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On the Exact Solution Explaining the Accelerate Expanding Universe
According to General Relativity

Dmitri Rabounski

A new method of calculation is applied to the frequency of a photon according to the tra-
velled distance. It consists in solving the scalar geodesic equation (equation of energy)
of the photon, and manifests gravitation, non-holonomity, and deformation of space as
the intrinsic geometric factordfacting the photon’s frequency. The solution obtained

in the expanding space of Friedmann’s metric manifests the exponential cosmological
redshift: its magnitude increases, exponentially, with distance. This explains the acce-
lerate expansion of the Universe registered recently by the astronomers. According to
the obtained solution, the redshift reaches the ultimately high vahes — 1=2214 at

the event horizon.

During the last three years, commencing in 2009, | publisheldangeR. Then he calculated the redshift, assuming that it is
a series of research papers [1-5] wherein | went, step-byresult of the Dopplerféect on the scattering objects of the

step, in depth of the cosmological redshift problem. | taexpanding Friedmann universe.

geted an explanation of the non-linearity of the cosmological Lemdtre’'s method of deduction would remain quite good,
redshift law and, hence, the accelerate expansion of the Unieept for three drawbacks, namely —

verse. | suggested that the explanation may be found due t@) |t works only in deforming spaces, i.e. under the as-
the space-time geometry, i.e. solely with the use of the geo-  symption that the cosmological redshift is a result of

~Naturally, this is the most promising way to proceed in  (non-deforming) spaces, this method does not work. In
this problem. Consider the following: in 1927, Letma’s other words, herein is not a way to calculate how the

theory [6] already predicted the linear reshiftlaw in an expan-  frequency of a photon will change with the distance of
ding space of Friedmann’s metric (a Friedmann universe). As  the photon’s travel in the space of a static cosmological
was then shown by Lenﬂm, this theoretical result matches metric (Wthh is known to be of many k|nds)7

the linear redshift law registered in distant galakigfe ano-
malously high redshift registered in very distant la-type su-
pernovae in the last decade [7—9] manifests the non-linearity
of the redshift law. It was then interpreted as the accelerate
expansion of our Universe. Thus, once the space-time ge-
ometry has already made Leftra successful in explaining

the linear redshift, we should expect a success with the non-
linear redshift law when digging more in the theory.

Lemédtre deduced the cosmological redshift on the basis
of Einstein’s field equation. The left-hand side of the equation
manifests the space curvature, while the right-hand side des-
cribes the substance filling the space. In an expanding spac%
all objects scatter from each other with the velocity of the )
space expansion. Lefitige considered the simplest case of
deforming spaces — the space of Friedmann’s metric. Such a
space is free of gravitational fields and rotation, but is curved
due to its deformation (expansion or compression). Solving
Einstein’s equation for Friedmann’s metric, Léitna obtai-
ned the curvature radiuR of the space and the speed of its

2) In this old method, the Doppleffect does not follow
from the space (space-time) geometry but has the same
formula as that of classical physics. Only the speed of
change of the curvature radius with tirRgdue to the
expansion of space) is used as the velocity of the light
source. In other words, the Doppler formula of clas-
sical physics is assumed to be the same in an expan-
ding Friedmann universe. This is a very serious sim-
plification, because it is obvious that the Doppl&eet
should have a formula, which follows from the space
geometry (Friedmann’s metric in this case);

This method gives the linear redshift law — a straight
line z= &, which “digs” in the wallR=c. As a re-
sult, the predicted cosmological redshift is limited by
the numerical valugnax=1. However, we know do-
zens of much more redshifted galaxies and quasars. In
2011, the highest redshift registered by the astronomers
is z=10.3 (the galaxy UDFj-39546284).

So, in his theory, Leni&re calculated the cosmological
*According to the astronomical observations, spectral lines of distag{dshift in a roundabout way: by substituting, into the Dop-

galaxies and quasars are redshifted as if these objects scatter with the raglj ; :
velocity u=Hpd, which increases 72 kfsec per each megaparsec of th qi@l formula of classical phySICS, the speed of change of the

distanced to the objectHo = 728 km/secMpc = (2.3+0.3)<10-8seclis  Curvature radiug he obtained his redshift law, i.e., by sol-
known as the Hubble constant. 1 parse8.0857%10'8cm ~ 3.1x108cm.  ving Einstein’s equation for Friedmann’s metric.

Dmitri Rabounski. On the Exact Solution Explaining the Accelerate Expanding Universe According to General Relativity L1



Volume 2 PROGRESS IN PHYSICS April, 2012

In contrast to Lenidre, | suggested that the cosmologitrically charged mass-point (the Reissner-Noiridistmetric),
cal redshift law can be deduced in a more direct and pin-the rotating space of @lel's metric (a homogeneous dis-
found way. It is as follows. The generally covariant geodgibution of ideal liquid and physical vacuum), in the space of
sic equation — the four-dimensional equation of motion ofaasphere of incompressible liquid (Schwarzschild’s metric), in
particle — can be projected onto the time line and the threke space of a sphere filled with physical vacuum (de Sitter’s
dimensional spatial section of an observer. As a result, wmetric), and in the deforming space of Friedmann’s metric
obtain the scalar geodesic equation, which is the equatior(ehpty or filled with ideal liquid and physical vacuum).
energy of the particle, and the vectorial geodesic equation (theHerein | shall go into the details of just one of the ob-
three-dimensional equation of motion). The in-depth matheained solutions — that in an expanding Friedmann universe,
matical formalism of the said projection was introduced ir wherein | obtained the exponential cosmological redshift,
1944 by Zelmanov [10, 11], and is known as the theory tifus giving a theoretical explanation to the accelerate expan-
chronometric invariants Solving the scalar geodesic equasion of the Universe registered recently by the astronomers.
tion (equation of energy) of a photon, we shall obtain how The other obtained solutions shall be omitted from this
the photon’s energy and frequency change according to nesentation. The readers who are curious about them are
remoteness of the signal’s source to the observer. This is directly referred to my two recent publications [4, 5].
frequency shift layparticular forms of which we can deduce So, according to Zelmanov’s chronometrically invariant
by solving the scalar geodesic equation of a photon in tfiemalism [10, 11], any four-dimensional (generally covari-
space of any particular metric. ant) quantity is presented with its observable projections onto

The same method of deduction may be applied to ma#ise line of time and the three-dimensional spatial section of
bearing particles. By solving the scalar geodesic equation & observer. This is as well true about the generally covari-
a mass-bearing particle (“stone-like objects”), we shall obtaint geodesic equation. As Zelmanov obtained, the projected
that the relativistic mass of the object changes according(eéronometrically invariant) geodesic equations of a mass-
the remoteness to the observer in the particular space.  bearing particle, whose relativistic massisare

First, following this new way of deduction, I showedthat gy m . m A

. i ik

the redshift, observed by the astronomers, should be present;— — P Fiv + P Dikvv® =0, 1)
in a space which rotates at the velocity of light [1, 2]. In this )
case, the Hubble constant playsdderof the frequency of ~ 9(MY) i 2m (D}, + AL VF + mal,vvE =0, (2)
the rotation. The redshift due to the space rotation should be dr K ' K |
present even if the space is static (non-deforming). while the projected geodesic equations of a massless particle-

The light-speed rotation is only attributed to the so-callgdhoton, whose relativistic frequencyds have the form
isotropic region of space (home of the trajectories of light).

This can be shown by “adapting” the space metric to the iso- T % Fic+ 22 Dic'cf =0, 3
tropic space condition (equality of the metric to zero), which ' ¢ ¢
makes a replacement among the componggsnd go of d(wc')

. ) ; —wF +2w (DL + A )+ wal c"k=0. (4
the fundamental metric tensgr,s. In Minkowski's space, e T w( k+Ak') @k @)

thls replacemgnt means that the isotropic region has a NON-Haredr = \/gﬁ)dt—lvi dx is the observable time, which
diagonal metric, whergop=0, gogi =1, g11=922=933=—1. q th 'tczt' | botential? (1 d
Such isotropic metrics were studied in the 1950's by Petrq{qﬁpﬁn s on | € gr.al” aclg?)inafe[ﬁ en 'ft.w ( f_ V900) a:
see§25 and the others in hBinstein Spacefl2]. More in- € lInéar velocity; =— -7 of the rotation of space. Four

sight into this subject is provided in my third paper on iHfactors dect the particles: the gravitational inertial forég
redshift problem [3]. the angular velocityAi of the rotation of space, the deforma-
On the other hand, a regular sublight-speed observer sﬂ%l‘ Dik of space, and the Chridfel symbolsA), (expressing

observe all events according to the components of the funfi SPace non-uniformity). According to the scalar geodesic
equation (equation of energy), two factoFs,and Dy, affect

mental metric tensa, of his own (non-isotropic) space — fth il h X
home of “solid objects”. Therefore, | then continued the redli® energy of the particle. They are determined [10,11] as

arch study with the regular metrics, which are not “adapted” 1 (ow O w

to the isotropic space condition. i= N (ﬁ - ﬁ) Vgoo=1- 2’ )
In two recent papers [4, 5], | solved the scalar geode-

sic equation for mass-bearing particles and massless particles 1 dhi K 1 ohk 0 Invh 6

(photons), in the most studied particular spaces: in the spacé ~ 2~/goo Ot T 240G Ot T goodt’ ©)

of Schwarzschild’s mass-point metric, in the space of an elec- « i ) ) )
whereD = h*Dy,, while hy is the chr.inv.-metric tensor

“The property of chronometric invariance means that the quantity is in-
variant along the three-dimensional spatial section of the observer. hik = —gik + @ Uilk »

h=-g* h=6. @
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The geodesic equations of mass-bearing and masslesdVith these formulae of the componentsthyf, we obtain
particles have the same form. Only the sublight velocity the tensor of the space deformatibg in a Friedmann uni-
and the relativistic mass are used for mass-bearing partiverse. According to the definition (6), we obtain
cles, instead of the observable velocity of lightind the fre- : . .
guencyw of the photon. Therefore, they can be solved in the D= % Dy = ﬂ , Di - B (13)
same way to yield similar solutions. R 1-«r? R

My suggestion is then self-obvious. By solving the scalar The curvature radius as a function of tinke= R(t), can
geodesic equation of a mass-bearing particle in each of beefound by assuming a particular type of the space defor-
so-called cosmological metrics, we should obtain how the ahation. The trace of the tensor of the space deformation,
served (relativistic) mass of the particle changes accordinge: WDy, is by definition the speed of relative deformation
the distance from the observer in each of these universesf the volume. A volume, which is deforming freely, expands
will further refer to it as thecosmological mass-defecthe or compresses so that its volume undergoes equal relative
scalar geodesic equation of a photon should give the formalanges with time
of the frequency shift of the photon according to the travelled D = const, (14)
distance (theosmological frequency shift

: i . . which, in turn, is a world-constant of the space. This is the
Consider the space of Friedmann’s metric

primary type of space deformation: | suggest referring to it as
the constantthomotachydioncotjadeformatiori
+ r2(d92 +sin20d<,o2)], (8) Consider a constant-deformation (homotachydioncotic)
Friedmann universe. With = 3—RR according to Friedmann’s
wherein Lemére [6] deduced the linear redshift law. Herenetric, we haveg = A=constin this case. We thus arrive
R=R(t) is the curvature radius of the space, while0,+1 at the equation; dR=Adt, which isdInR= Adt Assuming
is the curvature factor. lf=-1, the three-dimensional substhe curvature radius at the moment of titret, to beag, we
pace possesses hyperbolic (open) geometwy=1, its geo- obtain
metry is flat. Ifk =+1, it has elliptic (closed) geometry. R = aye™, R=ayAe’, (15)
As is seen from the metric, such a space — a Friedmaémh therefore
universe — is free ofgpo=1) and rotation 4 = 0), but is ' ' 2 p 2l
deforming, which reveals the functiomg = gik(t). It may D=3A, Dy = % )
expand, compress, or oscillate. Such a space can be empty, or 1—«kr2
filled with a homogeneous and isotropic distribution of ideal Retyrn now to the scalar geodesic equation of a photon in
(non-viscous) liquid in common with physical vacuum-( 5 Friedmann universe, which is formula (9). Becasge= 1
field), or filled with one of the media. andgo; = 0 according to Friedmann’s metric, we hae= dt.
Friedmann’s metric is expressed through a “homogengerefore, becausehicict=c?, the scalar geodesic

ous” radial coordinate. This is the regular radial coordinatquation transforms into; % +wD1; = 0. From here we ob-
divided by the curvature radius, whose scales change ac¢ot-1.  dw _ ) ;
y 9€ aceBiyh,, 4 = Dy, dt, and, finally, the equation

ding to the deforming space. As a result, the homogeneous
radial coordinate does not change its scale with time. hiydinw = — Dy dt. (17)
The scalar geodesic equation for a photon travelling along

the radial direction in a Friedmann universe takes the form  BY substitutinghy; andDy, we obtain

(:i_w + 22 D11C101 -0, 9) | dinw = -Adt, (18)
T whereA= 5 is a world-constant of the Friedmann space.

wherec! [sec] is the solely nonzero component of the ob-  As is seen, this equation is independent of the curvature

servable “homogeneous” velocity of the photon. The squdsgtor k. Therefore, its solution will be common for the hy-

of the velocity ishy;ctct =c? [cm?/sed]. We calculate the perbolic = -1), flat (=0), and elliptic £ =+ 1) geometry

components of the chr-inv.-metric tensgr according to Fri- of the Friedmann space.

dr?

_ 242
ds = c2dt R21_Kr2

DI =A. (16)

edmann’s metric. After some algebra, we obtain This equation solves as dn=-At+ InB, whereB is
R an integration constant. So forth, we obtair= Be .. We
hiy = hy, = Rr?, hss = R?r?sirfg, (10) calculate the integration constdhifrom the conditionv = wo

1—«r2’

) *I refer to this kind of universe aBomotachydioncoti¢in Greek —
R6r* sirfe opotayvdoykwTikd). This term originates frorhomotachydioncosis-

h = detllhi|l = hi1hpohss = 1_xrz ° (11) opotaxvdLdy kwoms — volume expansion with a constant speed, fiaam
’ which is the first part obpoiog (omeos) — the samepxtnta — speed,
hil = 1—«r he2 — 1 33 1 (12) 510ykwom — volume expansion, while compression can be considered as
=" T R2r2° T R2r2sirde negative expansion.
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at the initial moment of timé=t, = 0. We haveB = wy. Thus, should reach the velocity of lighti& c) at the event horizon
we obtain the final solutiow = wy ! of the scalar geodesic(d = dma)* The law u=Hod is known due to galaxies and
equation. Expanding the world-constax: E and the dura- quasars whose scattering velocities are much lower than the

tion of the photon’s travel= CE’ we have velocity of light. Despite this fact, the empirical linear law
Rd u=Hgd is regularly assumed to be valid upto the event hori-
w=wye R¢, (19) zon. Thus, they obtaitinax= Hio =(1.3+0.2)x10°8cm. Then

they assume the linear déeient Hy of the empirical law of
t%e scattering galaxies to be the World-consmﬁtg, which
TSllows from the space geometry. As a result, they obtain
) max = Rmax and Zmax= Homeax =1 due to the linear redshift

R d) (20) law. How then to explain the dozens of very distant galaxies

@=wo (1 "Rc and quasars, whose redshift is much higher thad?

The obtained solution manifests that photons travelling in On the other hand, it is obvious that the ultimately high

a constant-deformation (homotachydiastolic) Friedmann uFﬁ-dShift Zmax €NSUINg from the space (space-time) geome-

verse which expandsAG 0) should lose energy and frequent-ry’ should be a result of the laws of relativistic physics. In

cy with each mile of the travelled distance. The energy aﬂHﬁer WOrdS,2= Zmax ;hoqld f.OHOW fm”.‘ not a straight line
: : : z=Rd-Hyd =Y which digs in the vertical “wall'u = ¢, but
frequency loss law is exponential (19) at large distancesZof Rc — ' Oc¢ ~ ¢’ '

the photon’s travel, and is linear (20) at small distances. fron|1 a;hnon-llnee;LreLatlgi)sltlc func;Uon. . i f
Accordingly, the photon’s frequency should be redshifteg. . n this case, the Hubble cons &Hﬁ remains a finear coet-
icient only in the pseudo-linear beginning of the real redshift

The magnitude of the redshift increases with the travelled ) . . .
g dIaw arc, wherein the velocities of scattering are small in com-

tance. This is @osmological redshifin other words. . . . . > ;
Let a photon have a wavelength= - being emitted by parison with the velocity of light. At velocities of scattering
a distantly located source, while its f?(oaquency registeredc(ljlcf?e to the velocity of light (close to the event

the arrival isi = <. Then we obtain the magnitude- 1-1 _ horizon), the Hubble constarit, loses the meaning of the

_ 90¢ of the redshift | di d f‘f’ . linear codficient and the world-constaAtdue to the increa-
=", of the redshift in an expanding constant-deformatiQfy, , 1, jinearity of the real redshift law.

(homotachydiastolic) Frledmann universe. Itis Such a non-linear formula has been found in the frame-
Rd work of our theory alluded to here. This is the exponen-

whered =ct [cm] is the distance to the source emitting th
photon. At small distances (and durations) of the photo
travel, the obtained solution takes the linearized form

z=eRC _1, (1) . : . : .
tial redshift law (21), which then gives the Leftra linear
which is anexponential redshift law At small distances of redshift law (22) as an approximation at small distances.
the photon travel, it takes the linearized form We now use the exponential redshift law (21) to calculate
: the ultimately high redshift,ax, Which could be conceivable
Rd . d . .
Z=~ RGC (22) inan expanding Friedmann space of the constant-deformation
¢ type. The event horizod = dnax is determined by the world-
which manifests éinear redshift law constantA= § of the space. Thus, the ultimately large cur-
If such a universe compresses<0), this éfect changes vature radius i®Ryax= 5, While the distance corresponding to
its sign, thus becoming@smological blueshift , Rmax 0N the hypersurface idyax= 7 Rnax= ”TF. Suppose now

Our linearized redshift formula (22) is the samezasi  that a photon has arrived from a source, which is located at
obtained by Lemidre [6], the “father” of the theory of anthe event horizon. According to the exponential redshift law
expanding universe. He followed, however, another way @f1), the photon’s redshift at the arrival should be
deduction which limited him only to the linear formula. He
therefore was confined to believing in the linear redshift law
alone.

The ultimately high redshiftmax, which could be registe- which is the ultimately high redshift in such a universe.
red in our Universe, is calculated by substituting the ultima- The deduced exponential increase of the redshift implies
tely large distance into the redshift law. If following Lefna the accelerate expansion of space. This “key prediction” of
tre’s theory [6], Znax should follow from the linear redshift our theory was surely registered by the astronomers in the
law z= E4 = Ad. BecauseA= £ is the world-constant of the|ast decade: the very distant la-type supernovae manifested
Friedmann space, the ultimately large curvature raBits the increasing non-linearity of the redshift law and, hence,
is determined by the ultimately high velocity of the spagfie accelerate expansion of our Universe [7-9].
expansion which is the velocity of ligRnax=C. Hence, _ o _ .
R . The limately lrge istanch, (e event ho- _Thelan sy e vt ot gl s

rizon) is regularly determined from the linear law for SCafiegaparsec. The linear daeient of the law,Ho=72+8 km/secMpc=
tering galaxies, which isi= Hod: the scattering velocity =(2.3+0.3)x10718 sec?, is known as the Hubble constant.

Bdmax
R7c _1=e"-1=2214, (23)

Zmax = €
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We therefore can conclude that the observed non-linear The obtained solution manifests tbesmological mass-
redshift law and the accelerate expansion of space have ba&fiectin a constant-deformation (homotachydiastolic) Fried-
explained in the constant-deformation (homotachydioncotiopnn universe: the more distant an object we observe in an
Friedmann universe. expanding universe is, the less should be its observed mass

The deduced exponential law points out the ultimately its real massn,. Contrarily, the more distant an object we
high redshiftzyax= 22.14 for objects located at the event hosbserve in a compressing universe, the heavier should be this
rizon. The highest redshifted objects, registered by the astbject according to observation.
nomers, are now the galaxies UDFj-39546284 10.3) and Our Universe seems to be expanding. This is due to the
UDFy-38135539 £=8.55). According to our theory, theycosmological redshift registered in the distant galaxies and
are still distantly located from the “world end”. We thereforquasars. Therefore, according to the cosmological mass-
shall expect, with years of further astronomical observatiahefect deduced here, we should expect distantly located cos-
more “high redshifted surprises” which will approach the upnic objects to be much heavier than we estimate on the basis
per limit znax=22.14. of astronomical observations. The magnitude of the expected
mass-defect should be, according to the obtained solution, in

| | | il h _téwe order of the redshift of the objects.
N analogy to massless particles-photons, we can considerry, . cosmological mass-defect complies with the cosmo-

the ;calar geod_e sic equ_ation Of. a mass-bearing partiCIe'Iolgﬁ‘\cal redshift. Both of thesefects are deduced in the same
a Friedmann universe this equation takes the form way, by solving the scalar geodesic equation for mass-bearing
m 11 and massless patrticles, respectively. Offect cannot be in
w e Duviv: =0, (24)  the absence of the other, because the geodesic equations have
. . . the same form. This is a basis of the space (space-time) ge-
Wh'(?h' alone, is non-solvable. 'I_'h|s IS beqause ma;s—bea% try, in other words. Therefore, once the astronomers re-
particles can travel a}t any sub-light V?IOC'W’ which is ther‘fﬁster the linear redshift law and its non-linearity in very dis-
fore an unknown "a“?‘b'e Of_ the equation. . . tant cosmic objects, they should also find the corresponding
This problem vanishes in a (_:onstant-d_eformatm_n l:r'egi:ismological mass-defect according to the solution presented
mann universe, by the assumption according to which M@&re. Once the cosmological mass-defect is discovered, we

sive bodies travel not arbitrarily, but are only being carri fil be able to say, surely, that our Universe is an expanding

out with the expandlng (or cpmpressmg) space. In this PaGedmann universe of the constant-deformation (homotachy-
cular case, particles travel with the velocity of space deforn}ﬂ

tion, v=R. Because %= hyVIVK, we havehyvivk=R2. Thus, astolic) type.

and withdr =dt according to Friedmann’s metric, the scalar Submitted on January 14, 201Accepted on January 15, 2012
geodesic equation of mass-bearing particles transforms into

hllcjj—rp+ c_n; DllRZZ 0,i.e. h]_]_dFm =—§ D, dt. We obtain References
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