ions in the uppermost hyperfine state.
Hence, we use such a concept as the fluctuation motion of “charged fluid particles”
or “charged fluid points” representing a charged longitudinal elastic wave. In turn,
this elastic wave is quantized by spinless longitudinal Bose charged sound particles
with the rest mass m and charge e0. The existence of spinless Bose charged sound
particles allows us to present a new model for description of Bose or Fermi liquid
via a non-ideal Bose gas of charged sound particles. In this respect, we introduce a
new postulation for the superfluid component of Bose or Fermi liquid determined by
means of charged sound particles in the condensate, which may explain the results of
experiments connected with ultra-cold Fermi gases of spin-polarized hydrogen, 6Li and
40K, and such a Bose gas as 87Rb in the uppermost hyperfine state, where the Bose-
Einstein condensation of charged sound particles is realized by tuning the magnetic
field.

1 Introduction

The Bose-Einstein condensation (BEC) has a wide applica-
tion for investigation of superconductivity of metals and su-
perfluidity of liquids. The primary experimental challenge
to evaporative cooling of spin-polarized hydrogen was made
by a dilution refrigerator, demonstrating that spin-polarized
hydrogen can be confined in a statistic magnetic trap and
thermally decoupled from the walls [1–3]. At the density
N
V ≈ 1013 cm−3 it is observed that the gas consisting of de-
coupled electrons and ions in the uppermost hyperfine state is
evaporatively cooled to a temperature approximately equal to
40 mK.

Here, we remark about BEC that was produced in a va-
por of 87Rb bosonic ions confined by magnetic fields and
evaporatively cooled [4]. The condensate fraction first ap-
peared near a temperature of 170 nanokelvin at the density
N
V = 2.6 × 1012 cm−3. The experiment has shown that the
value of temperature 170 nK is reduced to 20 nK. In reality,
the strongly interacting spin- 1

2
6Li and 40K fermionic gases

were realized via tuning the magnetic field [5]. These experi-
mental achievements in the field of ultra-cold Fermi gases are
based mainly on the possibility of tuning the scattering length
a which becomes much larger in magnitude than the mean in-
teratomic distance by changing the external magnetic field.
In this respect, the concept of Fermi surface loses its mean-
ing due to the broadening produced by pairing of fermions,
the so-called Feshbach resonances in ultracold atomic Fermi
gases. However, in this letter we predict a new method of
liquid cooling which is based on the formation of oscilla-
tors at every point of liquid by tuning the magnetic field,
which in turn leads to vibration of “charged fluid particles”.
These “charged fluid particles” reproduce charged spinless
quasiparticles which determine the superfluidity component

of Bose or Fermi liquid by action of the static magnetic field.
In order to investigate the motion of quantum liquid (or

quantum gas) in the uppermost hyperfine state, we consider
the motion of “charged fluid particles” by means of a charged
longitudinal elastic wave [6]. This longitudinal elastic wave
is quantized by spinless Bose charged sound particles with
the mass m and charge e0. Further, we present a new model
for description of charged Bose or Fermi liquid via a non-
ideal Bose gas consisting of charged sound particles. As op-
posed to London’s postulation about the superfluid compo-
nent of liquid 4He [7], we introduce a new postulation about
the superfluid component of Bose or Fermi liquid via charged
sound particles in the condensate. On the other hand, we es-
timate the zero sound speed which leads to the correct expla-
nation of the experimental result connected with the BEC of
a gas consisting of spin-polarized hydrogen.

2 Quantization of quantum liquid or quantum gas in the
uppermost hyperfine state

Now let us analyze quantization of quantum liquid (or quan-
tum gas) in the uppermost hyperfine state. This quantum liq-
uid (or quantum gas) consists of N Bose or Fermi positive
charged ions with the charge e and mass M confined in the
volume V where they are in a negative electron background
since the entire system of liquid is electro-neutral. Consider-
ing quantum liquid as a continuous medium, we investigate
the fluctuation motion of the number n of “charged fluid par-
ticles” on the basis of hydrodynamics (where a “charged fluid
particle” is defined as a very small volume V0 in regard to the
volume V of the liquid (V0 � V) with the mass m and charge
e0. The volume V0 contains the number N

′
= N

n of liquid
ions, therefore the charge e0 is expressed via the ion charge
as e0 =

eN
n .
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In accordance with the laws of hydrodynamics [6], the
mass density ρ and pressure p of liquid are presented as

ρ = ρ0 + ρ
′

and
p = p0 + p

′
,

where ρ0 =
MN
V and p0 are, respectively, the equilibrium mass

density and pressure; ρ
′

and p
′

are the relative fluctuations of
the mass density and pressure.

As is known, the continuity equation has the form:

∂ρ
′

∂t
= −ρ0 div~v, (1)

which may present as:

ρ
′
= −ρ0 div~u, (2)

where ~v = ∂~u
∂t is the speed of a charged fluid particle; ~u =

~u(~r, t) is the displacement vector of a charged fluid particle
which describes a charged longitudinal sound wave.

On the other hand, Euler’s equation in the first-order-of-
smallness approximation takes the reduced form:

∂~v

∂t
+
∇p

′

ρ0
= 0. (3)

Hence, we consider the fluctuation motion of charged
fluid particles as adiabatic, deriving the following equation:

p
′
=

(
∂p
∂ρ0

)
S
ρ
′
= c2

l ρ
′
, (4)

where S is the entropy; cl =

√(
∂p
∂ρ0

)
S

is the speed of the
charged longitudinal elastic wave.

As is known, the fluctuation motion of charged fluid par-
ticles represents as a potential one:

curl~v = curl
∂~u
∂t
= 0. (5)

Thus, by using the above equation we may get to the wave
equation for the vector of displacement ~u = ~u(~r, t):

∇2~u(~r, t) − 1
c2

l

∂2~u(~r, t)
∂t2 = 0, (6)

which in turn describes the longitudinal charged sound wave.
Now, we state that the longitudinal elastic wave consists

of spinless Bose charged sound particles with the non-zero
rest mass m. Then, the displacement vector u(~r, t) is expres-
sed via a secondary quantization vector of the wave function
of spinless Bose charged sound particles directed along the
wave vector ~k:

~u(~r, t) = ul

(
~φ(~r, t) + ~φ+(~r, t)

)
, (7)

where ul is the normalization constant which is the amplitude
of oscillations; ~φ(~r, t) is the secondary quantization of vector
wave functions for creation and annihilation of one longitudi-
nal charged sound particle with the mass m whose direction ~l
is directed towards the wave vector ~k:

~φ(~r, t) =
1
√

V

∑
~k

~a~k ei(~k~r−kclt) (8)

~φ+(~r, t) =
1
√

V

∑
~k

~a+~k e−i(~k~r−kclt) (9)

with the condition∫
~φ+(~r, t) ~φ(~r, t) dV = n0 +

∑
~k,0

â+~k â~k = n̂, (10)

where ~a+
~k

and ~a~k are, respectively, the Bose vector-operators
of creation and annihilation for a free charged sound particle
with the energy ~

2k2

2m , described by the vector ~k whose direc-
tion coincides with the direction ~l of a traveling charged lon-
gitudinal elastic wave; n̂ is the operator of the total number
of charged sound particles; n̂0 is the total number of charged
sound particles at the condensate level with the wave vector
~k = 0.

Thus, as is seen, the displacement vector ~u(~r, t) satisfies
wave-equation (6) and in turn takes the form:

~u(~r, t) = ~u0 +
ul√
V

∑
~k,0

(
~a~k ei(~k~r−kclt) + ~a+~k e−i(~k~r−kclt)

)
. (11)

While investigating a superfluid liquid, Bogoliubov [8]
separated the atoms of helium in the condensate from those
atoms filling the states above the condensate. In an analo-
gous manner, we may consider the vector operator ~a0 = ~l

√
n0

and ~a+0 = ~l
√

n0 as c-numbers (where ~l is the unit vector in
the direction of propagation of the sound wave) within the
approximation of a macroscopic number of sound particles
in the condensate n0 � 1. These assumptions lead to a bro-
ken Bose-symmetry law for sound particles in the conden-
sate. To extend the concept of a broken Bose-symmetry law
for sound particles in the condensate, we apply the definition
of BEC of sound particles in the condensate as was postulated
by the Penrose-Onsager for the definition of BEC of helium
atoms [9]:

lim
n0,n→∞

n0

n
= const. (12)

On the other hand, we may observe that presence of
charged sound particles filling the condensate level with the
wave vector ~k = 0 leads to the appearance of the constant

displacement ~u0 =
2ul~l
√

n0√
V

of charged sound particles.
To find the normalization constant ul, we introduce the

following condition which allows us to suggest that at abso-
lute zero all sound particles fill the condensate level ~k= 0.
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This reasoning implies that at n0 = n the constant displace-
ment takes the maximal value 2d =

√
|~u0|2 which represents

the maximal distance between two neighboring charged
sound particles. On the other hand, this distance is deter-

mined by the formula d =
(

3V
4πn

) 1
3 , which is in turn substituted

into the expression 2d =
√
|~u0|2. Then, consequently, we get

to the normalization constant ul = 0.65
(

n
V

)− 5
6 .

The condition for conservation of density at each point of
liquid stipulates that

ρ0 =
MN
V
=

mn
V
, (13)

which represents a connection of the mass and density of the
charged sound particles with the mass and density of the ions.
Thus, we argue that liquid (or gas) can be described by the
model of an ideal gas of n charged sound particles with the
mass m and charge e0 in the volume V . Hence, we remark
that the Coulomb scattering between charged sound particles
is neglected in the considered theory.

3 “Charged fluid particles” in trapped static magnetic
field

Now, we consider the Hamiltonian operator Ĥl of liquid [6]
in a trapped static magnetic field [10]:

Ĥl =
ρ0

2

∫ (
∂~u
∂t

)2

dV +
1
2

∫ (
clρ

′

√
ρ0

)2

dV+

+
ρ0

2

∫ (
Ω~ul

)2 dV,

(14)

where Ω = e0H
mc is the trapping frequency of a “charged fluid

particle”; e0 is the charge of a “fluid particle”; H is the ab-
solute value of the magnetic strain; c is the velocity of light
in vacuum. Hence, we note that the charge of a fluid particle
equals e0 = eN

′
= Ne

n , where N
′

is the number of ions in a
small volume V0 of one charged fluid particle.

Substituting ρ
′

from (2) into (14), we obtain

Ĥl =
ρ0

2

∫ (
∂~u
∂t

)2

dV +
ρ0

2

∫ (
cl div~u

)2 dV+

+
ρ0

2

∫ (
Ω~ul

)2 dV.

(15)

Using Dirac’s approach in [11] for quantization of the
electromagnetic field, we have:

∂~u(~r, t)
∂t

= − icl~ul√
V

∑
~k

k
(
~a~k e−ikclt − ~a+−~k eikclt

)
ei~k~r, (16)

as well as

div~u(~r, t) =
i~ul√

V

∑
~k

~k
(
~a~k e−ikclt + ~a+−~k eikclt

)
ei~k~r. (17)

Now, introducing (16) and (17) into (15) and using

1
V

∫
ei(~k1+~k2)~r = δ3

~k1+~k2
,

we obtain the terms in the right side of the Hamiltonian of the
system presented in (15):

ρ0

2

∫ (
∂~u
∂t

)2

dV = −
ρ0c2

l u2
l

2

∑
~k

k2
(
~a~k − ~a

+

−~k

) (
~a−~k − ~a

+
~k

)
,

ρ0

2

∫ (
div~u

)2 dV =
ρ0c2

l u2
l

2

∑
~k

k2
(
~a~k + ~a

+

−~k

) (
~a−~k + ~a

+
~k

)
and

ρ0

2

∫ (
Ω~ul

)2 dV =
ρ0Ω

2u2
l

2

∑
~k

(
~a~k + ~a

+

−~k

) (
~a−~k + ~a

+
~k

)
.

These expressions determine the reduced form of the
Hamiltonian operator Ĥl by the form:

Ĥl =
∑
~k

(
2ρ0u2

l c2
l k2 + ρ0Ω

2u2
l

)
~a+~k a~k+

+
ρ0Ω

2u2
l

2

∑
~k

(
~a+−~k~a

+
~k
+ ~a~k~a−~k

)
,

(18)

where u2
l is defined by the first term in the right side of (18)

which represents the kinetic energy of a charged sound parti-
cle ~

2k2

2m , if we suggest:

2ρ0u2
l c2

l k2 =
~2k2

2m
. (19)

Then,

u2
l =

~2

4c2
l mρ0

,

which allows one to determine the mass m of a charged sound
particle using the value of the normalization constant ul =

0.65
(

n
V

)− 5
6 and (13):

m =
~

cl

( n
V

) 1
3
. (20)

Thus, the main part of the Hamiltonian operator Ĥl takes
the form:

Ĥl=
∑
~k,0

(
~2k2

2m
+mv2

)
~a+~k a~k+

mv2

2

∑
~k,0

(
~a+−~k ~a

+
~k
+~a~k ~a−~k

)
, (21)

where we denote v = ~Ω√
2mcl

, which in turn is the speed of
charged sound in a Bose or Fermi liquid excited by static
magnetic field; n0 is the number of charged sound particles
in the condensate.
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For the evolution of the energy level, it is necessary to
diagonalize the Hamiltonian Ĥl, which can be accomplished
by introducing the vector Bose-operators ~b+

~k
and ~b~k [12]:

~a~k =
~b~k + L~k ~b

+

−~k√
1 − L2

~k

, (22)

where L~k is the unknown real symmetrical function of the
wave vector ~k.

By substituting (22) into (21), we obtain

Ĥl =
∑
~k,0

ε~k
~b+~k
~b~k, (23)

where ~b+
~k

and ~b~k are the creation and annihilation operators of
charged Bose quasiparticles with the energy:

ε~k =

(~2k2

2m

)2

+ ~2k2v2
1/2

. (24)

In this context, the real symmetrical function L~k of the
wave vector ~k is found to be

L2
~k
=

~2k2

2m + mv2 − ε~k
~2k2

2m + mv2 + ε~k
. (25)

Thus, the average energy of the system takes the form:

Ĥl =
∑
~k,0

ε~k
~b+
~k
~b~k, (26)

where ~b+
~k
~b~k is the average number of charged Bose quasipar-

ticles with the wave vector ~k at the temperature T :

~b+
~k
~b~k =

1

e
ε~k
kT − 1

. (27)

Thus, we have found the spectrum of free charged spin-
less quasiparticles excited in a Bose or Fermi liquid which is
similar to Bogoliubov’s one [8]. In fact, the Hamiltonian of
system (24) describes an ideal Bose gas consisting of charged
spinless phonons at a small wave number k � 2mv

~
but at

k � 2mv
~

the Hamiltonian operator describes an ideal gas
of charged sound particles. This reasoning implies that the
tuning magnetic field forms the superfluidity component of a
Bose or Fermi liquid which is been in the uppermost hyper-
fine state.

4 BEC of charged sound particles

As opposed to London’s postulation concerning BEC of
atoms [7], we state that charged sound particles in the con-
densate define the superfluid component of Bose and Fermi

liquids. Consequently, statistical equilibrium equation (10)
takes the following form:

n0,T +
∑
~k,0

~a+
~k
~a~k = n, (28)

where ~a+
~k
~a~k is the average number of charged sound particles

with the wave vector ~k at the temperature T .
To find the form ~a+

~k
~a~k, we use the linear transformation

presented in (22):

~a+
~k
~a~k =

1 + L2
~p

1 − L2
~p

~b+
~k
~b~k +

L~k
1 − L2

~k

(
~b+
~k
~b+
−~k
+ ~b~k~b−~k

)
+

L2
~k

1 − L2
~k

.

According to the Bloch-De-Dominicis theorem, we have

~b+
~k
~b+
−~k
= ~b~k~b−~k = 0.

In this respect, the equation for the density of charged
sound particles in the condensate takes the following form:

n0,T

V
=

n
V
− 1

V

∑
~k,0

L2
~k

1 − L2
~k

− 1
V

∑
~k,0

1 + L2
~k

1 − L2
~k

~b+
~k
~b~k. (29)

Obviously, at the lambda transition T = Tλ the density
of charged sound particles

n0,Tλ
V = 0. Hence, we note that

the mass m and density n
V of charged sound particles are ex-

pressed via the mass of ions M and density of ions N
V when

solving a system of two equations presented in (13) and (20):

n
V
=

( Mcl

~

N
V

) 3
4

(30)

and

m =
(
~

cl

) 3
4 ( MN

V

) 1
4

. (31)

In conclusion, it should be noted that the given approach
opens up a new direction for investigation of BEC of charged
sound particles in Fermi gases of spin-polarized hydrogen,
6Li and 40K, and in a Bose gas such as 87Rb, because the
model of quantum liquid in the uppermost hyperfine state is
considered in the same way as superfluid liquid helium. In
this letter, we argue for the first time that the superfluid com-
ponent of Bose or Fermi liquid in the uppermost hyperfine
state is determined by means of charged sound particles in the
condensate. In fact, we argue that the lambda transition point
depends on the strain of static magnetic field due to equation
(29) and condition for the density of charged sound particles
n0,Tλ

V = 0.
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