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Spooky Action at a Distance or Action at a Spooky Distance?
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The paper demonstrates that the non-locality and non-reality of the quantum world are
direct consequences of the concept of uncertainty. It is also shown that the analysis of
states in the phase space entails the operator formalism of wave mechanics. While being
well known that the uncertainty principle is a consequence of the commutation rules of
operators, the paper shows that the reverse path is also possible; i.e. the uncertainty
eqguations entails themselves the operators and wave equations of energy and momen-
tum. The same theoretical approach has been eventually extended to infer significant
results of the special relativity.

1 Introduction is the quantum superposition of states, according which two

Einstein never liked the weirdness and the conceptual Iirﬁﬂ”elated particles share a single quantum state until a mea-

of the quantum mechanics due to its probabilistic charactéwemem is carried out. The quantum mechanics is founded

for instance, he disliked the incomplete knowledge about pQP a set of mathema'tlcal rules, Whlch however do not'mcor-
sition and momentum of a particle, about all components'?)cfrate themselves since the beginning the non-locality and
angular momentum and so forth. Paradoxically, just his tHeon-reality in its fundamental conceptual structure, in order
ory of the specific heat and its explanation of the photoelér‘e—'ncmde and rationalize per se thesgeets. For. this rea-

tric effect were the strongest support to the energy qua n the EPR baper appears legitimate fro_m a rat.|onal point of
zation early introduced by Plank to explain the black bodyeW: although in fact wrong from a physm_al pomt' of view,
radiation. In fact to the quantum theory we owe not onl deed aseparaf[e theoretlcgl tool,_the Bell inequality [7], was
the ability to explain weird experimental data, e.g. the duxfCcS>Say o evidence the inconsistency of the EPR attempt

wavegparticle behavior of matter and the tunnéfeet, but 5, 9]_: the prledictionls of I_ocal realism on Wh?Ch is. baseq the
also important discoveries like the laser, the transistor alﬁﬂ” mequahty conflict with the FES”"S °bt?‘”?ed In various
the superconductivity. Further experimental evidences recgfperiments, e.g. [10, 11, 12]. Itis worth noticing that no the-
tly obtained compelled however accepting besides its we tical foundatlpn of the wave mgchamcs can be consujered
character other aspects even more counterintuitive of quﬁqﬁ"y general_wnhout containing mherently_ the non-rea_lllsm
tum behavior. Mostly important are in this respect the noﬁgd_non-locahsr_n of_the guantum world. Itis therefore mte_-
localism and non-realism: according to the former, exchan ét'_ng to examine in this respect the apprc_)ach folllowed N
of information is allowed even between particles separated VIOUS papers [13, 14], whgre results con.sllstent with tha}t of
a superluminal distance; according to the latter, the exp ave 'mechanlcs have been inferred exploiting the following
mental measurements do not reveal preexisting propertieg(?o'f""‘t'onS only

particles but concur to define themselves the measured pro- AXApy = = AzAL. @1
perties. The EPR gedanken experiment [1] tried to overcome The second equality is consequence of the first one de-
the conceptual incompleteness of quantum mechanics by fiying formally At = Ax/vx and Ae = Apyvx, Whereuvy is
pothesizing “hidden variables” in the wave function, i.e. véhe average velocity with which any particle travels through
riables not accessible to experimental evidence but ableAtg the equalities share the common numbeof allowed
improve our extent of knowledge and to overcome th&-di states. The equations (1,1) do not require any assumption
culty of a “spooky action at a distance” between correlatathout the ranges, about the motion of the particle and even
couples of particles. Yet, several experiments were ableatmout its wavgorpuscle nature; this latter will be inferred
exclude the existence of hidden variables while demonstas-a corollary in section 6. The present paper aims to con-
ting instead non-localffects [2, 3]. The theoretical apparatuibute some ideas about how to regard the non-locality and
of quantum mechanics acknowledges the non-local behavion-reality uniquely according to egs. (1,1). For reasons that
of the quantum patrticles through the concept of entanglemeiiit be clear below, it is useful to introduce shortly in section
[4, 5]. This term was early introduced by Schrodinger [6] 1 the way of exploiting these equations to infer the quantum
describe the possibility of correlating quantum systems evamgular momentum; the remarks at the end of this section,
though spatially separated; the most controversial point ceviich has a preliminary worth, are essential to discuss sub-
cerns of course the fiiculty arising from the requirements ofsequently the weirdness of the quantum world. Although the
relativity. Even today the concept of entanglement has didrgular momentum has been already introduced in [13], its
ferent interpretations: the most acknowledged point of viexucidation is so straightforward and elementary that it deser-
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ves being shortly sketched here; in doing so, indeed, it iive local values of these latter; then the quantities thereafter
troduces reference concepts that will be further developectaiculated concern the number of allowed states only, which
the following sections 3 and 4 that concern the non-realitiave in fact the same physical meaning of the quantum num-
and non-locality. Eventually, the connection between quarer defined by the solution of the pertinent wave equation.
tum theory and special relativity is also sketched in section&\b analogous approach shows that the non-relativistic hydro-
and 7; the link between egs. (1,1) and the operator formaligenlike energy levels depend on a further integérecause

of wave mechanics is discussed in section 6. of the radial uncertainty equatiaxp,Ap = n# of an electron
o from the nucleus [13]; again, even without specifying any lo-
2 The non-relativistic angular momentum cal detail of motion, the numbers of statesndn related to

The non-relativistic quantization of the classical angular mée angular and radial uncertainties of the electron in the field
mentumM? and of one of its componentd,, along an ar- Of nucleus correspond to the respective quantum numbers that
bitrary direction defined by the unit vecter starts from the characterize the energy levels. This preliminary introduction
classical scalar x p - w; herer is the radial distance of anyon how to exploit egs. (1,1) was included in the present pa-
particle from the origirO of an arbitrary reference systef per to emphasize several points useful in the following, i.e.:
andp its momentum. For instance, this could be the case(dfthe replacements (2,1) that allow to exploit egs. (1,1) are
an electron in the field of a nucleus centere®inAs intro- enough to plug the classical physical definitionp of angu-

duced in [15], the positions lar momentum into the quantum world; (ii) no hypothesis is
necessary about the geometrical properties of motion of the
r— Ar p — Ap (2,1) particle nor about its waymatter nature to infer the quantum

result; (iii) trivial algebraic manipulations replace the solu-
enable the numbelr of quantum states to be calculated agn of the pertinent wave equation; (iv) the information in-
a function of the rangear and Ap of all local distances ferred through egs. (1,1) only is fully consistent with that of
and momenta physically allowed to the particle. These rafe wave mechanics; (v) the local momentum and distance
ges only, and not the random local valueandp themsel- petween the particles concerned in the “orbiting” system do
ves, are considered in the fO”OWing. The first Step y|e|¢ﬁ)t p|ay any role in determining (V|) as found e|sewhere,
M, = (Ar X Ap) -w = (W X Ar) - Ap and soM,, = Al - Ap, [15, 17], the number of allowed states plays actually the role
whereAl = w x Ar. If Ap andAl are orthogonal, theM,, = of the quantum numbers of the operator formalism of wave
0; else, writingAl - Ap as(Ap - Al/Al) Al with Al = |All,  mechanics; (vii) the amount of information accessible for the
the component=Ap, = Ap - Al/Al of Ap along Al yields angular momentum is not complete like that expected in the
M, = Al Ap| . In turn this latter equation y|E|dS according t@|assica| physics; (Vlll) eqgs. (1,1) rule out “a priori” any pos-
egs. (1,1M, = £z, beingl the usual notation for the numbexkipjlity of “hidden variables” that could in principle enhance
of states of the angular momentuhis positive integer inclu- gyr knowledge aboul,, and M2 in order to obtain a more
ding zero. As expected, is not a single valued function be-complete description of the orbiting quantum system.
cause of the uncertainties initially postulatedif@andp. One It is worth mentioning that the validity of the point (i) has
component oM only, e.g. along the-axis, is knowable; re- heen checked and extended in the papers [13, 14] also to more
peating the same approach for thandx components would complex quantum systems like many electron agens and
trivially mean changingv. Just this conclusion suggests thajiatomic molecules. The fact that egs. (1,Hjagently re-
the average values MZ >, < MZ > and< MZ > should place the standard approach of wave mechanics has central
be equal; so the quantity of physical interest to describe {Rgerest for the topics introduced in following sections, espe-
properties of quantum angular momentunt,ias a function cially as concerns the very important point (viii). In principle
of which M2 is indeed inferred as well. Let us calculate the%ﬂ]e could not exclude that the wave function, from which is
average components over the possible states sumtiijfg (extracted all physical information allowed about the quantum
from —L to +L, whereL is an arbitrary maximum value ¢f systems, could actually contain hidden variables; indeed this
Being by definition< M2 >= 3= (#l)2/(2L + 1), one finds chance, reasonably suspected in the famous EPR paper, has
M2 = Zf‘zl < Mi2 >= L(L + 1)#%. Note that the mere physi-been excluded later thanks to a separate theoretical tool only,
cal definition of angular momentum is enough to find quathe Bell inequality. In the present approach, instead, the quan-
tum results completely analogous to that of wave mechanitization of angular momentum is more “transparent” in that it
any local detail of motion, like that of electron “orbit” arounaexplicitly displays variables and steps that lead to the quan-
the nucleus, is utterly unnecessary. The quantization of then result; in other words, the present approach excludes any
classical values appears merely introducing the delocalisagpmssibility of hidden variables because it works with actual
ranges into the definition of angular momentum and then epantities inherent the mere definition of angular momentum
ploiting egs. (1,1). The reason of it is evident: after the stepsly. In conclusion the present section aimed mostly to en-
(2,1), the unigue information available comes from the unceure that sensible results are obtained regarding the uncer-
tainty ranges of coordinates and momentum, rather than frtaimty as a fundamental principle of nature itself, rather than
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as a by-product of the operator formalism of wave mechdisplacement velocity, bouncing frequency of the particle and
nics. It is necessary however to better understand egs. (1tH)s its momentum as well. To draw such a conclusion two
To ascertain “a posteriori” that these equations work well hassential elements have implemented the initial definition of
no heuristic worth. Therefore, after having checked their videlocalization range: the presence of a particle and the size
lidity, the remainder of the paper starts from a step behinodange ofAx. Since however no assumption has been made
them, i.e. to highlight the more profound physical basis roabout times and range sizes, nor abgundv;, these proper-

ted in the concept of space-time uncertainty. ties do not define themselves any state allowed to the particle;
nothing about arbitrary range sizes, frequencies and veloci-
ties can be related to an integer number. Despite the intuitive
fact that the particle dynamics has changedtill appears

Let us introduce a reference systého define the ranges ofunexplainable. This conclusion is important because, for the
egs. (1,1). In the simplest 1D caseis represented by an ar+easons introduced in section 2, juséntails the chance of
bitrary axis where are defined two coordinatggndx; with measuring a physical observable of the particle. Overcoming
respect to an arbitrary origi@®: the former describes the pothis indeterminacy requires thus a further condition or cons-
sition of the range\x = X, — X, with respect ta0, the latter traint onv; andv,, e.g. on the change of energy or momen-
describes its size. The postulated arbitrariness of size maikes of the particle during the aforesaid time range. fliee,

AXx consistent with the local coordinatg in the limit case this condition is a crucial step to allow the transition from
Xt — Xo and with any other coordinate if is also allowed then unphysical “virtual” state towards an observable state: if
limit size AX — co. If neither boundary coordinate is time defor instance to defin@ concur the values of momentum or
pendent, then the section 2 and the papers [15, 16] show #argy related to; andv,, then the sought number of sta-
this is all we need to know to define an observable physitas should correspondingly represent just the allowed eigen-
property of the concerned quantum system: indeed, with tr@dues of momentum or energy of the particle. The fact that
help of an analogous reasoning for the momentum range, thisnique range is inadequate to defimgustifies reasonably
approach is enough to find the number of allowed states thee idea of introducing a further range ancillaryAa able

the quantum numbers that define the eigenvalues of the ob&erepresent irR the values of a second dynamical variable.
vable. If insteadk, andx; are in general time dependent, theApart from this intuitive conclusion, it is necessary to explain
Ax expands or shrinks as a function of time, while possiblyhy two arbitrary ranges of allowed dynamical variables are
shifting with respect td too, depending on how are mutunecessary to define the sought observable state of the particle.
ally related the displacementsxfandx;. Actually the paper A reasonable idea is to examine the concept itself of measu-
[15] shows that such a detailed information about how batement process. It is known that this concept is replaced in
of them displace with respect @is physically redundant; all quantum mechanics by that of interaction, whoffea is to

we need to know is the resultingx only. If Axis an empty perturb the early state of the particle under test. The dyna-
range, the chance of displacement in principle possibleformical variables of the unperturbed free particl&irepresent
andx; entails the presence of a force field withix; in the the initial boundary condition as a function of which is deter-
absence of a particle delocalized in it, however, this conclmined the &ect of the interaction between particle and ob-
sion has a self-contained worth only that concerns a propeséyver. Let the intensity of the local perturbation, whatever it
of the the range itself iR. Instead consequences of physicahight be, depend in general on the current local position and
interest are expected when a free particle is possibly thergiomentum of the particle; then the observer records an out-
delocalized; first of all because this presence requires itsgfme somehow related to the boundary condition describing
highlighting the physical meaning af andx; to justify why the particle before the measurement process. Since however
these boundary coordinates, although remaining in principte initial dynamical variables were unknown, they remain
completely arbitrary, can in fact include all values of dynampredictable and unknown after the measurement process as
mical variables allowed to the particle. Assume for instaneell; any correlation between initial and final state of the par-
two infinite potential barriers at, and x;: if the size of the ticle is impossible, simply because the former is in fact un-
delocalization range changes framm; to Ax, during the time defined. Renouncing “a priori” to know the local values of
rangeAt = t, — ty, it means that necessarily the properties ebnjugate dynamical variables compels thus introducing ran-
the particle are ffected duringAt as well; at the time; the ges of their allowed values. Despite the lack of information
particle was constrained bouncing withix; with average about the sought correlation and kind of interaction, let us
frequencyv; = vaxil, at the timet, with average frequencyshow that even so the concept of measurement allows defi-
vy = v;(Axgl. The average displacement velocity of the ning the number of states, which in fact makes actual the pro-
particle has been regardedidient at the timeg andt, for perties of the particles. Regard to this purpose the aforesaid
sake of generality; however this fact is not essential, singgandx; respectively as coordinates of the particle before and
AXp # AXp is enough to ensure; # vi. Hence the defor- after the measurement process; in agreement with egs. (1,1),
mation of Ax as a function of time entails changing averagmth are random, unknown and unpredictable, whereas du-

3 Non-realism and non-localism of egs. (1,1)
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ring the interaction even intermediate values are expecteadtamnot be made equal to zero; this would contradict the con-
fall between these extremal boundaries. Considerations arept of uncertainty, which must hold for any ranges of any
logous tox; — X, hold also for the conjugate momentum ranggize not simultaneously vanishing. &px > 0 requires the

p: — Po, Whose boundary valugs, and p; are related to the existence of a valueonst > 0 such that

momentum of the particle before and after the measurement

process. Howevex;, — X, andp; — po, although fulfilling the oxopx >const =  odedt>const.  (3,3)

requirements of both measurement process and egs, (1’1)The second equation is obtained from the first likewise

cannot be directly related themselves\andApy; the for- . R . L
mer are indeed uncorrelated and thus still unable to juatifyas in egs. (L,1). This is infiect the uncertainty principle

. . . . with the value ofconst of the order of the Plank constant;
the central aim of the present discussion. Let us mtrod%e

thus the probabilitie$I, andII,, that the values of both dy- 'S ||_1(_aqua||ty is then direct consequence of the probabilistic
. : x definition of egs. (3,1) and supports the idea that the pertur-

namical variables change during the measurement process i h hrinks the initial

such a way that ation induced by the measurement process shrinks the initia

uncorrelated rangesx + AX' andApx + Apj to the correla-

ted onesAx andApx of egs. (1,1). The fact that egs. (3,3)

concern by definition observable states ensures tfiatte

vely VII, # 0. Eventually, together with eq. (3,2) must in

principle exist also the probability

where the usual notatiodsx andApy refer to ranges compli-

ant with egs. (1,1). This suggests writing I}, = 1Tl (3.4)

Xt — Xo — Measurement> AX

Pt — Po — Measurements Apy

I, = AX/(AX+ AX), TIp = Ap/(Apx+ AP,  (3.1) Note that eq. (3,2_) admits in principlex’ << Ax and
AX' >> AX, together with analogous features/of;; so both

whereAx' and Ap,, are ancillary ranges consistent with thémit probabilities can tend to 0 or to 1. Thus it is possible
conditionsIl, — O for Ax — 0 andIl, — 1 for Ax — oo; !0 regard eq. (3,2) as thefective chance of getting an ei-
analogous considerations hold of course for the moment@gfvalue from the measurement process and eq. (3,4) as that
probability too. By definition thereforax’ > 0 andAp) > 0, ©f not getting any eigenvalue. Both account for well known
in agreement with the idea that all ranges in the present ma@iéicomes of wave mechanics, e.g.: (i) eq. (3,4) accounts for
are positive. The physical meaning 8% andAp,, appears eigenvalues that actually do not exist, see for instance the pre-
noting that initially, i.e. before defining, space delocaliza- Vious conclusions about theandy components of angular
tion and momentum ranges are unrelated. Let us regard tAE{nentum once having determinéd}; (ii) when a quan-
AX+AX = X —Xo andApy+Ap, = p;— Po as the unperturbedtum states is described by a superposition of several eigen-
early ranges, whose respective final sizes areusindAp, functions, several eigenvalues exist whose respective actual
of egs. (1,1). So egs. (3,1) concern the probability that tRecurrence is probabilistic, and so on. These chances must
particle is eventually imx resulting after the measuremen®€ inferred case by case when exploiting egs. (1,1) through
driven perturbation of the earlyx + AX', whereas an analo-SPecific reasonings like that of section 2. The physical me-
gous explanation holds of course fid, as well. The total @ning of VII, will also be shortly discussed in the next sec-

probabilityT1, = IT,I1,, for space delocalization and momention 6; so egs. (3,2) and (3,4) do not deserve further com-
tum ranges fulfilling egs. (1,1) is thus ments here. Now instead let us pose a question before pro-

ceeding on: why just shrinking and not expanding further the
[ = AXApy/(AXApPy + AXAP, + ApxAX + Ap,AX). (3,2) initial unrelated ranges? Apart from ther fact that the ranges
are by definition all positive, the second chance would mean
In eq. (3,2)I1, is expressed as a function ak andApxy AX+ AX andApx + Ap; defined by negativax’ and Ap;,
that will bring us to egs. (1,1) although starting from initialvhich in turn would exclude the possibility of defining the
larger ranges still unrelated, whence the notation. First of pfbbabilitiesII, andII,, themselves. Besides this inconsis-
note that eq. (3,2) requireaX/ VII,)(Apx/ VIIn) > AX'Ap,. tency, a plain consideration further clarifies the question. The
Since all ranges appearing in this inequality are arbitrary, tireasurement process tries to determine a physical property.
left hand side can be shortly written &s5px whatever the Expanding the early unrelated ranges would mean decreasing
specific values ofl, # 0 andIl,, # 0 might be; these last po-our degree of knowledge about the particle, whose dynami-
sitions are straightforward consequences of the previous coal-variables would oscillate within wider ranges of possible
siderations. Second, also note that the probability of quantuatues; if so, the concept of measurement would be itself an
interest is the square roofTl, = /ILII,, of that defined oxymoron. Shrinking the early ranges, instead, is the best
classically as ratio between favorable and total chances; ttosnpromise fiered by the nature to us during what we call
point will be further concerned in section 6. Third, by definimeasurement process”: while being forbidden the exact lo-
tion the product of ranges at right hand side of the inequalitgl values of the classical physics we must content ourselves,
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at least, of reduced ranges of values for conjugate dynamifact introduced just the momentum is irrelevant, as it rests
cal variables to which correspond however numbers of stategrely on the particular choice of the physical dimension of
We must accept therefore the probabilities of egs. (3,1) as tomst regarding this latter as a produminstm, involvingm
best we can get from a measurement process; this is what taih®s another constant, one would still find egs. (3,5) with the
us the Heisenberg inequality just obtained from our probafsrm Ax”Ap} = n”constmi.e. Ax’Avy = n”’const. Two
listic knowledge of the reality around us. To proceed furth@éurther considerations are instead by far more relevant. The
exploit again the arbitrariness of all ranges so far introducfdt is that eqgs. (1,1) compel regarding any observable as the
in order to rewrite eq. (3,2) in various possible ways. In tlednsequence of the measurement process itself, rather than as
first way IT = AXApx/(AX"ApY), beingAX”Ap; > AxApy intrinsic feature of matter; no pre-existing state, and thus
the sum of all addends at denominator. This suggests twat indeed definable for the particle before the measurement.
AXApy = aconst whereconstis a constant and a parame- The conclusion that characterizing the eigenvalues is conse-
ter to be defined consistently with the actual product of tieence of the measurement process, rules the realism out of
resulting uncertainties. Indeed this position allows writing he quantum world. The second relevant feature of egs.(1,1),
general which clearly appears recalling the results of section 2, con-
cerns the localism. The particular example of the angular mo-
mentum has been introduced before any further consideration
and so forth, depending on the values of the range produsftsentral interest for the purposes of the present paper just to
at left hand side. Let for instance b&’ < o”; eliminating show that the local dynamical variables do not play any role
constfrom these equations one find”’ Apy’/(AX’Apy) = in determining the observable properties of reality around us,
a’” [ i.e. the sought form dffl,. A further possibility of re- as the experimental properties we measure are related to the
writing eq. (3,2) isll, = AXApy/(4AXEApPS) in the particular eigenvalues and thus to the number of allowed states only.
case where all terms at denominator of eq. (3, 2) are equabtothe local values of dynamical variables become unphysi-
that here indicated with the unique notatior®Ap}; there is cal once accepting egs. (1,1) to formulate quantum problems:
indeed no reason to discard also this chance, which musnbghing measurable corresponds to the local values. Hence,
therefore included in our definition of,. Eventually, another in lack of local information, the concept of distance is unphy-
consequence of the arbitrariness in defingand thusAx”  sical itself in the quantum world. For instance, in [15] the
andAx” of egs. (3,5) must be taken into accounk’ could Newton and Coulomb forces between two interacting mas-
have been even rewritten itself Ax’ = Ax® + Ax3® + ..., ses or charges have been inferred replacing the dependence
with several addends again arbitrary; in this case the numbartheir classical distanoel‘§ with the dependence ofix2:
of addends at denominator of eq. (3,2) would have been @gording to egs. (1,1), the space range includes all possible
integern rather than 4. All these requirements are easily ilocal distances between the interacting particles whose coor-
cluded in the definition ofI,, simply puttinga = n, so that dinates fall withinAx. Regarded from this point of view, the
egs. (3,5) read\x”Apy = n”’constand so forth withn ar- EPR paradox is unphysical itself: it is impossible to define a
bitrary integer; in other wordsy corresponds to the arbitrarysuperluminal distance conflicting with the exchange of infor-
number of possible subdivisions of the early ranges indua@dtion about the spin orientation of two particles arbitrarily
by the measurement process. This resfiéatively leads to apart each other. Whatever their distance might be, a rarge
both egs. (1,1), which merely specify the valuecohstas including both of them certainly exists because its size is by
that of 7. Note eventually that dividing more and more thdefinition arbitrary. Once regarding two particles withii,
initial interval AX’ into an increasing number of intervals®, however, the concept of their local distance fails together with
AX3, ... means considering smaller and smaller sized rahat of the respective local coordinates; in principle nobody
ges, to which corresponds an increasing numbesince a knows or can measure how far they might actually be. For this
smaller and smaller range actually tends to the limit of a log&lason it would be appropriate to describe the EPR gedanke-
coordinate better and better defined, one realizesthato nexperiment as an action at a spooky distance, instead of a
corresponds to the deterministic limit of the classical physispooky action at a distance. Moreover the concept of entan-
Once more, the same holds for the other ranges. Since gdgment appears itself implicitly inherent the present appro-
(1,1) are adequate to describe the existence of eigenvalaeh, as even particles at superluminal distance must behave
one concludes that the measurement process is in fact corigsistently with their chance of being anywhere and thus of
tent with the existence of experimental observables desgiehanging information as if they would actually be at very
the initial uncertainties of both dynamical variables. Nothort distance. In this respect, just the quantum entanglement
that the reasoning above did not exploit any specific featisatself the best demonstration of the correctness of the pre-
of the momentum; in other words, instead of the momentwsant point of view based exclusively on the egs. (1,1), which
range the reasoning could have identically exploited directhyus exclude “a priori” both realism and localism from the
the perturbation of the velocity of the particle under obser-quantum world; all this clearly appears in section 2. Also the
vation, i.e. a velocity range. The question about why we ha&baronov-Bohm #&ect is immediately understandable in the

AX'ApY = a”const  AX"Ap}’ = a"’const (3,5)
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frame of the present reasoning: an electrically charged paith notationsN, for reasons that will be clear soon. Compa-
ticle is dfected by an electro-magnetic field even when it ifng the inequalities (4,2) and (4,4) requires emphasizing first
confined in a region where both electric and magnetic fieldBall what “not” stands for. In egs. (3,1) the ranges and

are zero. Actually it is herand there just like a wave pro- Ap) additional toAx andApx have been introduced to define
pagating through, and thus filling, all available delocalizatidhe probabilityll, that after the measurement interaction the
range. The previous considerations show indeed that regearticle delocalization is described iy and no longer by
ding a quantum particle hex there is physically illusory; Ax + Ax’, while an analogous idea holds also fby,; as we
assigning a specific location is an idea arbitrarily and incdrave shown, just the probabilities that both initial ranges sh-
rectly extrapolated from the classical physics to the quantuimk to new ranges fulfilling egs. (1,1) entail the numbers of

world. statesn and thus the existence of the respective eigenvalues.
) ) This suggests th& andB,, describe respectively the chances
4 The Bell inequality of leaving the initial delocalization range unchanged or not

At this point, the exposition brings unavoidably into the mindfter the perturbation induced by the observer, wheGeaisd

the Bell inequality. The non-locality and non-reality of th&n concern in an analogous way the momentum ranges of the
results inferred from egs. (1,1) suggest emphasizing the cparticle. As regards, it represents the existence of an eigen-
nection between the considerations of section 3 and the B@lue of the particle; of cours&, means that delocalization
inequality. To highlight this link let us rewrite the egs. (1,19nd momentum ranges of the particle remain unchanged and

as so unrelated, thus not corresponding to any number of states.
AX Ap At As The r_lotatioan relat_es thus the_inequal_ity (4,4) to any ppssi-
X _n, ——= —n, n>1 (4,1) bleeigenvalue. Forinstance: sinteequires that are verified
Axy Apy Aty Aey both favorable probabilities (3,1), it is reasonable to think that

where the subscript “1” meams= 1. In this way# does no the various pr.o.babilitie§>n corresponding to eq. (4,4) fulfill
longer appear explicitly in the expression of the number 8{§0 the condition
states. EQs. (4,1) appear therefore as an appropriate star-
ting point to examine the relationship between egs. (1,1) Pn(A, Bn)Pn(A Cn) + Pn(Aa, B)Pn(An, C) = 1. (4.5)
and Bell inequality, which has indeed general character not |, effect, it is possible to normalize eq. (4,4) be means
specifically related to the quantum theory. Considering fgf 5 appropriate numerical factor in order to express the
sake of brevity the first equation only (the second is inde@&rious numbers\, of occurrenceson-occurrences through
its straightforward consequence) and taking the logarithmsgkir respective probabilitieB, for one particle only. The
both sides one finds first addend of eq. (4,5) represents the probability of getting
AX Apy an eigenvalue as a consequence of the measurement process,
|09(A—X1) + |09(A—pl) > 0. (4,2) the second does not; in fact this idea was already introduced
through the probabilitie$l, andIl;, of egs. (3,2) and (3,4).
This equation presents a formal analogy with the Bell-likehe sum of both chances that correspond to the Bell-like ine-
inequality, [9] quality

N(A, By) + N(B,C)) = N(A,Cp), (4,3) Pn(A, Bn) + Pna(B,Cp) — Pa(A,C,) > 0

where the subscript “n” stands for “not”. Its demonstratiomust be of course equal to 1 in eq. (4,5). Let us try now to
is amazingly simple. Whatever the propertiésB andC correlate term by term egs. (4,2) and (4,4); the latter concerns
might represent, the inequaliN(A, B,, C)+N(Ay, B,Cr) = 0 directly the numbers of occurrengesn-occurrences leading
expressing the sum of the respective numbers of occurrenteshe n-th number of states allowed for one particle. This
non-occurrences possible fr B andC is self-evident. Add correlation yields

to both sides the su(A, By, C,)) + N(A, B, C,)) expressing

further numbers of occurrengasn-occurrences possible for AX = Axq exp(Nn(A, Bn)),
B andC and note that terms likBl(A, Bn, C) + N(A, By, Cp)
read actuallyN(A, B,); the notation emphasizes a resulting Apx = Ap1€XP(Nn(B, Cn) — Na(A, Cn)) -

term no longer distinguished according to either prop€ity  To verify if these equations can be simultaneously fulfil-
i.e. the sum including both chances allowed @with the |ed, let us multiply them side by side; recalling that by defi-
sameA and B, discriminates in fact the occurrengesn-oc- nition Ax;Ap; = %, one obtains

currences ofA and B only. So one infers immediately the

inequality (4,3) that can be more expressively rewritten as n = exp(Qn),

Nn(A, Bn) + (Nn(B,Cp) = Nn(A,Cn)) 20 (4,4) Qn = Nn(A, Bn) + Nn(B, Cn) — Nn(A,Cy) = 0. (4.6)
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So the result is that must be equal just to the exponenAt andAt’ coincide. Recall now that the time range was in-
tial of the numbeiQ, of occurrencemon-occurrences of thetroduced in section 1 to infer egs. (1,1) through the positions
Bell-like inequality. It is clear however that in general that = Ax/vx, which thus requires analogoushy’ = AX' /v,
first equation (4,6) is false. Even admitting the chance thaaiid note that both signs are allowed for the velocity compo-
is effectively verified for one among the possible numbers péntsv, and vy defined inR andR’. This means that with
states, say®, by an appropriate valu@,s, what about other respect to the origi® of R we expectAx + v,At = 0 depen-
numbers of states like for instanot— 1 orn® + 1? Itis clear ding on whether the particle moves leftwards or rightwards.
that a hypothesis should be made on the respe@ive and A possible position to summarize into a unique equation these
Qus.1. However the Bell-like inequality (4,3) does not proszhances regardless of either signpfs Ax? — v2At? = 0; to
pect itself any indication about such a hypothesis, which thhis result corresponds of course an analogous expression in
refore would require an “ad hoc” assumption valid for all aR’, i.e. Ax?2 — v} 2At’? = 0. Hence it is possible to write
bitrary integers progressively increasing from 1 by steps of 5 2 5 -

1 until to infinity. Note in this respect that the impossibility of AXT = Ul SAYT = 0 = AXT — 0, At (5.1)
egs. (1,1) to fulfil the Bell-like inequality is in fact due to the , - _
guantization ofn; if this latter could take any non-quantized Bothy, and, are reminiscent of the respeciive reference

value, then eq. (4,6) would be fulfilled in principle whatevesryStem§ where they have been |n|t|gl!y gelined: Smce no
%nstramt is required for these velocities, both arbitrary by

Qn might be. Hence is just the quantization of the eigenvalu%ef. ition. the last i I oG dv’ with
that makes itself non-real and non-local the quantum world: inition, the 1ast equation allows replacingandu, wi
ny other values of velocity still defined RandR’; so

In effect forn — oo the numbem approximates better and®
better a continuous \{anable of the cIaSS|c;_iI phyS|_cs, When%(lz_v;,zAt,z =62, 0 = I ING 62, n #0. (5,2)
the realism and localism of the macroscopic classical world.

Being unchanged the delocalization range sizes at right

5 Uncertainty and special relativity hand side, the intervalsf,,’u,,, is no longer equal to zero once

After having justified why the uncertainty ranges of positioRaving replacedy® with vf’%; yet this does not hinder that

and momentum entail non-locality and non-reality, remaitfdis interval is still equal to the expression at left hand side
the concept of time and energy uncertainty to be better explhitk iS replaced by another appropriate veloaifyalso de-

ned in the frame of such a conceptual context. Consider tiggd in R; thus remains unchanged the analytical form of
also the time measurement requires a macroscopic appar®@$, (5.1) and (5,2). In this way we have found a unique
whose outcome is nothing else but the time of the obsengfervalds’, ,, common to both reference systeRandR.

The question arises: is the observer time coincident with tYgt this result is not a property of an interval defined by un-
of the particle? This question can be answered considerfi@jtainty ranges only, as it involves the presence of a particle
first that during the measurement process egs. (1,1) aﬁﬁﬁpugh its displacement velocity; however it is interesting
to different reference systems, about which no hypothesiéhg fact thass? ., does not require specific values gf’
made. Suppose that egs. (1,1) refer to the particle; we marsdv)’?, which are indeed arbitrary like the ranges themsel-
rewrite them a2\X'Ap), = n'/i = Ag’At’ for the observer. Let ves. In the paper [15], was identified a velocity invariant in
R andR be the respective reference systems; in both casey reference system, called"® i.e. the maximum average
the ranges are completely arbitrary by definition, as concemgdocity with which any particle can displace in any. This
their sizes and analytical form. For instance it is not possHggest the chance of expressing egs. (5,2) just through this

velocity, which will be called from now on. If in particular
72 112

_ . >
ble to es'tabhsh iAX = Xo + vyAt OF if AX = /X2 + (vxAt) we replace’2 andv”? with ¢, then
or anything else. The same holds also for the momentum
range and for the energy range. Moreor@ndn’ are not as- AX? - A2 = 68 = AxZ — PAt? 65 #0.  (5,3)
signed values, rather they are mere notations to indicate any
integer unspecified and unspecifiable. 1Bandn’ remain This result contains new delocalization ranges that can be
indistinguishable despite any integer of either reference sghosen in order to generalize the previous result; this can be
tem might turn into a dierent integer in the other referenceertainly done in agreement with this appropriate choice of
system. Hence the arbitrariness of the analytical form of ttie velocity, to which refers indeed the subscdpin general
ranges does not contradict the validity of egs. (1,1) in diég. (5,3) holds foss. not necessarily equal to zero and re-
ferent reference systems despite the chance of their possibésents a real step onwards with respect to eq. (5,2) because
size changes; the uncertainty equations (1,1) hold identicalfythe peculiar property af, which is defined regardless of a
in Rand inR’, regardless of whether they refer to particle argpecific reference system. The only quantities that depend on
observer in the respective reference systems. So, whatéare Ax. and At; that definess; regardless of the presence
the sizes ofAx of the particle and\x’ of the observer might itself of any kind of particle thanks to the universal character
be, in principle egs. (1,1) do not require that the time rangefsc. In conclusion, the present discussion allowed to find a
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relationship that describes the form of an interval invariant in AtO = Atpin, A9 = Aemax.
RandR’, thus in any other reference system. Since this result

has been obtained from egs. (1,1), it is also compliant wit : . i . .
. . : . y vin the various cases; the subscripts emphasize that when
the requirements of non-locality and non-reality previous LT i )
= cthe traveling time is minimum whereas is maximum,

introduced. The interval rule is a fundamental statement,f consistently wittk and with the arbitrary\p® andAx®
special relativity, for instance it allows to infer the Lorent

: . scribing a slower massive particle. These positions are im-
transformations of space, time, momentum and energy [1

However, apart from the formal analogy, the ranges introoP rtant as they compel specifying how, in a given reference

; (0) (0) i (©) (©
ced here have fully quantum physical meaning, i.e. they 3 stem Ap™ and Az scale with respect tAp® andAs

; © — © _ ~n© (© — c)
uncertainty ranges; instead the ranges of relativity have (E)vﬁenu < C. SinceAs cp;” - cp,’, thene cpf

€ definition: © ©

o2 . S definition; heres\® and p'® are random local values of
deterministic character of classical physics, i.e. they are S . .
. . . . .. energy and momentum within their own uncertainty ranges.
fined as a function of selected local coordinates in princi

i icg® () i
exactly known. Therefore eq. (5,3) shows that even the Fe aislower masswi)partldg. andAs scalg likec/v and
. . . : v/c with respect taAt'” ande'?; hence, according to the for-
lativity can be made compliant with the requirements of th S0 © . o . .
. : . mer equalitye"” = &%v/c requiresp” scaling with respect
quantum world provided that the local dynamical variables™ " ) © ) ) © /2 . )
: ) 0 p© like cp® = £O9/c, i.e. p® = £9v/c2. Being p

be discarded as done here and the macroscopic determinis: L - .
. : . ; ande'® random local quantities within the respective ranges,
tic ranges take the physical meaning of uncertainty ranggs. : . : i
. ) . . d € functional relationship between any possible value of mo-
This crucial step, although abstractly simple, is certainly non-
o > | mentum and energy must be
trivial as concerns the fierent way of regarding the concep-
tual basis of relativity. The next considerations concern just p = &0/ (5,6)

the consequences of this conclusion. From eq. (5,3) and ac-

cording to egs. (1,1) one infers, omitting for simplicity the  Momentum and energy of a free particle are constants

subscriptsc andx from now on but still intending thatis a poth in classical physics and in special relativity. However

component of average velocity along an arbitrary axis,  eq. (5,6) is here a quantum result, which therefore must be

,2 ) accordingly handled. Let us admit that during a short time
c’At - (/)" -1 v = AX/At v = AX /AY rangest even the energy of a free particle is allowed to fluc-
A2 (v/c)? -1 | ' tuate randomly bye. Eq. (5,6) is thus exploited to calculate

(5.4) the link betweerse and related values afp and v during

Putting in this equatiol — eo, i.e. in the non-relativistic the time transient where the fluctuation allows the particle

limit, A" — At; as expected, without a finite light speed ongoving in altered way. Dierentiating eq. (5,6) one finds

finds the absolute time of Newton. Suppose rRwnNdR 5. = c25p/v— p(c/v)?v: once having fixegh ando, this result

displacing each other at constant reftsuch that in either of gefines the functional dependenceéetipon arbitrarysp and

them, say inR, the particle is at rest. In the particular casg, — v2 — vq defined by two arbitrary values andv;. Sum-

v = 0, thereforey’ is just the rate/ with which R displaces mingde and eq. (5,6) one finds+ de = c2(p+dp)/v — edv/v.

with respect toR’; of course it is also identically possiblenote now that in generalpsx = nf reads identically{p)? =

to putv” = 0, in which caser = -V. Since we have two ny5p/5x, whereas in an analogous walg)? = nfide/ot. Re-

equivalent ways to regardandv’, let us exploit for instance gard in this way just the new ranges- 6 andp + 6p; put-

the first chance to find the transformation properties of g sx = vst and replacing in the last expression to calculate
time range and the second chance for the space range; instBe. 5¢)/st, one finds

latter case it is convenient to put in eq. (563) = 0 to infer
directly cAt; = Axc andcAt, = Ax.. One finds then (k) Y(Ae)? = (Nh)"H(ApC)? - sdw, (5,7)

The superscripts emphasize the values taken by the velo-

A = At(1- (v/ep)

A= Akl (VieR) Az =c+ e, AP=p+op.
(5,5) The last addend results becaugéx has physical dimen-
Actually the subscript could have been omitted in thesions of a frequency, so thatsv/6x = w, — w;. Since
second equation; being arbitrary both time ranges of €q. (5hwse = 5(sniw) — £5(Nhw), replacing this identity in the
it holds in fact for anyAx andAX'. The relevant remark is|ast equation one finds\€)2 = (ApQ)? + Niwde — (enhw).
however that to time dilation corresponds length contractipgt us specify this result via the position
in the primed reference system. It is also immediate to find
the expressions of momentum and energy of a free particle. Nhw = e (5,8)
Let us consider first the following equalities obtained from
egs. (1,1) in the particular case= 1 which yields alsof¢)?—(Apc)? = (6g)*-6(sde). Atleft hand
side appear terms containing the rangege andp+§p only,
APIAXD = AtIAE® = AtOAL© = 7, at right hand side the rangésandsp only; so it is reasonable
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to expect that the last equation splits into two equations linkeanhsequence of the uncertainty; (ii) the analytical expressions

by a constant energyy, of energy and momentum have been obtained without need of
5 . 5 any hypothesis additional to egs. (1,1); (iii) the most repre-
(A&)” = (ApQ)” = &5 = (68)” — 6(£d¢). sentative formulas of special relativity are here obtained as

. . . straightforward consequences of the quantum uncertainty th-
Indeedz, agrees with both of th?”." just b_ecau;e It do(?8ugh trivial algebraic manipulations of egs. (1,1) only; (iv)
not depepd upon ryenhgr of them. Trivial manipulations Sh%s. (5,11) are typical expressions of particle behaviour of
that the first equation yields matter, eq. (5,8) involves instead the wave behavior of matter
00/ C2 £o toq, k_)ecause the frequer_myis a typical prope_rty of waves;
r——————— e=+—————, (5,9) unifying both properties into a unique equation leads to the
\r2—r3(/c) {Jr2 = r3(v/cy well known relativistic formulas; (v) uncertainty ranges only
appear in formulas coincident with that, well known, of the
(-1 9P P14 special relativity.
P p’ ¢ e’ Note in this respect that the Einstein deterministic appro-
As expected, eq. (5,6) results fulfilled even during treh excludes th_e rgndom fl_uctuation of velocity, energy and
transient. The value of the constagtis immediately found Momentum, which is a typical quantum phenomenon; here

through the following boundary condition consequence of dgstead the well known egs. (5,11) are particular cases only

p==

(5,6) of the more general egs. (5,9) taking into account the pos-
lim P = &rest _ (5,10) sibility of fluctuations, in agreement with the fact that here
v-0 v 2 ] ’ the Einstein intervals here are actually quantum uncertainty

Thene? = 2. Egs. (5,9) hold during the time transienf@nges. Just this last statement opens the way to further con-

allowing de; before and after that transient one mustqut siderations, carried out in section 7. Before exploiting the
0 andsp = 0 which yields the “standard” Einstein momenturfesults of the present section, however, the next section 6 will

and energy of the particle, which are of course concern a further t(_)pic previously irytroduced_: the possibility
of defining uncertainty sub-ranges included in larger ranges.
g2, = CPPE;, + Easp Erest = ME, (5.11) The aim is to clarify the physical meaning of such a further
way to regard the quantum uncertainty.
0 L ; . mc
Ein = = ’ Ein = = : 6 Uncertainty and operator formalism of wave mecha-
V1= (/0 V1= (/o) coocrany andop

Itis easy now to calculate the energy and momentum 9"1‘{3
& — egin @nd p — pgjn during the time transierdt as a function
of 6p/p andde/e as follows

Tc’s well known that the uncertainty principle is a conse-
quence of the operator formalism of wave mechanics. This
section aims to emphasize that the reverse path is also pos-
m m h sible: here we show how to infer the momentum and energy
\/rZ ()07 - VI=(0/92 Bk (5.12) wave gquations .starting from egs. (1,1). Thi; result is non-
e p trivial: it emphasizes that the fundamental basis of the present
theoretical approach leads also to the early wave equations
- =_. from which has been developed the modern formulation of
\/rg — 13(0/0)? V1-(/c? ot quantum mechanics. The uncertainty inhergrtdoes not
prevent to define in principle the probabilify = I1(x, t) that

These equations, which are nothing else but the unagie particle be in an arbitrary sub-range inside the total
tainty equations of the fluctuation gaps, will be commentegnge

and exploited in section 7. The chance of obtaining the egs.

(5,6), (5,10) and (5,11) could be reasonably expected; in the ox =11, X = X — Xo, X < AX, (6,1)
paper [15] it was shown that egs. (1,1) only are enough to AX

infer the following corollaries: (i) equivalence of all inertiaprovided that hold fofx the same uncertainty features/of;
reference systems in describing the physical laws, (ii) ex& no hypothesis is made ab@dx Moreoverx and x, are
tence of a maximum average displacement rate allowed lbath arbitrary and unknown likewise that ak; there is no
any particle in its delocalization range and (iii) invariance ichance of defining width or location & within Ax or dis-

all reference systems of such a maximum velocity. These @iaguishingsx with respect to any other possible sub-range.
rollaries are in fact the basic statements of special relativity.generalll is expected to depend on space coordinate and
Five further remarks are crucial in this respect: (i) the matise; yet we consider first the explicit dependencélain x

m s not introduced here as the familiar concept of everydanly, i.e. t is regarded as fixed parameter in correspondence
common experience, rather the mass is inferred itself agpavhich are examined the propertiesIdfas a function of

mc me n
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X. Regard the width ofx variable, withx current coordinate Thus these equations cannot be combined together, because
andx, constant. The couples of coordinates definlagand of their different ways to describe the particle delocalized in

Apy are instead considered fixed. Egs. (6,1) yield AXx; they must be considered separately. Eq. (6,5a) is concep-
tually analogousto eqg. (1,1); eq. (6,5b) excludes eq. (6,2) and

1 = 8_H IT = TI(x, 1). (6,2) admits the solutiodl = A" exp(i(X — X)Ap/7 V'), being

Ax OX A’ the integration constant. Rewritid@ = Aexpigdx/AX)

Let IT and 1- IT be the chances for the particle to be o¥ith ¢ = n/ Vn”, the probabilityll inferred here significantly
not withinsx and ben, andn_ the arbitrary numbers of stategliffers froml1 of eq. (6,5a) despite the same notation; the for-
consistent with the respective probabilities. Putting mer is indeed a complex function, the latter coincides instead

with eq. (6,1). Both are however definable in principle.Thus

OXAp=ni,  (AX-6X)Ap=nh, n,+n_=n, (6,3) eq. (6,5b) still retains the essential concept of delocalization

within an arbitrary uncertainty range, yet without concerning

itself the ability of regarding the particle as a corpuscle in any
SIT\2 specific point ofAx.

(1 - IDHAP? = nn+h2(—) . (6,4) The following discussion concerns the case (iii). To ac-
ox cept both egs. (6,5) together, we must acknowledge their dif-
Puttingn.n_ = " + n”, wheren’ andn” are further arbi- ferent form, i.e. their dferent way to describe the particle

trary integers, eq. (6,4) splits as follows delocalization insidéx. This dual outcome reveals however
the inadequacy of regarding the particle as mere corpuscle
delocalized somewhere in its uncertainty range, as required
by egs. (1,1). Despite the particle must be anyway randomly
moving inAx, eq. (6,5b) is incompatible with the corpuscle-
2\ 2 .o 011 2 like behaviour of eq. (6,5a). A furtherfticulty to regard to-

II°Ap® = -n"h (&) : (6,5D) gether egs. (6,5a) and (6,5b) is thhtefined by this latter is
not real, as insteald*IT = |consf® does. Yet just this property

amgr;g(r:? r:njzfi' r:)_r ae:/eer?);g;ﬂ?r:tlﬁ,? ggsplg\éi}vzt l?;’;s?gsts#ggests a possible way out from thiffidulty, i.e. supposing
separately the possible signsmfandn’”. at eq. (6,5b) requires a wave-like propagation of the parti-

. cle: soIT*II could stand for particle wave amplitude whereas
Case ()" > 0 andn” < 0. Egs. (6,5) read alséxAp = ,, . -
A in f h A h
(/) andx2Ap? = || 72 because of egs. (6.1) and (6,2)."" in fact regarded here a$A(t) without contradicting any

e ) . revious step, could define frequency and phase of the par-
Moreover multiplying b.Oth S|de_s of the ""?“er W' and both ticle wave. This idea is confirmed rewriting the exponential
sides of the former by*n/n’, with n® arbitrary integer, one

find XAp of IT astAe dividing and multiplying by an arbitrary ve-
inds locity v in order that+ixAp/% Vv’ turns into itAe/f Vr”.
SoA(t) results defined just by this requirement, i.e.

thenn,/n+n_/n = 1; also, eq. (6,3) yields the identity

2
MAp? = n’hz(g—l;([) , (6,5a)

oX’Ap =n'h, X’ Ap = n’h,

wheresx” = V[”[ox andsx® = (n¥n/n’)éx. Also, ('/n)? =

In”’| andII = |n”|/n’. These results are mutually consistent IT = Ag eXpi(Cx(X — Xo)AP + Gi(t — to)A&) /A V'],  (6,6)

for any integers at right hand sides, because are arbitrary not

only n” andn” but alsosx; indeed the new uncertainty equabeingcy andc; arbitrary codficients of the linear combination

tions have an analogous form and physical meaning. Heres@ressing the most general way to unify the space and time

egs. (6,5) do not exclude each other and are both accefitactions. Calculaté’Il/dx?> = —(cxAp)2Il to extract the

ble; yet they are both formally analogous also to the initi¢al quantityc,Ap from I1, and then by analogg?I1/ot? =

eq. (1,1), the only dierence being the size of their space un<{(c;A<)?I1 too; eliminatingIl between these equations and

certainty ranges only. In conclusion, being the sizes arbitrargting that by dimensional reasorsAp/cAg)? = v2, the

by definition, this combination of signs af andn”’” does not resultd?IT/ox? — v=20°I1/dt? = 0 confirms, whatever might

entails anything new with respect to eq. (1,1), and thus Haes the wave-like character of particle delocalization provi-

no physical interest. ded by eqg. (6,5b). A similar wave equation could not be
Case (ii)n" < 0 andn” > 0. The right hand sides of bothinferred from eq. (6,5a), according which the physical pro-

egs. (6,5) have negative sign, so neither of them can haegties of the particle are related directly to the probability

the same physical meaning of the initial eq. (1,1); they reafleq. (6,1); instead, owing to the complex formIdfresul-

1 = — || /n? andII? = —n” /n? because of eq. (6,2). Yet theting from eq. (6,5b), the physical properties of the wave are

resultll = n”’/|n’| = — '] /n? is clearly absurd, so also thisrelated toIT*TI. It is possible to eliminate this discrepancy

combination of signs has no physical interest. introducing the complex function/II in place ofII and re-
Case (iiiy)n” > 0 andn” > 0. Egs. (6,5) are now phy-writing eq. (6,5b) as a function of the former instead of the

sically different, because their ratio would enfihegative. latter; this idea agrees with that already exploited to find egs.
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(3,3). Dividing both sides bYi, eq. (6,5b) reads that the results hitherto inferred concern just the basic ideas
) through which has been formulated the early quantum me-

iha«/ﬁ _ —(p§ \/ﬁ)z’ o = Ap 67 phanics; it is enough to reggr(_j in general the wave functions

OX 2" in analogous way, e.g. as it is shown below for the energy

eigenfunction. So, write¢s = constVII andy* = constVIT*
The notation emphasizes thpt does not depend or to define the probability density of the particle within the vo-
and is not a range; being defined as solution of tiffedin- lumeAxAyAz; this is just the volume to normalizes*. Being
tial equation (6,7) only, its value is not longer related\o, the uncertainty ranges arbitrary, this probability density con-
i.e. itis an eigenvalue ofT1. This is possible becaus¢ is cerns actually the whole space allowed to the particle. The
arbitrary likeAp, which allows that the ratidp/2 V'’ beha- normalization constant is inessential for the purposes of the
ves as a well determined quantity specified juspbywhose present paper and not explicitly concerned hereafter. The re-
value and signs correspond to either component of momeuak of interest is that, after having introduced the probability
tum along thex-axis where are defined positivex and Ax. II of eq. (1,1), one finds two distinct equations concurrently

Thus eq. (6,7) reads inferred from the respective egs. (6,5)
SASS = nd
i?—a(;f(ﬁ VI, VI = VAexpGigox/AxX). (6.8) ApAX =17, (6,102)
RONTL
So VII VII* expresses the probability to find the particle Tox P VIL (6,10D)

so-mewhere il\x. Write thus Two comments about eqs. (6,10):

i VITOVII (i) eq. (6,10a) is conceptually equal to the initial eq. (1,1),
VILVIT = iET from which it trivially differs because of the size of the un-

certainty ranges and related number of states; (ii) eq. (6,10b)

The right hand side is real and yieldd1 VIT® = 6xo/Ax defines a dierential equation that calculates an eigenvalue of
= Ao, beingsxe = Aofip/2pt. As a proper value of, cer- momentum through the probability that the particle be in a
tainly exists such thatx, < Ax, then VI VIT- agrees with a given point of its allowed rangax®. _
concept of probability similar to that of the initial definitiorEd- (6,10a) does not consider explicitly the particle, but only
sx/Ax of eq. (6,1); yet this latter is replaced in the last equiés delocalization inside\x* and thus its phase space; the
tion by a constant value, which entails thus equal probabiligme holds also for the momentum, whence the positions
to find the particle in any sub-rangeo regardless of its size (2:1) and the indistinguishability of identical particles whose
and position withinAx. The physical meaning of this resulfPecific properties are disregarded “a priori”.  The unique

is emphasized integrating both sides of eq. (6,8) with regp'@;gprmat.ion availlable concerns indeed the nurr_1ber of states
to X in the Sub-rangéxo = Xg» — Xo1, Which yields n* consistent withAx* and Ap* for any delocalized parti-

cle; nothing requires considering the local dynamical varia-
Xo2 %02 bles themselves. The point of view of eq. (6,10b) is dif-
p' =+ f VI VIT*dx f(\/ﬁﬁﬁ \/ﬁ)dx (6,9) ferent: it considers explicitly the sub-range through VI
o I OX and thus, even without any hypothesis about size and posi-
tion of §x within Ax}, concerns directly the particle itself th-
The average value of momentum is thus equal to thmugh its propertiesyII VIT* and p¥; both these latter are ex-
eigenvalue expected for the steady motion of a free partiplecitly calculated solving the dlierential equation. Yet the
(Ehre-nfest’s theorem), which suggests regardirggAx as common derivation of both egs. (6,10) from the initial eq.
average probability that the particle is in the sub-rafige (1,1) shows that actually the respective ways to describe the
It is clearly convenient therefore to defidg in order that particle must be consistent and conceptually equivalent, as in
6%y = Ax through [ VIIVIT*dx = 1, i.e. the momentum effect it has been verified in section 2. This coincidence evi-
eigenvalue concerns the certainty that the particle is reallgnces the conceptual link between properties of the particles
delocalized in the total rang&x. Being this latter arbitrary, and phase space; it also clarifies why the quantum eigenva-
it allows considering in general the particle fromo to co. lues do not depend on the current values of the dynamical
The physical information provided by eq. (6,5b) is thus reariables of the particles, even though calculated solving the
ally different from that of eq. (6,5a), although being unquedifferential equation (6,10b). Initiallf was introduced in eq.
tionable the consistency of egs. (6,8) and (6,9) with the i§,1) as mere function of uncertainty ranges and sub-ranges
tial eq. (6,1) despite their fferent formulation: both comeof the phase space; thereafter, however, it has taken through
indeed from the same uncertainty equations (1,1). So ittliee steps from egs. (6,2) to (6,10) the physical meaning of
not surprising that the uncertainty is still inheresI and wave functionVII of the particle defining the momentum ei-
consistent with the eigenvaly#. It is evident at this point genvaluep®, which involves the mass of the particle. Eq.

-1

Xo1
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(6,10b) introduces the operator formalism of wave meclHaee particle having masaand momentunp®. Yet the lower
nics. The approach starting directly from eqgs. (1,1) has ttségn, also allowed as a consequence of eq. (6,11), shows the
refore more general character than the latter, which starts jusssibility of states with negative energy as well. The couple
postulating eq. (6,10b) here found instead as a corollary: tifeequations (6,10) turns into

basic reason is that eq. (6,10a) contains less information than

SASS =t
eg. (6,10b). These equations can be now regarded together ACAe® = ', (6,13a)
once having acknowledged the kind of information inferred hoVII
from egs. (1,1). On the one side egs. (6,10) introduce the o - e’ VIL. (6,13b)

wavecorpuscle dual nature of particles: eq. (6,10a) admits For this couple of equations hold the same considerati-

that the particle is somewhere ik, even though renoun- . : :
. .__...ons carried out for the corresponding egs. (6,10). This sec-
cing to know exactly where because of the delocalizatign :
. ; iI0n has shown that the operator formalism of wave mecha-
eq. (6,10b) instead regards the particle as a wave propagating . : .
o . : T nics is consequence itself of the concept of uncertainty. On
within Ax thus still delocalized but excluding in principle th?

unknown position of a material corpuscle. On the other siipe one side this result explains why the properties of quan-

egs. (6,10) confirm that properties of particles and pro erngem particles can be obtained as shown in section 2 even
gs- 15, brop P prop hout solving any wave equation. On the other side it ap-

of phase space must not be regarded separately, rather e .
are intrinsically correlated: just for this reason the results %<?a¥rs clearly that both chances of describing the guantum

X world are nothing else but mirror consequences of the dual
section 2 show that the numbers of quantum states (proper- : : ) .
. . . wavecorpuscle behavior of particles. All considerations so
ties of the phase space) coincide with the quantum numbfers . . . :

: . . . _farcarried out do not require knowing anything about the con-

that define the eigenvalues (properties of the wave funct|0n0%frned Uncertainty ranaes
the particle). Further properties ofIl = y could be easily y ranges.
riness of the ca@icientsc, andc; previously introduced in
the early expressiofl = Agexpi(cyXAp + CitAg)/h V]
allows to write the more general form for this equation

Let us introduce now some comments about egs. (5,9) and
(5,11) before exploiting egs. (5,12). The momentum and
energy equations during the quantum fluctuation transient re-
= ZAOj expli(cyjXAp; + CijtAs)) /h/n7j]. written identically as follows

J

. ) : Moett/r mae/r,
All these assertions are well known since the early birthp(t) = = ett/Tp gt) = i—/, (7,1)

of the quantum theory and do not need further consideration 1= (vert/C)? 11— (vers/C)?

here for sake of brevity; their evolution brings the theory up

to today’s formulation. It is more interesting to examine the ~ Veff = Ipv/Te, rp=rp(t), re = re(t),

same problem considering the time instead of the space g@idence that the Einstein quantities of egs. (5,11) turn into
ordinate. The steps to find the energy operator are concgéw constant expressions calculated with &eative velo-
tually identical to those so far reported; yet one regards g/ and multiplied by the respective functions of time; the
probability for the particle to be idx at the timet, i.e. II previous velocity does not longer appear explicitly into the
is defined as ratio between the time ramge= t — t, spent equations. Ifxef is regarded as a constant, theturns into
within a fixedéx and the total time rangat = t, -t spent 3 time variable without contradicting the Einstein equations,
elsewhere withilAx. Let us write thenll = ¢t/At at fixed whose deterministic character does not admit any fluctuation
coordinatex; egs. (6,2) and (6,4) read nott™ = dI1/dt and requires a steady valuewthe fluctuation has been ins-
and (1- IITAs* = n_n,7(311/dt)>. Replacing position andtead introduced by admitting the quantum meaningeofp
momentum with time and energy in eq. (6,2), egs. (6,7) readdsv. The notation of eqs. (7,1) emphasizes that energy

oI 2 ) Ae and momentum are functions of time during the transient; re-
+h—— | = —(8VI), S=x ) 6,11) gardingr, andry like time variables is reasonable, because
at 24 . p
2yn according to egs. (5,9 andép are related to, andr, du-

The second eq. (6,8) reads nowA +/expigot/At), ing the fluctuation. The physical meaningrpfandry is that
which however is disregarded here because it appe@ksiescribing the cycle of values of energy and momentum,

included in eq. (6,6); the first eq. (6,8) becomes whereasrp/rg. controls the range qf.transient values allowed
for the velocity. To be more specific, any energy fluctuation

_E AL = +&8 VIL (6,12) is charac_:terizgd by an initial tintg, wheree(ti,) = egjn that

i ot successively increases #@t) > egjp att > ti, and then de-

With the upper sign at right hand side of eq. (6,12), tleeeases down to the initial valug;, at the timets,g. Note
classical Hamiltonian written with the help of eq. (6,8) is comow that during the fluctuation transient must hold the ine-
sistent with the result® = p*2/2min the particular case of aquality r, < r.; otherwise, being arbitrary e.g. very close
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to ¢, the chance, > r, could entails(t) imaginary although Yet nothing is known about what happens within this uncer-
being realkegi,. This would actually mean that the fluctuatiomainty range. In this case, when considering the average velo-
is not allowed to occur. Thanks to the former inequality, insity of the particle, we can only acknowledge that this latter
tead,p can increase in principle even beyonahile still kee- is anyway smaller thao, whereas any information about any
pinguets < C; this can happen during the time range betwegossible event allowed to occur withihremains in fact unac-
tin andteng Without divergent or imaginary quantities becausssible; moreover egs. (5,12) do not have themselves phy-
under square root of the transient formulas appeatonly. sical meaning, as they attempt to get physical insight within
This point is easily verified noting tha{t)/p(t) = ¢?/v, as an uncertainty range. If howevét is longer tharr, then the
already emphasized in section 5. Thus it must be also taugerluminal fect is at least in principle detectable without
thate(t)? = c?p(t)? + (mA)? likewise eq. (5,11). Trivial ma- contradicting the previous reasoning, because now the fluctu-
nipulations yield ¢/c)? = (r2 - 1)/(r% —-1); soifr, > rp then ation extends throughout all the rangleand beyond; it is no
is even allowed a value. > ¢ without contradicting neither longer a local event hidden by the uncertainty. So if the ave-
egs. (5,5) nor (5,11) that describe a steady behavior of thge velocity is measured in these experimental conditions,
particle. According to egs. (5,7), < r. requires i.e. with 6l sufficiently short orét sufficiently long, the super-
luminal dfect is in principle detectable. Note in this respect
0e(t)/6p(t) > £ein/ Pein. (72) that a small value gfn in I[tJhe second eq. (5,12) correspopnds
From an intuitive point of view, the transient proceeds f@o a longer time at right hand side, so the inequality (7,2) is
an observer in the lab frame according to the following stepsore easily fulfilled for a particle not too heavy than for a he-
(i) rp =1, = 1L att =ty i.e. hold egs. (5,11) with a valueavy particle; indeed the former typically travels with values of
of verf = v < ¢ uniquely fixed by the initial motion of the v closer toc than the latter for energy reasons and also entails
particle; (ii) whenr, andr, start changing &t> tj,, the value a longerst, so it could éfectively overcome the superluminal
of vt IS still constrained byes; < € but nowv > ves ac- transition threshold fulfilling more likely the conditiai > 7.
cording to the inequality (7,2); (iii) at a later time < teng it Once fulfilling these conditions, a light particle appears trave-
could even happen that > ¢, although still beingess < ¢; ling the space rang# = v.6t at speed. > cin the laboratory
(iv) subsequently, andr, tend again to 1 when the fluctuareference system even during a moderate energy fluctuation
tion cycle ends at — tengwhile p(t) — pein ande(t) — gin, and without violating any principle of quantum special rela-
i.e.v > veff < €. Thanks to the concept of quantum fluctuaivity formulated in section 5; indeedl /st does not calculate
tion, therefore, the increase of velocity> cin the step (iii) vers but the average transient af As a clarifying compari-
does not involve directly the value ofppearing in the steadyson recall thate does not violate the energy conservation, it
formulas ofegj, andpein, as indeed it results in egs. (5,12); sts simply a temporary derogation to this latter allowed by the
the superluminal step (iii) is in principle possible. Howeveancertainty principle only; why not should something simi-
what about the chance of detecting it experimentally? Cé&r happen also for the velocity, if this latter does not cause
tainly the answer is not found via eqgs. (7,1), which descridesergent or imaginary results? Anyway, for the comparison
local gquantities at the random and unspecified tirmen the with the experiment are enough just the two equations (5,12)
other hand, since the particle traveiss related to a corres-that relate in the laboratory frame the distadté&aveled by
pondingx, random and unspecified as well. Throughout thike particle to the timét during which the transient is still in
paper it has been emphasized that information of physical pmegress; their ratio, assumed physically consistent with the
terest is obtainable through uncertainty ranges only; thus timee length of the fluctuation transient, reads
considerations just carried out, based on time and space local

coordinates, have worth only to guess and assess the possible PR chz - mc : .
behavior of the particle at any, <t < tengand better unders- — = rs_rf;””/ % l;mF”/ o _ c—.
tand the physical results inferred by consequence. Coherently ot V2 /o7

with the approach so far followed, we discard once again the

local dynamical variables and pay attention to the respective Sincev < c, thenél/st > ¢, which demonstrates a su-
uncertainty ranges only. Exploit thus egs. (5,12) to get infgrerluminal particle transfer during the quantum fluctuation
mation comparable with the experience, putibhg teng—tin  cycle. If for instancev = 0.99c thendl/6t = 1.01c. Note
anddl equal to the distance across which is measured the theat instead the speed of the photor= ¢ remains identi-
locity. In this way we can calculate amerage velocity 51/6t  cally, universally and invariantly equal to Egs. (5,5) have
whose value depends upon how the experiment is carried deaen written through time and space uncertainty ranges only.
If 6t is shorter than the time for the particle to travel the The Einstein relativity specifies the time range = t — t,
distancesl, then the superluminalfiect it is not detectable, through a current time coordinateand a lower boundary
because the fluctuation starts and ends while the particlé,is= x,V/c?; both times have a deterministic physical mea-
still traveling within 6l; this means that the fluctuation is aming. This last result could be easily guessed also here, thin-
event entirely occurring within a space delocalization randeng that evert, must depend ol/c and must be related to
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the corresponding,. Thus a valué/ > ¢ would change the tion event of not-heavy particles with two detectors located
signs ofAt andAt’ in eq. (5,5), i.e. the concept itself of sein two different laboratories. Although the concept of their
guence “before” and “after”. Apart from the fact that such r@spective “distances” from the source is illusory for the re-
conclusion would be illusory in the present theoretical franasons introduced in sections 3, it remains nevertheless still
because the uncertainty discards “a priori” the local coorditie that diferent locations, wherever they might be, provide
nates, it is also essential in this respect a further remark. dierent chances for the uncertainty of revealing or hiding
shown before, the lack of physical information abbahdt, experimentally the superluminal transition. Thus the random
andt — t, does not prevent to infer the relativistic formulasccurringnon-occurring of the superluminatect should not

of energy and momentum: yet, even specifyipg %,V/c?, be ascribed to human experimental errors but to a further pro-
the possible time-reversal during the quantum fluctuation dyabilistic weirdness of the quantum world.

cle does not fiect any result previously obtained. First of
all because actually this cycle has not been specified, i.e. gx-
changingteng With ti; does not change any step of the pre-
vious reasoning; moreover if the cycle starts with an initidhe ordinary formulation of quantum mechanics contains the
energyegin, and ends with the same final eneegy,, any dis- classical physics as a limit case but needs this latter to be for-
crimination between beginning and ending of the cycle seulated [17]. Regarding instead egs. (1,1) as expressions of a
ems unphysical. Therefore, since the possible time reveffsmdamental principle of nature, and not as mere by-products
should be a local féect concerning the quantum fluctuationf the commutation rules of operators, this ambiguous link
only, all the conclusions hitherto obtained still hold. Alsbetween classical and quantum physics is bypassed. Section 6
note thatsl/st = egin/Pein = C?/v; SO the inequality (7,2) has shown that egs. (1,1) entail as a corollary the operator for-
readsdse/sp > ol/6t as well, i.e. 5¢/61 > 6p/dt. the left malism of wave mechanics; yet the present approach appears
hand side represents the force acting on the particle due taritre general than that based on this latter. As shown in sec-
fluctuation driven energy gap along its path, the right hatidns 4 and 5, it automatically introduces since the beginning
side represents the force due to the momentum change dutiregnon-locality and non-reality into the description of quan-
the fluctuation time length. Saying that the former is great®im systems. In principle the quantum uncertainty does not
than the latter means an excess force with respect to the npeexent knowing exactly one dynamical variable only; being
momentum change having fully quantum origin, necessarihe size of all ranges arbitrary by definition, one must admit
due to nothing else but the fluctuation in the case of a freegen the chancax — 0 that means local position of a parti-
particle. It seems reasonable to assume that just this exads®xactly known. The same reasoning holds separately for
force justifies the superluminaffect. As expected, neitherthe momentum as well. Independent ranges however do not
dl nor 6t enter explicitly into the calculation of the velocityprovide physical information on the observable properties of
the ratio between two uncertainty ranges provides of couthe quantum world. These observables require abandoning
an average value during the transient, which isfiee al- separate certainties independently allowed; the physical me-
lowed in the frame of the present approach. It is interestinganing of the ranges changes when considering together two
emphasize that a givafe/sl, related to the energy growingconjugate dynamical variables, which also means discarding
along the path traveled by the particle, could be at increasthg classical realism and localism as well but gaining the ei-
6l not greater thanp/ét, related to the given fluctuation timegenvalues. Does the moon exist regardless of whether one
length; this is becausél andést are two independent quan-observes it? According to the approach sketched in section 2
tities, the former related to the experimental apparatus, thes question should be better reformulated, for instance as
latter to a feature of the fluctuation.df increases up to a lar-follows: do the properties of the moon we know exist re-
ger valueAl such thate/Al < §p/ét the superluminalffect gardless of a possible observer? Yet if nobody observes the
is not observable. Indeed this is just in line with the prewinoon, nobody could define the properties “we know”; these
ous considerations recalling that: (i) theet is detectable latter are the outcomes of some kind of measurement, i.e.
if at the end of the path of the particle withéih the fluctu- they are triggered themselves by a previous measurement in-
ation is still in progress; (ii) if instead the fluctuation cycléeraction. Repeating this reasoning back in the time the con-
ends while the particle is still traveling insidk then it beco- clusion is that before the first recording of light beam esca-
mes an event occurring within an uncertainty range and thpsg from the moon nobody would even know the existence
as such, unobservable. If the model is correct, this is whdithe moon; in which case would become physically irrele-
to expect imagining to increase the sizesbfup to Al: the vant the prospective physical properties of an object still to
same kind of observation should yield a positive outcomehié discovered. In this sense it appears understandable that the
carried out in the experimental situation (i), but certainly @roperties we know exist when observations are carried out.
negative outcome if carried out in the experimental situatibtence what we call moon is just the result of an interaction
(ii). This also suggests a possible way to verify the consideetween an observer and an objecffisiently close to the
rations just carried out: to detect the same velocity fluctugarth to be observable. As concerns the localism it is appro-

Discussion
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priate to think about an action at a spooky distance, since faged its basic principles as corollaries, in section 7 some re-
local coordinates defining the distance are actually an arkiHts particularly significant have been obtained: the invariant
trary extrapolation to the quantum world of a classical way biterval, the Lorentz transformations of time and length, the
thinking. This idea appeared since the early times of birth@fiergy and momentum equations of a free particle, the rest
guantum mechanics, when the deterministic concept of temergy of particle, the existence of antimatter and the con-
jectory was irreversibly abandoned. The operator formalistept of mass itself. The key idea underlying these results is
requires a wave function of time and space coordinates; thtése way to regard the relativistic intervals: to discard their
latter identify in turn a region of space where however hdeterministic definition, early introduced by Einstein, and re-
physical meaning the mere probability density to find the payard them as uncertainty ranges. As shown before, this sim-
ticle only. Thus the wave function denies the classical mgle conceptual step is enough to plug into the quantum world
aning of the local coordinates, e.g. position and moment@ven the special relativity. Moreover, the quantum way to
or energy and time, as a function of which is however itsetffer the relativistic equations has opened the way to admit
calculated. In this respect the present approach formulategdgppical quantum phenomenon, the energy fluctuation, able
even more indeterministic and drastic view of the reality: to account for unexpectedfects otherwise precluded by the
discard the local values since the beginning. In this sense, egsly deterministic basis of special relativity formulated by
(1,1) seem a step ahead with respect to the operator formastein.

lism; even though seemingly more agnostic, they avoid han-

dling the local variables to define and solve the appropridde Conclusion

wave equations from which are extracted the eigenvalues, {fe approach based uniquely on egs. (1,1) contains inheren-
the observables, ina p_ro!z’),ablhstlc conceptual context. H@feihe requirements of non-locality and non-reality that cha-
indeed we refuse “a priori” the physical usefulness of intr;-erize the quantum world. This kind of approach is also

ducing time and space local coordinates and, in general, oG sistent with the special relativity, whose basic statements
quantities that do no longer appear in the eigenvalues; Ygtre found as corollaries in previous paper.
even so the results are identical. This suggests that actually is
the uncertainty the fundamental concept behind the results, a Submitted on October 18, 201 Accepted on October 23, 2011
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