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The Crothers solution to the Einstein vacuum field consists of a denumerable infinity of
Schwarzschild-like metrics that are non-singular everywhere except at the point mass
itself. When the point-mass distortion from the Planck vacuum (PV) theory is inserted
into the Crothers calculations, the combination yields a composite model that is phys-
ically transparent. The resulting static gravitational field using the Crothers metrics is
calculated and compared to the Newtonian gravitational field and the gravitational field
associated with the black hole model.

1 Newtonian Introduction

When a test massm′ travels in the gravitational field of a point
massm situated atr = 0, the Newtonian theory of gravity
predicts that the acceleration experienced by the test mass

d2r
dt2

= −
mG
r2

(1)

is independent of the mass m′. In this theory the relative mag-
nitudes ofm′ andm are arbitrary and lead to the following
equation for the magnitude of the gravitational force between
the two masses

m′mG
r2

=
(m′c2/r)(mc2/r)

c4/G

=

(
m′c2/r
c4/G

) (
mc2/r
c4/G

)
c4

G
(2)

when expressed in terms of the ratioc4/G.
In the PV theory [1] the forcemc2/r represents the curva-

ture distortion the massm exerts on the PV state (and hence
on spacetime), and the ratio

c4

G
=

m∗c2

r∗
(3)

represents the maximum such curvature force, wherem∗ and
r∗ are the mass and Compton radius of the Planck particles
constituting the PV. The corresponding relative curvature
force is represented by the n-ratio

nr ≡
mc2/r
c4/G

=
mc2/r

m∗c2/r∗
(4)

which is a direct measure of the curvature distortion exerted
on spacetime and the PV by the point mass. Since the mini-
mum distortion is 0 (m = 0 or r → ∞) and the maximum is
1, the n-ratio is physically restricted to the range 0≤ nr ≤ 1
as are the equations of general relativity [2].

The important fiducial point atnrs = 0.5 is the Schwarz-
schild radiusrs = 2mr∗/m∗, where

rnr =
mc2

m∗c2/r∗
= rsnrs = 0.5rs . (5)

The acceleration (1) can now be expressed exclusively in
terms of the relative curvature distortionnr :

a(nr ) = −
d2r
dt2

=
mc4

r2c4/G
=

c2

r
mc2/r

m∗c2/r∗

=
c2

r
nr =

c2

rnr
n2

r =
2c2

rs
n2

r (6)

whose normalized grapha/(2c2/rs) is plotted in the first
figure.

2 Affine Connection

The conundrum posed by equation (1), that the acceleration
of the test particle is independent of its massm′, is the prin-
ciple motivation behind the general theory of relativity [3, p.
4]; an important ramification of which is that, in a free-falling
local reference frame, the acceleration vanishes as in equation
(7). That result leads to the following development. Given the
two coordinate systemsxμ = xμ(ξν) andξμ = ξμ(xν) and the
differential equation

d2ξμ

dτ2
= 0 (7)

Fig. 1: The graph plots the normalized Newtonian acceleration
a/(2c2/rs) as a function ofnr (0 ≤ nr ≤ 1).
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applying the chain law to the differentials gives

d2ξμ

dτ2
=
∂ξμ

∂xν
d2xν

dτ2
+
∂2ξμ

∂xα∂xν
dxα

dτ
dxν

dτ
= 0 . (8)

Then using

xα(ξμ(xβ)) = xα =⇒
∂xβ

∂ξμ
∂ξμ

∂xν
= δ
β
ν (9)

to eliminate the coefficient ofd2xν/dτ2 in (8) leads to

d2xβ

dτ2
+
∂xβ

∂ξμ
∂2ξμ

∂xα∂xν
dxα

dτ
dxν

dτ
= 0 . (10)

Rearranging indices in (10) finally yields

d2xμ

dτ2
+ Γ

μ
νρ

dxν

dτ
dxρ

dτ
=

duμ

dτ
+ Γ

μ
νρu
νuρ = 0 (11)

whereuμ = dxμ/dτ is a typical component of the test-mass
4-velocity and

Γ
μ
νρ ≡

∂xμ

∂ξα
∂2ξα

∂xν∂xρ
(12)

is theaffine connection. The affine connection vanishes when
there is no gravitational distortion; so for the point massm,
it should be solely a function of the curvature distortionnr

given by (4).
The affine connection can be related to the the metric co-

efficientsgαβ via [3, p. 7]

Γ
μ
νρ =

gμα

2

[
∂gρα

∂xν
+
∂gνα
∂xρ
−
∂gνρ

∂xα

]

(13)

which, for a metric with no cross terms (gαβ = 0 for α , β),
reduces to

2Γ1
νρ

g11
=
∂gρ1

∂xν
+
∂gν1
∂xρ
−
∂gνρ

∂x1
(14)

with μ = 1 for example.
Since only radial effects are of interest in the present pa-

per, only thex0 andx1 components of the spherical polar co-
ordinate system (xμ) = (x0, x1, x2, x3) = (ct, r, θ, φ) are re-
quired. Then the affine connection in (11) for theμ = 1 com-
ponent reduces to

du1

dτ
= −Γ1

νρu
νuρ

= −
[
Γ1

00(u
0)2 + 2Γ1

01u
0u1 + Γ1

11(u
1)2

]
(15)

which under static conditions (u1 = dr/dτ = 0 for the test
mass) produces

du1

dτ
= −Γ1

00(u
0)2 . (16)

In the spherical system withdθ = dφ = 0, the metric
becomes

ds2 = c2dτ2 = g00 c2dt2 + g11 dr2 (17)

whereg00 andg11 are functions of the coordinate radiusx1 =

r. Under these conditions the only non-zero affine connec-
tions from (14) are:

Γ0
10 = Γ0

01 =
g00

2
∂g00

∂x1
(18)

Γ1
00 =

−g11

2
∂g00

∂x1
and Γ1

11 =
g11

2
∂g11

∂x1
. (19)

Using (17), the velocityu0 can be calculated from

cdτ = g1/2
00 dx0


1+

(
g11

g00

) (
dr/dt

c

)2

1/2

(20)

which for static conditions (dr/dt = 0) leads to

u0 =
dx0

dτ
=

c

g1/2
00

. (21)

Inserting (21) into (16) gives

du1

dτ
= −

c2Γ1
00

g00
=

c2

g00

(
g11

2
∂g00

∂r

)

(22)

along with its covariant twin

du1

dτ
= g11

du1

dτ

=
g11c2

g00

(
g11

2
∂g00

∂r

)

=
c2

g00

(
∂g00

2∂r

)

. (23)

Then combining (22) and (23) leads to the static acceler-
ation ∣∣∣∣∣∣

du1

dτ
du1

dτ

∣∣∣∣∣∣

1/2

=
(
−g11

)1/2
(

c2

g00

) (
∂g00

2∂r

)

. (24)

3 Static Acceleration

The metric coefficientsg00 andg11 for a point massmat r = 0
are given by (A6) and (A7) in the Appendix. After some
straightforward manipulations, (24) leads to the (normalized)
static gravitational acceleration (0≤ nr ≤ 1)

an(nr )
2c2/rs

=

∣∣∣∣∣∣
(du1/dτ)(du1/dτ)

(2c2/rs)2

∣∣∣∣∣∣

1/2

=
n2

r

(1− rs/Rn)1/2(1+ 2nnn
r )2/n

(25)

=
n2

r

[(1 + 2nnn
r )1/n − 2nr ]1/2(1+ 2nnn

r )3/2n
(26)

=
n2

r

[(1 + 1/2nnn
r )1/n − 1]1/2(2nr )1/2(1+ 2nnn

r )3/2n
(27)
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Fig. 2: The graph plotsan/(2c2/rs) as a function ofnr for the indices
n = 1,2,3,4,5,8,10,20,40 from bottom-to-top of the graph. The
curve that intersects (1,1) is the normalized Newtonian acceleration
from (6). Then = 3 curve is the original Schwarzschild result [5]
(0 ≤ nr ≤ 1).

Fig. 3: The graph is a lin-log plot ofan/(2c2/rs) as a function of
nr for the indicesn = 1,2,3,4,5,8,10,20,40 from bottom-to-top of
the graph (0≤ nr ≤ 1).

in terms of the relative curvature forcenr , all of which vanish
for nr = 0. Formally, the acceleration in the denominator on
the left of (25)

Δv

Δt
=

c
(rs − rs/2)/c

=
2c2

rs
(28)

is the acceleration of a test mass starting from rest atr = rs

(nr = 0.5) and accelerating to the speed of lightc in its fall to
rs/2 (nr = 1) in the time interval (rs − rs/2)/c.

The limits of (26) and (27) asn→ ∞ are easily seen to be

a∞(nr )
2c2/rs

=

{
n2

r /(1− 2nr )1/2 , 0 ≤ nr ≤ 0.5
∞ , 0.5 ≤ nr ≤ 1

(29)

wherenr < 0.5 andnr > 0.5 are used in (26) and (27) respec-
tively. Equations (26) and (27) are plotted in Figures 2 and
3 for various indicesn, all plots of which are continuous in
the entire range 0≤ nr ≤ 1. The curve that runs through the

point (1,1) in Figure 2 is the Newtonian result from (6). It is
clear from Figure 3 that the acceleration diverges in the range
0.5 ≤ nr ≤ 1 for the limit n→ ∞. In the range 0≤ nr ≤ 0.5
the acceleration is given by the upper equation in (29) — this
result is identical with the static black-hole acceleration [3, p.
43].

4 Summary and Comments

The nature of the vacuum state provides a force constraint
(nr ≤ 1) on any theory of gravity, whether it’s the Newto-
nian theory or the general theory of relativity [2]. This effect
manifests itself rather markedly in the equation for the Kerr-
Newman black-hole areaA for a charged spinning mass [4]:

A =
4πG
c4
×

[
2m2G−Q2 + 2(m4G2−c2J2−m2Q2G)1/2

]
(30)

whereQ andJ are the charge and angular momentum of the
massm. Using the relation in (3) andG = e2

∗/m
2
∗ [1], it is

straightforward to transform (30) into the following equation

A

4πr2
∗
= 2

(
m
m∗

)2

−

(
Q
e∗

)2

+

+2




(
m
m∗

)4

−

(
J

r∗m∗c

)2

−

(
m
m∗

)2 (
Q
e∗

)2

1/2 (31)

where all of the parameters (e∗, m∗, r∗, exceptc of course)
in the denominators of the terms are PV parameters; and all
of the terms are properly normalized to the PV state, the area
A by the area 4πr2

∗ , the angular momentumJ by the angular
momentumr∗m∗c, and so forth.

The “dogleg” in Figure (4) at the Schwarzschild radiusrs

(nr = 0.5) and the pseudo-singularity in the black-hole met-
ric at rs are features of the Einstein differential geometry ap-
proach to relativistic gravity — how realistic these features
are remains to be seen. At this point in time, though, as-
trophysical measurements have not yet reached thenr = 0.5
point (see below) where the dogleg and the black-hole re-
sults can be experimentally checked, but that point appears
to be rapidly approaching. Whatever future measurements
might show, however, the present calculations indicate that
the point-mass-PV interaction that leads tonr may point to
the physical mechanism that underlies gravity phenomenol-
ogy.

The evidence for black holes with allm/r ratios appears
to be growing [3, Ch. 6]; so it is important to see if the present
calculations can explain the experimental black-hole picture
that is prevalent in today’s astrophysics. The salient feature of
a black hole is the event horizon [3, pp. 2, 152], that pseudo-
surface atr = rs at which strange things are supposed to hap-
pen. A white dwarf of mass 9×1032gm and radius 3×108cm
exerts a curvature force on the PV equal to 2.7 × 1045dyne,
while a neutron star of mass 3×1033gm and radius 1×106cm
exerts a force of 2.7 × 1048dyne [2]. Dividing these forces
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Fig. 4: The graph plotsRn/r as a function ofnr for the indicesn =

1,2,3,4,6,8,10,20,40. The straight line is then = 1 curve (0≤
nr ≤ 1).

by the 1.21× 1049dyne force in the denominator of (4) leads
to the n-ratiosnr = 0.0002 andnr = 0.2 at the surface of
the white dwarf and neutron star respectively. The surfaces
of these two objects are real physical surfaces — thus they
cannot be black holes.

On the other hand, SgrA∗ [3, p. 156] is thought to be a
supermassive black-hole with a mass of about 4.2× 106 solar
masses and a radius confined tor < 22×1011 [cm], leading to
the SgrA∗ n-rationr > 0.28. For an n-ratio of 0.28, however,
the plots in Figures 2–4 show that the behavior of spacetime
and the PV is smooth. To reach thenr = 0.5 value and the
dogleg, the SgrA∗ radius would have to be about 12× 1011

[cm], a result not significantly out of line with the measure-
ments.

Finally, it should be noted that the black-hole formalism
is the result of substitutingRn = r in the metric (A1) of the
Appendix. Unfortunately, sinceRn/r > 1 signifies a response
of the vacuum to the perturbationnr at the coordinate radius
r, the effect of this substitution is to eliminate that response.
This is tantamount to settingnr = 0 in the second-to-last ex-
pression of (A3).

Appendix: Crothers Vacuum Metrics

The general solution to the Einstein vacuum field [5] [6] for
a point massm at r = 0 consists of the infinite collection
(n = 1,2,3, ∙ ∙ ∙) of Schwarzschild-like metrics that arenon-
singularfor all r > 0:

ds2 = (1− rs/Rn) c2dt2 −
(r/Rn)2n−2 dr2

1− rs/Rn
−

−R2
n(dθ2 + sin2 θdφ2)

(A1)

where

rs = 2
mG
c2

= 2
mc2

m∗c2/r∗
= 2rnr (A2)

Rn = (rn + rn
s)

1/n = r(1+ 2nnn
r )1/n = rs

(1+ 2nnn
r )1/n

2nr
(A3)

and wherer is the coordinate radius from the point mass to
the field point of interest andrs is the Schwarzschild radius.
The ratioRn/r as a function ofnr is plotted in Figure 4 for
various indicesn. The n-ratios 0, 0.5, and 1 correspond to the
r valuesr → ∞, rs, andrs/2 respectively.

All the metrics in (A1) forn ≥ 2 reduce to

ds2 = (1− 2nr ) c2dt2 −
dr2

1− 2nr
− r2(dθ2 + sin2 θdφ2) (A4)

for nr � 1.
It is clear from the expressions in (A3) that the require-

ment of asymptotic flatness [3, p.55] is fulfilled for all finite
n. On the other hand, the proper radiusRn from the point
mass atr = 0 to the coordinate radiusr is not entirely calcu-
lable:

Rn(r) =
∫ r

0
(−g11)

1/2dr

=

∫ rs/2

0
(?)dr +

∫ r

rs/2
(−g11)

1/2dr (A5)

due to the failure of the general theory in the region 0< r <
rs/2 [2].

The metric coefficients of interest in the text fordθ =

dφ = 0 are
g00 = (1− rs/Rn) (A6)

g11 = −
(r/Rn)2n−2

1− rs/Rn
=

1
g11
. (A7)

From (A3)
∂Rn

∂r
=

1
(1+ 2nnn

r )(1−1/n)
(A8)

and from (A8)
∂g00

∂r
=

rs

R2
n

∂Rn

∂r
. (A9)
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