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The paper aims to show the physical link between Fick’s laws and entropy increase in
an isolated diffusion system, initially inhomogeneous and out of the thermodynamic
equilibrium, within which transport of matter is allowed to occur. Both the concentra-
tion gradient law and the entropic terms characterizing the diffusion process are inferred
from the uncertainty equations of statistical quantum mechanics. The approach is very
general and holds for diffusion systems in solid, liquid and gas phases.

1 Introduction

Diffusion concerns the transport of matter activated by ther-
mal motion of atoms and molecules. Theoretical and ex-
perimental reviews on the mechanisms of mass transfer in
solid, liquid and gas phases are widely reported in litera-
ture, e.g. [1, 2]. The importance of diffusion is well recog-
nized in the kinetics of microstructural changes, nucleation
of new phases, phase transformations, homogeneization and
recrystallization of alloys and so on [3]; for instance electric
conduction includes phenomena closely related to the trans-
port mechanisms of ions and electrons.The theoretical back-
ground of the diffusion is based on an intuitive hypothesis:
the driving energy that governs the mass transfer is related
to the concentration gradient of molecules or atoms or ions
in a diffusion medium, which can be simply the vacuum or
a gas/liquid/solid phase. Such an assumption is so simple
and reasonable to skip a more profound consideration just
about the physical meaning of its general character. It is
sensible to expect that this generality, and that of the related
concentration gradient driving force itself, should be in fact
consequence of some general principle of nature. This con-
sideration recalls in effect the second law of thermodynam-
ics, as concerns in particular the probabilistic character of the
entropy. Consider an arbitrary number of particles “a” dif-
fusing within a medium “b”; whatever the former might be,
e.g. ions, atoms, molecules and so on, in the following they
will be shortly referred to as particles, whereas the system
formed by “a” and “b” will be referred to as diffusion sys-
tem. One expects that after a proper time range, the system
attains the most probable configuration, i.e. a uniform distri-
bution of “a” into “b” regardless of the particular initial con-
figuration assumed in general in a non-equilibrium state. So a
net mass flow was necessarily occurring before reaching this
limit situation, after which it is no longer allowed to occur.
The entropy seems to be the thermodynamic concept most
closely related to describe the transient and final configura-
tions. This means that: (i) the dimensionless entropy formula
−∑iwi log(wi), where the index i numbers the thermodynamic
states allowed to the diffusing particles, should be involved
since the beginning into the concentration gradient formula-
tion of any diffusion problem; (ii) this formula should reduce
to the simpler Boltzmann form − log(weq) when the equilib-

rium configuration is effectively attained; (iii) the mass flow
J is by consequence different from zero only during the time
step (i), whereas it reduces to zero at the asymptotic time step
(ii). Our knowledge on the diffusion process is thus based
on a phenomenological hypothesis, the concentration gradi-
ent law, and on a general principle of nature, the entropy.
It would be significant to regard both concepts as a natural
consequence of a unique and more general principle of na-
ture, without the need of phenomenological assumptions. Of
course a general approach to this problem cannot leave out
the quantum aspect of any problem inherent the dynamics of
particles on microscopic scale. Justifying from the quantum
point of view the concentration gradient driven diffusion law
would provide a sound physical basis to the general problem
of mass transport, whereas the continuity equation, if appli-
cable, would also appear itself as a corollary identified by
well-defined physical requirements about the diffusion sys-
tem. On the one side it is certainly significant to demonstrate
by means of a unique general principle the quantum origin of
the macroscopic equations describing how the configuration
of the diffusion system evolves as a function of time because
of the mass transfer. On the other side this task seems further
noteworthy if carried out within the same theoretical frame
that allows describing the quantum properties of matter. The
purpose of the present paper is to investigate the quantum ba-
sis hidden into the gradient law, i.e. to demonstrate that the
uncertainty is the basic quantum principle leading to the first
Fick law as a corollary. Moreover the theoretical model pro-
posed here also confirms through a simple and straightfor-
ward approach that the entropy of the diffusion system is the
other key concept underlying the mechanisms of mass trans-
port.

2 Classical background

For simplicity, let us regard the diffusion system as an isolated
thermodynamic system formed by an isotropic body of matter
and introduce the mass flow as follows:

J = cv, (2,1)

where c is the concentration or more in general the activity
of the diffusing particle and v its displacement velocity. Eq.
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2,1 is simply a definition. A further equation appears nec-
essary to introduce a physical hypothesis about the thermo-
dynamic force F that triggers the flow. Expressing this hy-
pothesis through the following equation, known as first Fick
law

J = −D∇c, c = c(x, t) (2,2)

and combining these equations, one finds indeed

v = − D
kBT
∇[kBT log(c/c0)], c0 = c0(t), (2,3)

where c0 is an arbitrary reference concentration not depen-
dent upon x but possibly dependent on time. The definition
of mobility β of the diffusing particle

v = βF (2,4)

entails therefore as a consequence at constant T

D = βkBT, F = −∇[kBT log(c/c0)]. (2,5)

One finds therefore through the definition of mobility both
the sought force, which reasonably results equal to the gradi-
ent of the potential energy µ = kBT log(c/c0), and the well
known Einstein equation linking β to D. The form of F pro-
vides a partial answer to the aforesaid point (iii): if c is equal
everywhere in the diffusion system, then it does not longer
depend upon x; so, defining c0 equal or proportional to this
uniform limit value of c, one finds F = 0 and thus v = 0 ev-
erywhere. This shows that F accounts for the net mass flow
in the diffusion system until c → c0. These preliminary con-
siderations highlight that the diffusion law can be effectively
related to a thermodynamic function, the chemical potential,
that describes the driving force allowing the transport of mat-
ter. Exploit now again the basic definition eq. 2,1 to evidence
how arbitrary changes of both c and v affect J. Consider then

δJ = vδc + δJ′, δJ′ = cδv (2,6)

in the time range δt during which δJ is allowed to occur. Note
that δc can be due: (i) to the change δm of m within the ref-
erence volume V defining c or (ii) to the change δV of V for
fixed m or (iii) to both reasons. In any case, defining the space
range δx = vxδt where the particles are allowed to diffuse
along the x-direction during δt, the x-component of eq. 2,6
reads δJx/δx = δc/δt + cδvx/δx. So, for infinitesimal changes
dc and dv of the process parameters and of the dynamical
variables dt and dx, the last equation reads∇·J = ∂c/∂t+c∇·v,
i.e. in general

∇ · J =
∂ (c + C)

∂t
, C =

t

∫
to

c′∇ · v′dt′, C = C(x, t) (2,7)

with the integral calculated between the fixed time to, e.g. the
beginning of the diffusion process, and the current time t. If
holds the condition ∇ · v = 0, then ∇ · J = ∂c/∂t describes

a particular diffusion process where the rate of concentration
change is equal to the gradient of related mass flow, which
necessarily means lack of sinks or sources of matter within
the volume element where is defined c. Since c∇ · v results
because of the term δJ′ additional to δJ, it appears that the
well known second Fick equation is a particular case of eq.
2,6 for δJ′ = 0. Actually δJ′ , 0 is due not only to a possi-
ble chemical reaction that involves the diffusing particle and
modifies the local concentration of the diffusion system but,
more in general, also to any local force field that attracts or
repels the diffusing particles and perturbs their motion. Note
indeed that δJ′ = caδt = F′Vδt yields

δJ′

δt
=

F′

V
= F′V ,

being in general F , F′. The force per unit volume F′V that
controls the perturbation term δJ′, appearing in eq. 2,6 as a
perturbation of J is particularly interesting for charged parti-
cles diffusing in an ionic medium where polarized impurities
are active. Note indeed that v · J has physical dimensions of
energy per unit volume; then v · δJ′ = (mδv2/2)V−1, i.e. the
effect of F′V is that of perturbing the kinetic energy of the
particle in the interaction volume V . It is usually acknowl-
edged that the time enters into the diffusion equation thanks
to the continuity condition that leads to the second Fick law.
Yet the mere definition of eq. 2,1 entails an interesting con-
clusion: regardless of the aforesaid effects related to δm that
possibly alter the plain diffusion process, the time evolution
of the system is actually consequence of the concentration
gradient law; although the Fick hypothesis does not contain
explicit reference to the time, this latter enters indeed into the
problem through v. The present considerations show there-
fore that the ancillary condition of continuity is not neces-
sary to infer the second Fick law; rather, simply taking into
account the finite range δt required to justify δJ, as nothing
changes instantaneously in nature, the continuity condition
appears to be itself a corollary of the definition of mass flow
and not an additional boundary condition. Otherwise stated,
even from a merely classical point of view the time coordi-
nate appears a necessary ingredient together with the space
displacement to account for the mass transfer in any diffu-
sion problem; consequently the position ∇ · v = 0 does not
represent a supplementary hypothesis “ad hoc” but simply
a possible chance allowed for δJ. This conceptual basis, to
be further implemented by quantum considerations reasons
in the next section, is characterized by three physical features
summarized as follows: (i) the definition of mass flow, eq.
2,1; (ii) the gradient concentration law; (iii) the necessity of
introducing diffusion driven displacement δr and time range
δt linked by δr = vδt, which also introduces the energy range
δε = (v · δJ)V corresponding to F · δr within the reference
volume V defining c.
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3 Preliminary quantum considerations

This section introduces the basic ideas to describe the diffu-
sion system according to the uncertainty relationships

∆x∆px = n~ = ∆t∆ε, (3,1)

where n is an arbitrary number of quantum states allowed to
any particle moving in the space range ∆x with conjugate mo-
mentum falling in the momentum range ∆px; the ranges are
taken positive by definition. As already shown in [4], the
second equality is obtained from the first one defining for-
mally ∆t = ∆x/vx and ∆ε = ∆pxvx linked by the same n; vx

is the velocity with which the particle travels within ∆x. No
hypothesis is required about the ranges that quantify the con-
cepts of space and time uncertainty. Their sizes, in principle
arbitrary, can vary from zero to infinity; moreover nothing
is known about their analytical form, e.g. any local func-
tional relationship like px = px(x) within ∆x is physically
meaningless because both px and x are assumed random, un-
known and unpredictable. Yet, despite such an agnostic point
of view, relevant features of the ranges are apparent. First,
vx must be upper bounded. Consider a free particle in finite
sized ∆x and ∆px with n finite as well: if vx → ∞ then ∆t → 0
would require ∆ε → ∞ , which in turn would allow in prin-
ciple an infinite energy ε; but this is impossible once having
merged both uncertainties via a unique n, as ε → ∞ is in-
consistent with any px falling within the finite range ∆px and
thus necessarily finite itself. Hence the simple fact of having
regarded together space and time uncertainties, i.e. admitting
that both dynamical variable concur to describe any physical
system, requires vx ≤ vmax

x ; eqs. 3,1 entail as a corollary the
well acknowledged existence of an upper limit for the prop-
agation rate of any signal. Moreover put ∆x = x − xo and
consider that the coordinate xo, whatever it might be, is de-
fined in an appropriate reference system that defines position
and size of ∆x and vx as well; yet, being xo indeterminate
and indeterminable, the present approach based on ∆x only
does not specify in fact any particular reference system. The
same holds for course also for the other ranges of eqs. 3,1,
in particular for the time frame. Also, in lack of constrains or
hypotheses the reference system could be in principle Carte-
sian or curvilinear or inertial or non-inertial or anything else.
This means that any physical problem discarding “a priori”
the local dynamical variables and exploiting eqs. 3,1 only,
i.e. replacing

x→ ∆x, px → ∆px, t → ∆t (3,2)

holds by definition in any space-time reference system R.
Hence eqs. 3,1 entail that all reference systems are indistin-
guishable and thus equivalent in describing the properties of
quantum particles. If so, it eventually follows that the upper
value allowed to vx, whatever it might be, must be invariant in
any R. Indeed vx is defined by its own reference system; being

the former arbitrary, the latter is arbitrary as well. Consider
instead a well specified value of vx, e.g. just its maximum
value vmax

x ; this latter must be uniquely defined in R and in
any other R′ otherwise R and R′ could be identified depending
on their own vmax

x , e.g. because of a greater velocity allowed
in either of them, thus contradicting their indistinguishability.
It appears therefore that equivalence of all reference systems
and invariance of vmax

x are strictly linked. The time coordi-
nate, previously introduced to account for the finite rate with
which occurs the mass flow change δJ, still appears here as
a consequence of the finite velocity vx with which any parti-
cle moves within ∆x and entails a finite time range to change
the configuration of the diffusion system. Yet now ∆t takes a
more general physical meaning, as it appears from the pre-
vious considerations and it will be shown in the next sec-
tions. The uncertainty inherent eqs. 3,1 requires innately a
time range for particles delocalized in ∆x, i.e.: any physical
process characterized by an energy spread ∆ε requires a time
range ∆t during which is to be expected a momentum change
falling within ∆px too. Previous papers [5, 6] have shown
that this way of regarding eqs. 3,1 is enough to calculate the
energy levels of hydrogenlike and many electron atoms/ions
and diatomic molecules without solving any wave equation;
then is attracting the idea that even the diffusion model can be
formulated in terms of particles randomly spreading within
their own delocalization space ranges conceptually arbitrary,
unknown and unknowable themselves. As in the quoted pa-
pers, the statistical formulation of the quantum uncertainty
is the only assumption necessary also in the context of the
present problem. Suppose of having N particles in NV ele-
mentary volumes ∆x3 of diffusion medium at a fixed time of
the diffusion process. Regardless of the equilibrium or non-
equilibrium situation at the given time, let

Wcl =

(
N
NV

)
, N = N(t), NV = NV (t), V = ∆x3 (3,3)

be the number of ways to distribute N classical particles in
NV available sites of the diffusion medium. From a quantum
point of view the combinatorial calculus still holds in princi-
ple also in the case of identical particles, as it is done in the
Fermi-Dirac and Bose-Einstein statistics; one must simply re-
place Wcl with the pertinent expressions of numbers of states
taking into account the indistinguishability of identical parti-
cles. Note in this respect the characteristic way of working of
eqs. 3,1: once accepting the replacements 3,2, the physical
interest about the system moves from the constituent parti-
cles to their phase space. On the one side just this feature
of eqs. 3,1 entails the corollary of quantum indistinguisha-
bility of identical particles when considering uniquely ranges
of dynamical variables where any particle could be found,
rather than the actual dynamical variables of the particle it-
self; indeed this latter is never specified “a priori”. On the
other side this explains the general worth of the eqs. 3,1 re-
gardless of the specific system concerned: the present model
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holds in principle for diffusion processes in solid or liquid or
gas phase, since no hypothesis is formulated about N and NV

of WFD or WBE . Further information on the process, e.g. the
role of lattice defects on the effectiveness of mass transport,
are to be introduced “a posteriori” through specific values
of the coefficient D only, see eq. 2,2, whose quantum root
will be indeed highlighted in the next section. It is impor-
tant however that regardless of the kind of diffusion system,
the computation of the number of allowed states accessible
to the particles requires calculating the ways of distributing
N objects into NV volume elements of sizes ∆x3

1≤i≤NV
; this is

possible even in the present approach because the combinato-
rial computation of allowed states does not require knowing
where exactly are located these volumes in the diffusion sys-
tem, which indeed would be prevented by eqs. 3,1. Just this
computation yields the corresponding entropy of the diffu-
sion system. At the very beginning of the diffusion process
one can imagine an isolated ordered system S 0 where all par-
ticles are confined in some arbitrary volume of the system; as
the particles are allowed to walkover randomly to occupy a
greater volume, the number of allowed thermodynamic states
progressively increases as a function of time. For t → ∞
the system reaches an asymptotic state S∞ to which corre-
sponds a net mass flow J = 0. The driving force of the dif-
fusion process is thus certainly correlated to the tendency of
the system towards its state of thermodynamic equilibrium
and maximum entropy. Thus eqs. 3,3 simply tell that in non-
equilibrium conditions the system S (t) at the time t is such
that S 0 ≤ S (t) < S∞, until the distribution of particles cor-
responds to the maximum number of quantum states inherent
S∞ , 0; correspondingly J , 0 describes net mass flow in
the system tending the maximum entropy, until when J → 0.
The next section aims to show that this intuitive picture of
diffusion process will be inferred together with the concen-
tration gradient law through eqs. 3,1 only, without need of
any phenomenological hint.

4 Diffusion quantum model

By definition the uncertainty ranges of eqs. 3,1 include any
position and momentum of the particles during the diffusion
process, despite both dynamical variables are expected to cha-
nge as a function of time by effect of an appropriate driv-
ing force F. In principle one could think ∆x and ∆px large
enough to include any possible change of x and px from the
initial stage of the diffusion process to the final state of ther-
modynamic equilibrium; indeed the eqs. 3,1 admit possible
interactions of these particles with the surrounding medium
along the diffusion path δ∆x = vxδt from δt = 0 to δt → ∞,
e.g. by elastic and anelastic collisions, through an appropriate
size of the energy range ∆ε. Owing to the complete arbitrari-
ness of the ranges, however, this approach although sensible
does not appear far reaching to get relevant information about
the process. Yet it is also possible, and more heuristic, to re-

quire that ∆x and ∆px are allowed to change themselves as a
function of time without contradicting their arbitrariness and
without requiring any information on the local values x and
px; in effect eqs. 3,1 can be differentiated with respect to
t and x whatever the current time and space coordinates of
particles might be. Consider thus δ∆x and δ∆px, rather than
δx and δpx, regardless of whether the displacement of mat-
ter from two different points of the diffusing medium occurs
with or without net mass flow; δ∆x describes the change of
delocalization range to which is related the assumed change
of momentum δ∆px by effect of F. The force is here easily
justified by eqs. 3,1 themselves, regardless of other specific
motivations: ∆ẋ defining δ∆x = ∆ẋδt requires ∆ṗx, which
therefore affects the range of values allowed to any px; in
turn the change of px, allowed to occur and thus in fact oc-
curring, entails Fx = m∂vx/∂t. Since it is possible to write
δ∆px = (∂∆px/∂t)δt, then

∂∆px

∂t
= −n~∆x−2vx = Fx = m

∂vx

∂t
, vx =

∂∆x
∂t

. (4,1)

Note that here vx is not the diffusion velocity of the parti-
cle but the rate with which changes ∆x, so Fx is defined in the
phase space of the particle. Yet this information is enough as
concerns the diffusion problem: by effect of Fx the particle is
allowed to move faster, being however still delocalized within
the larger range ∆x′ = ∆x + δ∆x. This is why the momentum
of the particle is allowed to change along with δ∆x. The no-
tation of velocity is unique to emphasize that vx of eq. 4,1
and vx of the particle defining eqs. 3,1 are both arbitrary and
thus assumed coincident. On the one side this representation
is consistent with well known ideas of the diffusion process,
e.g. particle jumps through different sites in a crystal lattice
or particle collisions randomly occurring in gas phase; on the
other side it suggests that the local concentration change is
described by a constant amount of mass m allowed to move
slower or faster in a decreasing or increasing phase space de-
localization range depending on the sign of the velocity com-
ponent vx. In this way the force component Fx introduced via
the deformation of the momentum range is conceptually con-
sistent with that of eq. 2,5: to the momentum change rate that
defines the classical force corresponds now, from the point of
view of eqs. 3,1, the existence of a force field ∆ṗx necessary
to account for any possible ṗx during the diffusion process.
Let us differentiate now eqs. 3,1 with respect to x to link the
change of size of the delocalization range δ∆x and that of the
momentum range δ∆px when the particle displaces by δx; this
yields

∂∆px

∂x
= −n~∆x−2 ∂∆x

∂x
. (4,2)

Eqs. 4,1 and 4,2 describe the dynamics of the diffusing
particle as a function of time in agreement with eqs. 3,1.
The classical eqs. 2,6 and 2,7 have introduced v as macro-
scopic average velocity describing the net mass flow due to
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the displacement rate of the particle; now the quantum ap-
proach shows how the uncertainty compels regarding a ran-
dom mass flow in the phase space of the particle: the deter-
ministic force of eq. 2,5, exactly defined at any point of the
diffusion system, is now replaced by the random force of eq.
4,1 controlled by arbitrary values of n and ∆x. Let us show
now that this agnostic point of view, far from being elusive of
the problem, is actually source of relevant physical informa-
tion. The fact that the diffusion is allowed in a given volume
V = (n~)3∆p−3

x suggests exploiting an approach conceptu-
ally identical but formally different from that introduced in
section 2. If the motion of the particle is random, the ori-
entation of its momentum p is defined in general within a
sphere of radius |∆p| whose volume is thus ∝ ∆p3

x once tak-
ing ∆px ≡ |∆p|; since the medium is isotropic and the uncer-
tainty ranges are arbitrary and unknown, there is no necessity
to introduce explicitly separate ranges ∆px, ∆py and ∆pz. So,
instead of starting from ∂∆px/∂x, it is more convenient con-
sidering a′′′∆p2

x∂∆px/∂x, where a′′′ is a proper proportion-
ality factor; indeed ~−3∆p2

xd∆px is proportional to the num-
ber of particles whose momentum was initially included in a
sphere of radius ∆px and takes after the time range δt values
falling in the section of sphere between ∆px and ∆px + d∆px.
So introducing the quantity a′′∂∆p3

x/∂x means considering a
volume element in the momentum space of the particle, which
yields in turn with the help of the eq. 3,1 a′∂∆x−3/∂x; here a′′

and a′ are trivial numerical factors. In conclusion, although
starting from a 1D equation, we have introduced a volume el-
ement V = ∆x3 that represents an elementary volume of the
diffusion medium where is located a given amount of diffus-
ing mass m corresponding to the concentration c. This defines
the equation

− a′

V2

∂V
∂x

=
a′

V
∂ log(Vo/V)

∂x
, (4,3)

V = V(x, t), Vo = Vo(t),

where the arbitrary constant Vo is a reference volume by def-
inition not dependent on x but possibly dependent on t. Con-
sider first the left hand side of this identity, which reads

− a′

V2

∂V
∂x

= −a′m
V2

∂c−1

∂x
=

a′m
c2V2

∂c
∂x

=
a′

m
∂c
∂x
,

c =
m
V
, c = c(x, t),

where c has here the same physical meaning introduced in
the early eq. 2,1, although the equation concerns now the
phase space rather than a selected volume of matter. This re-
sult regards m as a constant with respect to x, i.e. c depends
on x through the volume ∆x3 around m only. This point of
view, extended to various volumes ∆x3

i in which the diffusion
medium can be ideally divided, entails that the deformation
extents (∆xi + δ∆xi)3 change as a function of x in order that
the respective δci represent by consequence these changes;

this holds when a total amount of matter
∑

imi is simply re-
distributed along x, thus changing the reference volumes that
physically define the respective ci only, or when

∑
imi is sub-

jected to change itself because of sinks or sources of matter
in the diffusion medium; this is why the time has been ex-
plicitly introduced in eqs. 3,3. The right hand side of the
first eq. 4,3 depends certainly upon time through Vo; the
same holds therefore for the left hand side, i.e. a′ = a′(t).
Moreover a′ depends in general on x as well; indeed it ac-
counts for how ∂∆x−3/∂x changes in general as a function of
x, so a′ = a′(x, t) . Eventually a′ must be consistent with
the idea of a mass m crossing the momentum space surface
proportional to ∆p2

x during the time range δt, i.e. the physical
dimensions of a′ must be mp2t = ml2t−1 like that of ~; this
point will be better emphasized in section 5. Specifying thus
purposely the proportionality factor a′ in order that also the
right hand side of eq. 4,3 depends on c, one finds

Jx = −D
∂c
∂x
, a′ = −Dm, D = D(x, t). (4,4)

The physical dimensions of D are therefore l2t−1. This
result represents the first task of the present paper: to infer the
concentration gradient law governing any diffusion process
as a consequence of the fundamental eq. 3,1, thus showing
the quantum origin of the first Fick law. To proceed further,
consider now the right hand side of eq. 4,3 rewritten with the
help of the second eq. 4,4 as

Jx = −Dco f
∂ log( f )
∂x

, f =
c
co
, co =

m
Vo
, co = co(t).

The first expression calculated in an arbitrary point x = xa

defines f = fa through the local concentration ca and reads,
with obvious meaning of symbols,

Ja = −Daco fa
∂ log( f )
∂x

∣∣∣∣∣
fa

= −Da
∂c
∂x

∣∣∣∣∣
x=xa

, (4,5)

fa =
ca

co
, Da = D(xa, t).

Let us expand in series the function log( f ) around xa

log( f ) = log( fa)+

+
∂ log( f )
∂x

∣∣∣∣∣
fa

(x − xa) +
1
2
∂2 log( f )
∂x2

∣∣∣∣∣∣
fa

(x − xa)2 + . . .

and calculate this expression in another point xb, arbitrary as
well; this yields

∂ log( f )
∂x

∣∣∣∣∣
fa

=
log( fb) − log( fa)

xb − xa
− 1

2
∂2 log( f )
∂x2

∣∣∣∣∣∣
fa

(xb−xa)− . . . ,

fb =
cb

co
.
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Replacing in eq. 4,5 and putting Jo = −Daco/(xb − xa)
one finds

Ja

Jo
= − fa log( fa)+

+

 fa log( fb) − fa(xb − xa)2

2
∂2 log( f )
∂x2

∣∣∣∣∣∣
fa

+ · · ·
 .

(4,7)

Rewrite now co not yet defined as co = (cb − ca)/γ, being
γ a dimensionless proportionality factor; this position entails

Jo = −Da

γ

cb − ca

xb − xa
, (4,8)

fa = γ
ca

cb − ca
, fb = γ

cb

cb − ca
, γ = γ(t).

The last position agrees with the dependence of co upon
time through Vo. In this way Jo agrees conceptually with Ja

and thus with the definition of concentration gradient driven
mass flow yet with a different diffusion coefficient Do =

γ−1Da; it reduces indeed to the usual differential form Jo =

−Do∂c/∂x in the limit xb → xa that necessarily entails cb →
ca. One would expect that in this limit Jo → Ja, which should
require γ → 1; however the fact that in general γ , 1, as
it is shown below, suggests that Jo is physically consistent
with but numerically different from Ja. Before concerning
this point, note that the second and third eqs. 4,8 require
fb = γ + fa; so eq. 4,7 reads

Ja

Jo
= − fa log( fa) +

 fa log ( fa + γ) − d2
ab
∂2 log( f )
∂x2

∣∣∣∣∣∣
fa

 ,

d2
ab = fa

(xb − xa)2

2
, (4,9)

having neglected for simplicity the higher order terms of se-
ries development of log( f ). The time function γ is therefore a
parameter controlling the evolution of the ratio Ja/Jo, which
results to be also a function of xa − xb and ca − cb via fa. To
explain this result, let xb be the coordinate of a particle at the
beginning of the diffusion process and xa that of the particle
at a later time, while cb and ca are the respective concentra-
tions. In general fa , fb for xa , xb since ca , cb. Consider
however in this respect the particular limit condition cb → ca

to be expected in two relevant cases: (i) at the very beginning
of the diffusion process, when the particle has traveled an in-
finitesimal path so that xa is very close to its initial position
xb; (ii) at the end of the diffusion process, when the particle
has traveled a finite path with xa arbitrarily far from xb but the
concentration is uniform throughout the diffusion system. In
both cases it is convenient to define γ → 0 in order that the
undetermined form γ/(cb − ca) → 0/0 does not necessarily
cause divergent values of fa and fb. If cb → ca simply be-
cause xb → xa, case (i), elementary manipulations of eq. 4,9

show that both sides tend to γ provided that γ/ fa → 0; in ef-
fect this is verified because by definition γ/ fa = (cb − ca)/ca,
see eq. 4,8. The result is thus

lim
cb→ca
xb→xa

Ja

Jo
= γ, t → 0, γ → 0. (4,10)

This simply means that at t = 0 there is no net flow of
matter as Ja = 0. This is reasonable, because after a very
short path the particle has high probability to return to its ini-
tial position. The second chance for cb → ca even though
xa , xb yields, putting again γ → 0,

lim
cb→ca
xb,xa

Ja

Jeq
o

=
Da

Jeq
o

∂c
∂x

∣∣∣∣∣
x=xa

= γ − d2
ab
∂2 log( f )
∂x2

∣∣∣∣∣∣
f eq

, (4,11)

t → ∞, γ → 0.

Note that γ can fulfill both conditions if its form is, for
instance, like t/(t2 + to). Also note that in fact the behavior
of γ can be consistent with any cb − ca, i.e. whatever this
limit might be depending on the kind of diffusion system;
being γ defined here by its limit condition only, one could
hypothesize any stronger/weaker time dependence, e.g. like
tk/(tk+1 + to), with k ensuring a finite value of γ(cb − ca)−1 no
matter how rapidly ca → cb case by case. Put therefore by
definition

lim
ca→cb

γ/(cb − ca) = γab, γab , 0. (4,12)

The left hand side of eq. 4,11 has now the form

(xb − xa)γ(cb − ca)−1(∂c/∂x)x=xa .

The right hand side vanishes for γ → 0 if ca = cb =

const everywhere in the diffusion system because f is now
a constant defined by the limit fa → f eq, whence the no-
tation Jeq

o . Hence xa , xb and γ such that γab remains fi-
nite require ∂c/∂x vanishing at xa. As expected, the situa-
tion of uniform concentration entails on microscopic scale the
asymptotic condition of thermodynamic equilibrium without
net mass transfer. Hence the maximum chance of displace-
ment is expected at times intermediate between 0 and infinity.
If ca is the same everywhere because xa is arbitrary, then actu-
ally neither side of eq. 4,11 depends on x; so must hold also
on a macroscopic statistical scale the conclusion that a uni-
form distribution of particles in the diffusion system makes
the ratio Ja/Jeq

o of eq. 4,9 inconsistent with a net flow of par-
ticles. In fact this requires verifying that also the sum of all
terms of eq. 4,9 over the indexes a and b fulfills the condition

∑

b,a

lim
cb→ca
xb,xa

Ja

Jeq
o

= 0, t = ∞, (4,13)

whereas in general, since fa never diverges,
∑

b,a

Ja

Jo
, 0, t > 0. (4,14)
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Actually the sums are extended to all paths of particles
from the respective starting points xb to their end points xa,
which also means summing over all elementary volumes Va =

∆x3
a and Vb = ∆x3

b of the diffusing medium in which the par-
ticles are found with corresponding concentrations ca and cb;
since both coordinates are arbitrary, this picture represents in
fact any path between any points in the diffusion system. Be-
fore demonstrating eq. 4,13, note that the sum has conceptual
meaning because in fact it does not require computing any-
thing; it is introduced in principle because neither xa nor xb

are known but are merely referred to their own Va and Vb

only, wherever their position in the diffusion system might
be. Also note that the ratio Ja/Jo entails two harmonized but
different definitions of mass flow: at numerator appears a lo-
cal term, characterized by a concentration difference between
two coordinates infinitely close each other, at denominator
a macroscopic term characterized by coordinates arbitrarily
apart. The flow described by Ja is thus a net flow of matter
only controlled by Da, since by definition an effective con-
centration gradient corresponds to it. The fact that the sum of
ratios is finite in eq. 4,14 and equal to 0 in eq. 4,13 suggests
that Jo must concern a macroscopic diffusion term controlled
by Do = Daγ

−1, describing total displacement of matter that
consists in principle of both vanishing and non-vanishing net
mass flows because Jo , 0 even though Ja = 0; both flows
are in fact allowed to occur in a macroscopic volume of diffu-
sion system, so that neither of them can be excluded. Hence
the ratio Ja/Jo in eq. 2,3 represents a sort of “displacement
efficiency” corresponding to the thermodynamic force Fx of
eq. 4,1, i.e. the chance that the random motion of particles
produces an effective flow of matter between two arbitrary
volumes within the diffusion system. Eq. 4,13 is then eas-
ily justified noting that Jeq

o changes sign by exchanging xa

and xb if ca = cb, whereas Ja does not for the simple rea-
son that its definition has nothing to do with xb. In effect just
the presence of a concentration gradient makes the environ-
ment around the coordinates xa and xb physically different;
if the coordinates belong to different volumes Va and Vb that
define the respective non-equilibrium concentrations, the dis-
placement of a particle between two points out of the equi-
librium is distinguishable from that obtained keeping fixed ca

and cb with reversed path. Instead the sums
∑
a,b

and
∑
b,a

at the

equilibrium must be in principle identical, because a uniform
distribution of particles within the diffusion system makes in-
distinguishable starting points and end points; if the diffusion
system is perfectly homogeneous, then all volumes Vi = ∆x3

i
where c , 0 are identical. This is consequence of having de-
fined c as due to a unique value of m into different volumes
of phase space that define Va and Vb of the diffusing medium.
Thus the only chance for a sum to coincide with its own value
of opposite sign is that the sum is null. Eq. 4,13 is in fact pos-
sible from a mathematical point of view because

∂2 log( f )/∂x2 = − f −2(∂ f /∂x)2 + f −1∂2 f /∂x2, (4,15)

i.e. the former addend is certainly negative whereas the sec-
ond can take in principle both signs; hence in principle the
sum of terms at right hand side of eq. 4,11 can vanish for
an appropriate value of fa = fb = f eq. Let us return now to
eq. 4,9 and note with the help of eq. 4,8 that for fa = 0, i.e.
ca = 0, the ratio Ja/Jo is identically null in agreement with
its probabilistic meaning. Then, since each coordinate xa be-
longs to its own volume Va that defines ca, summing over all
the possible indexes a means summing over states really ac-
cessible to the particles; empty volumes Va with ca = 0 do not
contribute to the sum. It is clear therefore that each fa repre-
sents a possible state allowed for the diffusion system: the
values fa, fa′ , fa′′ , ... in various points labeled by a, a′, a′′, ...
quantify the ways of distributing the total mass M into various
elementary volumes reached by the diffusing species during
the diffusion process. Summing both sides of eq. 4,9 over
the indexes a and b as done before, means therefore estimat-
ing the total probability of mass transport within the diffusion
system; then let us introduce, even without carrying out any
explicit calculation,

∑

a,b

Ja

Jo
= −

∑

a,b

fa log( fa)+

+
∑

a,b

 fa log( fa + γ) − d2
ab
∂2 log( f )
∂x2

∣∣∣∣∣∣
fa

.
(4,16)

Summing over all probabilities of diffusion paths, one
finds the resulting configuration change of the diffusion sys-
tem at any time. A few remarks are enough to guess what to
expect from this equation. At t → 0 one finds a sum of terms
fa log(1 + γ/ fa), which for γ → 0 tend to γ, plus terms that
contain the factor dab; since in this limit xa − xb → 0, neither
of them contributes to the sum. At t > 0 both addends con-
tribute to the sum. At the equilibrium asymptotic time where
again γ = 0 the sum vanishes according to eq. 4,15 because
fa → f eq everywhere; this result agrees with the statistical
limit

∑
a,b

Ja/Jo = 0 previously inferred, which actually is the

macroscopic result revealed by the experience. The first ad-
dend at right hand side is clearly an entropic term, whereas
fa defined in eq. 4,5 must have the probabilistic significance
of thermodynamic state related to the current configuration
of the diffusion system. In effect it is possible to define the
limit value f eq such that

∑
a,b

( f eq) = 1 whatever the number of

terms of the sum might be; indeed according to eq. 4,12 the
finite limit γab for cb → ca and γ → 0 has been defined finite
but not specified; the value of γab can be therefore taken as
that fulfilling the required property of f eq. If so the first sum
of eq. 4,16 is such that when the system evolves towards the
equilibrium then

−
∑

a,b

fa log( fa)→ −
∑

a,b

log( f eq).

The possibility of relating fa to the thermodynamic prob-
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ability of states allowed to the diffusing particles defines the
physical meaning of the time parameter γ: depending on the
value of this latter the totality of possible values of xa and xb,
whatever they might be, corresponds to a possible arrange-
ment of diffusing particles at the current time starting from
an arbitrary initial configuration in the diffusing medium. Ac-
cording to eq. 4,10 it appears that γ = 0 at t = 0 defines the
initial configuration. So, through the totality of possible paths
from any xb to any xa, the parameter γ > 0 provides an in-
dication of the order→disorder evolution of the configuration
of the diffusion system as a function of time. Rewrite now eq.
4,16 as follows

∑

a,b

Ja

Jo
=

S t

kB
− S o

kB
, (4,17)

where
S t

kB
= −

∑

a,b

fa log( fa), (4,18)

S o

kB
= −

∑

a,b

 fa log( fa + γ) − d2
ab
∂2 log( f )
∂x2

∣∣∣∣∣∣
fa

.

The ratio Ja/Jo has been previously identified as the lo-
cal chance of net mass flow between two arbitrary points of
the diffusion system; the sum at left hand side is therefore
the flow efficiency throughout the whole diffusion system, i.e.
Πnet f low =

∑
a,b

Ja/Jo. It is possible therefore to introduce the

total chance of mass transfer, Πtr, with and without net mass
flow such that of course Πtr = Πnet f low + Πnonet f low with ob-
vious notation. This kind of definition is suggested by the
possibility of normalizing Πtr to 1. Hence comparing with
eqs. 4,17 and 4,18 one infers

Πtr =
S t

kB
, Πnonet f low =

S o

kB
.

Of course S t, the most general statistical definition of en-
tropy, is also the most general way to describe the configu-
ration of N diffusing particles in the NV volumes available in
the diffusion system, regardless of whether or not the con-
figuration entails a net displacement of matter; instead S o,
which does not refer to net transfer of atoms, counts simply
the number of ways to arrange any prefixed distribution of
particles and thus the thermodynamic probability of any con-
figuration. Hence the entropic terms concern two different
kinds of diffusion mechanisms allowed to occur as a function
of time. In effect the possibility that xb → xa is not excluded
in the present model even at times t1, t2,..; it would be enough
to define γ for instance as t(t−t1)(t−t2)/(t + to)4 in agreement
with the previous considerations at t → 0 and t → ∞ and at
any time where xb → xa entails cb → ca too. Further consid-
erations are possible about the results hitherto obtained.

5 Discussion

The eqs. 3,1 only have been exploited to highlight the link
between concentration gradient law and entropy of diffusion
system through elementary considerations. Both concepts
have been extracted through elementary algebraic manipula-
tions of the left and right hand sides of the unique eq. 4,3. No
hypotheses “ad hoc” have been introduced about the physical
features of the diffusion system and its driving mechanisms,
leading for instance to Markovian jumps or not, interstitial
or defect activated jumps, collisions in gas phase and so on.
This is due to the general worth of eqs. 3,1 regardless of
the specific system concerned: the present conclusions hold
in principle for diffusion processes in solid or liquid or gas
phase.

Regarding the statistical formulation of the uncertainty as
fundamental principle of nature, the diffusion particles re-
sult randomly delocalized within elementary volumes V =

∆x3 into which can be ideally subdivided the whole system,
whose size is however inessential to infer the entropic terms
− f log f ; these volumes control the concentrations c, which
in turn define the thermodynamic states allowed to the diffus-
ing particles in relation to their occupation probability. No as-
sumption was made about the coordinates of the points xa and
xb falling within the respective elementary volumes, whose
number, size and position indeed have been never specified in
section 4. In fact such a kind of local information is irrelevant
to calculate the entropy; it is enough to compute how N parti-
cles can be distributed in NV volume elements, regardless of
how many and where these latter might actually be in the dif-
fusion medium. For this reason the model describes the time
evolution of the whole system even without knowing in detail
how is progressively modified the configuration of particles
and volumes as a function of time. Actually eqs. 4,17 ad-
mit also empty elementary volumes that however do not con-
tribute to the total entropy of the system, in fact determined
by the distribution of particles only. So S o in eq. 4,17 cor-
responds in general to the ways of distributing particles into
available microstates described by ∆x3, possibly taking into
account the indistinguishability of identical particles, through
a dynamical pattern of particles exchanging their occupation
volumes even without net mass flow. In effect, also this kind
of information does not require a detailed knowledge on the
local motion of particles. Nothing is known about this motion
within their own ∆x3, because it would require some sort of
local information about x and px. Being impossible to estab-
lish if within this arbitrary volume the motion is for instance
Markovian or not, one must admit that both chances are in
fact allowed; this also justifies why the diffusing species is
involved in mass transfer process with and without net dis-
placement of particles.

This conclusion does not conflict with the fact that Jx en-
tails explicitly an effective concentration gradient; eq. 4,4 is
simply the differential formulation of a physical law related
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to the driving force that triggers the displacement, see eqs.
4,1 and 2,3 and 2,5 as well. The quantum approach behind
this step accounts for the physical basis of eq. 2,2, whereas
the definition 2,1 has now the rank of a corollary of eq. 4,4
rather than a mere definition: now the physical dimensions of
eq. 2,1 are required by quantum motivations, rather than be-
ing suggested by a reasonable assumption. Indeed the avail-
able information about the diffusion system is inferred in the
typical way of quantum mechanics, i.e. without requiring an
exact local knowledge about position and momentum of the
particles, as follows:

(i) from a macroscopic point of view, through Jo of eq.
4,8 and the entropic terms of eq. 4,17;

(ii) through the probabilistic meaning of the ratio Ja/Jo,
which indeed represents the probability of effective mass
transport as concerns the chances of Marcovian or non-
Marcovian displacements.

Non-trivial consequence of these constrains about our de-
gree of information is the heuristic achievement resulting
from the quantum approach with respect to that provided by
the classical physics where, from the point of view of the con-
tinuity equation, the general character of both Fick’s laws is
merely due to the lack of sinks/sources perturbing the dif-
fusion process. This fact appeared already in the classical
section 2 when it was found that in general F , F′, i.e. the
driving force controlling the mass transport is in principle dif-
ferent from that due to local perturbations; the former was
uniquely inferred from general hypotheses, eqs. 2,1 and 2,2,
the latter remained instead unspecified and does so still now.
This is not incompleteness of the present model, but rather
the statement that the local perturbations must be purposely
specified case by case depending on the physical features of
the diffusion system. The worth of any theoretical approach
depends on its ability to be generalized beyond the specific
problem for which it was formerly conceived. In the case
of diffusion the generalization is evident: several important
physical laws are expressed through the gradient of a well
defined function.

One example is the Fourier equation, JQ = K∇T , where
K is the heat conductivity and JQ the heat flow; also the
Ohm law, I = R−1∇V , exhibits a similar form involving the
electrical resistance R and the electric potential V to describe
the displacement of charges per unit time. Although a com-
mon gradient law describes in the former case the transport of
heat and in the latter that of electrons, both equations involve
forms of kinetic energy, respectively due to the oscillation
frequency of atoms/ions/molecules within the heat diffusion
thermodynamic system and to the velocity of electrons prop-
agating within a conductor. The entropic aspects in these sys-
tems are clear. In the former case they were already evidenced
by the crucial Boltzmann intuition, although in lack of any
quantum reference; it is not surprising that indeed the statis-
tical definition of entropy inferred here goes back to the early
times when the thermodynamics was essentially the science

of heat exchanges. The entropy difference in the absence and
presence of an electric field is also evident in the latter case:
without electric field the motion of the electrons is random, in
the k space it is represented by a sphere; the presence of the
field instead orients the motion of the electrons along a prefer-
ential direction. The applied field triggers thus a more ordered
motion of electrons, which suggests in turn a loss of total en-
tropy. The analogy with the case discussed in section 4 is
clear, although the respective entropy changes have opposite
sign. This is not surprising: in an isolated system the entropy
always increases, in a system interacting with an external field
this is not necessarily true. In all cases however the gradient-
like laws, mass diffusion, heat diffusion and Ohm law, are
similarly consistent with entropic terms describing the actual
numbers of accessible states during the displacement of mat-
ter or energy. Another consequence of the generality of the
present model concerns the driving force of the diffusion pro-
cess. In section 2, eq. 2,5 was inferred from eqs. 2,1 and 2,2,
the only equations available. Of course the same can be done
identically here, though on a more profound quantum basis.
Yet the approach carried out in section 4 allowed inferring eq.
4,1, which introduces the concept of force directly as a conse-
quence of eqs. 3,1 and deserves thus further considerations.

First of all, the quantum nature of the mass flow can be
evidenced replacing vx of eq. 4,1 into the x-component of eq
2,1, which yields thanks to eq. 2,5

Jx =
kBT
n~

∆x2c
∂ log(c/co)

∂x
. (5,1)

So, simply identifying Fx of eq. 2,5 with that of eq. 4,1
appear again terms of Jx having the form c∂ log(c)/∂x, which
can be handled in a completely analogous way as in section 4
to infer entropic terms like c log(c/co) of eq. 4,5. Moreover
Jx → 0 for n → ∞ agrees with eq. 4,16; an increase of en-
tropy due to the increase of states accessible to the diffusion
system corresponds to the reaching of asymptotic equilibrium
where the net mass flow vanishes. As expected, the result
obtained via the time coordinate defining vx agrees with that
previously obtained through the space coordinate only. Yet
it is worth remarking that the combined information of the
first eq. 4,18 plus eq. 5,1 regards this time behavior of any
isolated diffusion system as a spontaneous evolution process:
indeed t → ∞ requires Jx → 0 that in turn requires a max-
imum number of allowed states n → ∞. Two fundamental
statements of thermodynamics appear here as corollaries of
eqs. 3,1: the statistical formula of entropy and the entropy
increase in an isolated system.

Let us exploit eq. 5,1 noting that kBT/n~ has physical
dimensions of time. So compute this equation at the time τ
where the total diffusion spread lies within an average value
of ∆x2 computed starting from ∆x2 → 0 at t = 0 up to the
value ∆x2 = ∆x2

τ at the time τ; this means assigning to ∆x2

the particular mean value ∆x2 = ∆x2
τ/2 averaged between
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zero and ∆x2
τ. Comparing with eq. 4,4, one finds immediately

the known Einstein’s one-dimensional result

D =
1
2

∆x2
τ

τ
.

6 Heuristic aspects of the quantum uncertainty

The present section, based on wide-ranging considerations
about vx, extends somewhat the preliminary remarks intro-
duced in section 3 and has prospective worth. The aim is to
emphasize that Fx of eq. 4,1 has actually a physical mean-
ing much more general and contains much more information
than the mere eq. 2,5. The byproduct of eqs. 3,1 proposed
here is so short, straightforward and relevant to deserve being
sketched although, strictly speaking, beyond the mere pur-
poses of the present model; accordingly, however, the results
hitherto inferred appear as a particular kind of selected phys-
ical information extracted from a broader context able to link
topics apparently dissimilar.

Key tools of the following considerations are the replace-
ments 3,2 that compel changing the way to formulate any
physical property P from the usual form P(x, px, t) to
P(∆x,∆px,∆t) and thus to P(∆x, n,∆ε). In effect the paper [4]
has shown that the number n of states coincides with the quan-
tum number appearing in the eigenvalues of the harmonic os-
cillator, while the papers [5, 6] show that this is true in gen-
eral; e.g. the number l of states calculated for the angular
momentum coincides with the orbital quantum number. The
first remark concerns the two ways of expressing Fx in eqs.
4,1:

(i) Fx follows from the definition of momentum itself,
∆ ṗx = mv̇x, and involves directly the mass m, previously in-
troduced with mere reference to the concentration of diffusion
particles and now regarded in general as the mass of any par-
ticle accelerated in ∆x;

(ii) Fx = −n~∆x−2vx does not involve directly any mass
but the deformation rate, ∆ẋ = vx, of ∆x only.

Why in (ii) the mere time deformation of ∆x in the phase
space surrogates the presence of an accelerated mass? The
answer rests on the same considerations already introduced
in section 4: if a growing/shrinking range is accessible to a
particle, then this latter can move faster/slower while being
still therein delocalized; the fact that the particle can accel-
erate/decelerate simply reaffirms once more that nothing in
known about how any dynamical variables change within the
respective delocalization ranges.

However, in lack of constraining hypotheses, there is no
reason to exclude that this idea holds regardless of whether
the range sizes are stationary or not. Otherwise stated: slow
motion in a short range or faster motion in a larger range are
two indistinguishable chances, both allowed to occur for a
particle by the lack of local information inherent the eqs. 3,1
and in fact both occurring. This rationalizes why just the un-
certainty of x, px, ε and t links the deformation rate of time

dependent range sizes of the phase space to the acceleration
of any particle, possible and thus actual. The size and posi-
tion of any range require a reference system to be defined in
principle, although never quantifiable.

Consider for instance ∆x = xt − xo and ∆px = pt − po: the
coordinate xo, whatever it might be, is defined with respect
to the origin O of an arbitrary reference system R, while the
same also holds for the momentum po of the range ∆px con-
jugate to ∆x. So a free particle is described in R by its own
∆x and ∆px; indeed eqs. 4,1 have been inferred in R keeping
constant xo and regarding xt as a time function. Yet, if nei-
ther of these boundaries is specifiable, one could also think
xt fixed and xo time function. The difference is apparent: the
displacement of xo means that now ∆x deforms while contex-
tually moving in R, as O displaces at rate −∂xo/∂t with re-
spect to xt. Thus it is possible to introduce another reference
system Ro solidal with xo such that a particle accelerated in R
is at rest in Ro, which moves with the same acceleration in R.
Clearly still acts on the particle a force that justifies the accel-
eration of Ro in R, although however the particle is in fact at
rest in Ro.

The conclusion of this reasoning is well known: a parti-
cle at rest in an accelerated reference frame is subjected to
a force Fx indistinguishable from that due to the presence of
mass. Of course with large sized ∆x one can speak about
average force Fx, whereas in a small sized range Fx takes a
value better and better defined. This statement is nothing else
but the equivalence principle, here inferred as a corollary of
eqs. 3,1. After having introduced in eqs. 4,1 Fx = mv̇x, can
be inferred also the link between Fx and Newton’s law after
these preliminary remarks? Of course let us start again from
eqs. 4,1 with vx and v̇x defined in any R.

First of all, the fact that the mass in eq. 4,1 is unique and
that the equivalence principle has been obtained elaborating
independently both sides of mv̇x = Fx = −n~∆x−2vx shows
the identity of inertial and gravitational mass. Moreover just
the fact the unique mass m must somehow appear also in the
second equality compels putting vx = ζ′m via an appropriate
dimensional factor ζ′; hence Fx = −n~ζ′m∆x−2 with the ac-
celeration no longer appearing explicitly in this expression,
which rather has the form of an interaction force Fm,ζ′

x be-
tween m and another entity that can be nothing else but ζ′.

This result suggests a more interesting form of Fx putting
ζ′ = n

∑
kζkm′k, being ζk coefficients of the power series de-

velopment of ζ′ and m′ a further arbitrary mass that interacts
with m. The series truncated at the first order only yields ap-
proximately ζ′ ' nζm′, with ζ unique proportionality factor;
here n is inessential and does not play any role because, being
m′ arbitrary, m′n is another value arbitrary as well. In this way
one finds Fm,m′

x ≈ −~ζ(m/∆x)(m′/∆x) at the first order of ap-
proximation, i.e. an attractive force is originated between the
linear densities m/∆x and m′/∆x of masses by definition delo-
calized within ∆x. This sensible result appears better under-
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standable thinking to particle waves that propagate through
∆x rather than to point particles moving randomly within ∆x.

Moreover the proportionality factor ζ can be regarded as
a constant since the arbitrary masses m and m′ account for the
arbitrariness of vx. With the notation ζ = G/~ one recognizes
the approximate Newton law; the classical distance xm,m′ be-
tween local coordinates exactly known of particles is replaced
by any random distance falling within the uncertainty range
including them.

Obviously ∆x−2 shows that the functional dependence of
Fm,m′

x on all possible distances between the masses is like
x−2

m′m. This confirms that effectively the diffusion particles are
acted by the force Fx, whose physical meaning can be ex-
tended even to the gravitational interaction. Note however
that actually both signs are allowed for the velocity compo-
nent vx along x, which correspond to the signs of ∂∆x/∂t de-
pending on whether ∆x shrinks or expands as a function of
time.

In agreement with the idea of phase space-time deforma-
tion in the presence of mass, one would expect thus vx =

±ζ′m, i.e. even a negative value of m. This conclusion em-
phasizes nothing else but the existence of antimatter. After
this instance about how eqs. 3,1 can be purposely exploited,
let us proceed with another example short enough to be men-
tioned here, i.e. the Coulomb law. It is not a chance that
even this latter has a form similar to that of the Newton law,
with the charges playing the role of the masses. To empha-
size the reason of this similarity, let us introduce in eq. 4,1
the fine structure constant α = e2/~c. Eliminating ~ eq. 4,1
reads Fx = e′e/∆x2 = meax, where now me is the electron
mass and e′ = nvx(cα)−1e. This latter reads more expressively
e′ = ±n |vx| (cα)−1e. Again, the charges interact through their
linear densities e/∆x and e′/∆x for the reasons previously ex-
plained. Also the electron charges appear therefore because
of the phase space-time deformation in the presence of the
mass me. Once more is crucial the characteristic value of vx

of charged particles; for instance vx = 0 would describe a
neutral particle, whereas it also appears that a massless par-
ticle would be chargeless as well. A boundary condition of
the problem is that for an appropriate value n∗ of the integer
n one must find e′ = e, as nothing hinders indeed just such a
possibility. So e′ = ±(n/n∗)e; e.g. for a couple of electrons
one must take n = n∗ i.e. |vx| = cα, whose value seems there-
fore to be a combined constant of nature. It is reasonable
to assume n∗ = 3 since actually one should consider vx, vy
and vz for the respective components replacing the early Fx,
for simplicity the only one hitherto considered, whereas the
number n of states should be counted as n = nx +ny+nz. Take
the ground values nx = ny = nz = 1 and consider the three
chances vx , 0, vy , 0, vz , 0 and vx , 0, vy , 0 and vx , 0
only. This means considering the charges of particles result-
ing from n = 1, 2, 3 with n∗ = 3. As inferred before, n = n∗

holds for protons and electrons. Yet, in addition to e′ = ±e,
possible values of e′ result respectively to be e′ = ±e/3 or

e′ = ±(2/3)e as well, i.e. particles with fractional charges
should also exist in nature. But, being n arbitrary, what about
hypothetical charges described by n > n∗?

A full discussion on this question is clearly far beyond
the purpose of the present paper; further work is in progress
on this specific topic. As concerns the results hitherto intro-
duced, it is enough to conclude that the formal analogy be-
tween the Fourier law and the mass/charge transport laws is
due to their common quantum basis, discussed here with ref-
erence to the entropic aspects too, that goes back to the inti-
mate quantum nature of the entropy and Newton and
Coulomb forces themselves.

7 Conclusion

The quantum origin of the diffusion law has been described
with the help of eqs. 3,1 only. The assumption of uncertainty
that allowed to calculate the energy levels of many-electron
atoms and diatomic molecules, enables even the basic law
controlling the transport of matter to be inferred in a very sim-
ple way. It is also remarkable that elementary considerations
on eqs. 3,1 open the way to further results much more general
than the specific task to which they were initially addressed
in the present diffusion model. This emphasizes the heuris-
tic character of eqs. 3,1: the uncertainty, regarded itself as a
fundamental principle of nature rather than as mere corollary
of commutation rules of operators, appears a key tool to infer
a conceptual background unifying seemingly different physi-
cal phenomena. As concerns the present model, the level of
comprehension provided by the approach based on the phase
space-time uncertainty opens the way to more specific con-
siderations on the possible mechanisms of transport in solid,
liquid and gas phases.
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