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The Crothers solution to the Einstein vacuum field consists of a denumerable infinity of
Schwarzschild-like metrics that are non-singular everywhere except at the point mass
itself. When the point-mass distortion from the Planck vacuum (PV) theory is inserted
into the Crothers calculations, the combination yields a composite model that is phys-
ically transparent. The resulting static gravitational field using the Crothers metrics is
calculated and compared to the Newtonian gravitational field and the gravitational field
associated with the black hole model.

1 Newtonian Introduction The acceleration (1) can now be expressed exclusively in
When a test mas¥ travels in the gravitational field of a point€'Ms ©f the relative curvature distortiop
massm situated ar = 0, the Newtonian theory of gravity &r mcd @ me/r
predicts that the acceleration experienced by the test mass an) = -— = ==
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equation for the magnitude of the gravitational force betwgé/rtu]ose normalized graph/(2¢/rs) is plotted in the first

the two masses 'gure.
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/ The conundrum posed by equation (1), that the acceleration
_(mc?/r\ (mcé/r C_4 ) of the test particle is independent of its mass is the prin-
\ #/G )\ /G ciple motivation behind the general theory of relativity [3, p.

4]; an important ramification of which is that, in a free-falling

local reference frame, the acceleration vanishes as in equation

g) That result leads to the following development. Given the
wo coordinate systemg' = x*(£) and&* = &(x") and the

dlﬂerennal equation

C4 rleCZ dZé'_-y

G~ . ®) Gz =0 ()

represents the maximum such curvature force, wherand

r. are the mass and Compton radius of the Planck particle -

constituting the PV. The corresponding relative curvature

force is represented by the n-ratio

when expressed in terms of the ratfgG.

In the PV theory [1] the forcend/r represents the curva-
ture distortion the mass exerts on the PV state (and henc
on spacetime), and the ratio

75—
o r;c?/r _ mc,i/r 4
/G m.c/r.

which is a direct measure of the curvature distortion exerte(
on spacetime and the PV by the point mass. Since the min
mum distortion is Oy = 0 orr — o) and the maximum is
1, the n-ratio is physically restricted to the range @, < 1
as are the equations of general relativity [2]. . x
The important fiducial point at,, = 0.5 is the Schwarz- -

schild radiug ¢ = 2mr,/m,, where

tos

Fig. 1: The graph plots the normalized Newtonian acceleration

m
me = m =TIy, = 0.5rs. (®)  a/(2¢?/ry) as a function ofy, (0 < n, < 1).
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applying the chain law to the filerentials gives wheregoo andga; are functions of the coordinate radiks=
5 - 5 , r. Under these conditions the only non-zefftiree connec-
d% _ogrdxt ot dxrdx (8) tions from (14) are:
drz2  ox’ dr?2  oxeox’ dr dr ’
Then using o, =19 = 9% 9900 (18)
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to eliminate the coicient ofd®x’/dz? in (8) leads to Using (17), the velocity® can be calculated from

B 9 e dxdx

+— — == -0. (10) 21t/2
dr2 o 9xedx dr dr cdr = gg{fdxo[u (%)(—dré dt) (20)
Rearranging indices in (10) finally yields
) which for static conditionsdr/dt = 0) leads to
_dx/‘+ ”%d—w—d—w+l“”uvu"—0 (11)
d2  "dr dr  dr B © = @ _c 21)
wherew = dx/dr is a typical component of the test-mass dr gééz
4-velocity and . . .
. OX 5P 12) Inserting (21) into (16) gives
= — 12
ve @ v
oe* oxow du* R
is theaffine connectionThe dfine connection vanishes when V= T = — |5 (22)
. o B : dr goo  goo\ 2 Or
there is no gravitational distortion; so for the point mags
it should be solely a function of the curvature distortign along with its covariant twin
given by (4).
The dfine connection can be related to the the metric co- du _  du
efficientsg, via [3, p. 7] dr 91
pa 4 o o . 2 11
r =L | Do %9va _ 09 (13) _ 9u® (9" dgoo) _ € (9goo) (23)
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which, for a metric with no cross termg®¢ = 0 for a # f), _ Then combining (22) and (23) leads to the static acceler-
reduces to ation 172
zrip g1 gy Ogyp dut dy _ 11\1/2 2 9900 o4
F =t e (14) war| ) llaar) @
g Xy ox  oxt T Ot goo

with u = 1 for example. _ )

Since only radial fiects are of interest in the present pa3 Static Acceleration
per, only thex? andx! components of the spherical polar coThe metric cofficientsggo andg** for a point massnatr = 0
ordinate systemx’) = (X0, x},x%,x3) = (ctr,6,¢) are re- are given by (A6) and (A7) in the Appendix. After some
quired. Then theffine connection in (11) for the = 1 com-  straightforward manipulations, (24) leads to the (normalized)

ponent reduces to static gravitational acceleration €n, < 1)
C R an(ny) _ | (dut/d)(duy/dlr) 2
dr 2¢2/rs (2¢/rs)?
== [réo(uo)z + 2lgu’ut + ril(ul)z] (15) 2
_ r
which under static conditionsf = dr/dr = 0 for the test T (1 - re/Ry)Y2(1 + 20nM)2/n (25)
mass) produces )
du' o 16 - ”' (26)
g = ToolU)” (16) [(L+ 270" — 2n,JV2(1 + 2
In the spherical system witb9 = d¢ = 0, the metric n
becomes = [(a+ 1/2nnp)1/n _ 1]1/2(2nr)1/2(1 + 2nnp)3/2n (27)
ds = Pdr? = goo?dt® + g11 dr? (17)
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point (1,1) in Figure 2 is the Newtonian result from (6). It is
clear from Figure 3 that the acceleration diverges in the range
0.5 < n; < 1 for the limitn — oo. In the range & n; < 0.5

> the acceleration is given by the upper equation in (29) — this
// result is identical with the static black-hole acceleration [3, p.
43].

4 Summary and Comments

The nature of the vacuum state provides a force constraint
— (nr < 1) on any theory of gravity, whether it's the Newto-
5 nian theory or the general theory of relativity [2]. Thifezt
‘ manifests itself rather markedly in the equation for the Kerr-
Newman black-hole are&for a charged spinning mass [4]:
Fig. 2: The graph plota,/(2c?/rs) as a function ofy, for the indices
n=1234,5,810 20 40 from bottom-to-top of the graph. The A= 4nG [ZmZG—Qz + 2(m4G2—02J2—mZQZG)1/2] (30)
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curve that intersects (1,1) is the normalized Newtonian acceleration ct

from (6). Then = 3 curve is the original Schwarzschild result [5]
©O<n <1). whereQ andJ are the charge and angular momentum of the

massm. Using the relation in (3) an® = €/n? [1], it is
straightforward to transform (30) into the following equation

2 2
4rr2 m. €,

m\4 3\ m\2 Q 211/2

RERHIS]
where all of the parameters.( m,, r., exceptc of course)
in the denominators of the terms are PV parameters; and all
of the terms are properly normalized to the PV state, the area
A by the area #r?, the angular momenturm by the angular
momentunr.m.c, and so forth.

The “dogleg” in Figure (4) at the Schwarzschild radiys
(ny = 0.5) and the pseudo-singularity in the black-hole met-
ric atrg are features of the Einsteinftéirential geometry ap-
proach to relativistic gravity — how realistic these features
are remains to be seen. At this point in time, though, as-
in terms of the relative curvature forog, all of which vanish trophysical measurements have not yet reachedtke 0.5
for n, = 0. Formally, the acceleration in the denominator quoint (see below) where the dogleg and the black-hole re-

+2

1

Fig. 3: The graph is a lin-log plot ddi,/(2¢?/rs) as a function of
n, for the indicesn = 1, 2,3, 4,5, 8,10, 20, 40 from bottom-to-top of
the graph (6 n; < 1).

the left of (25) sults can be experimentally checked, but that point appears
to be rapidly approaching. Whatever future measurements
Av - c - E (28) might show, however, the present calculations indicate that
At (rs—rs/2)/Cc 15 the point-mass-PV interaction that leadsnfomay point to
the physical mechanism that underlies gravity phenomenol-

is the acceleration of a test mass starting from rest=atrs

(e = 0'5_) anq accel_eratl_ng to the speed of lighin its fall to The evidence for black holes with ati/r ratios appears
rs/2 (ny = 1) in the time intervalfs — rs/2)/c. tob ina 3. Ch. 61 soiitis tant t i£h t
The limits of (26) and (27) as — oo are easily seen to be 0 be growing [3, Ch. ] SO ILIS Important 1o see It e presen

calculations can explain the experimental black-hole picture

a.(ny) m/(1-2n)Y2 ,0<n <05 that is prevalent in today’s astrophysics. The salient feature of

22/r. { ' P (29)  a black hole is the event horizon [3, pp. 2, 152], that pseudo-

surface at = rg at which strange things are supposed to hap-

wheren, < 0.5 andn, > 0.5 are used in (26) and (27) respegen. A white dwarf of mass:910%’gm and radius & 10°cm

tively. Equations (26) and (27) are plotted in Figures 2 amderts a curvature force on the PV equal t@ 2 10*°dyne,

3 for various indices, all plots of which are continuous inwhile a neutron star of mass@0*3gm and radius ¥ 10fcm

the entire range & n, < 1. The curve that runs through theexerts a force of Z x 10*8dyne [2]. Dividing these forces

ogy.

00 ,06<n <1
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Fig. 4: The graph plot®,/r as a function ofy, for the indicesn =
1,2,3,4,6,8,10,20,40. The straight line is tha = 1 curve (0<

and wherer is the coordinate radius from the point mass to
the field point of interest and, is the Schwarzschild radius.
The ratioR,/r as a function of, is plotted in Figure 4 for
various indices. The n-ratios 0, 0.5, and 1 correspond to the
r valuesr — oo, rg, andrg/2 respectively.

All the metrics in (A1) forn > 2 reduce to

dr?
1-2n

ds = (1-2n,) c?dt? - —r%(d6? + sir’ 6dg?) (A4)
forn, < 1.

It is clear from the expressions in (A3) that the require-
ment of asymptotic flatness [3, p.55] is fulfilled for all finite
n. On the other hand, the proper radils from the point
mass at = 0 to the coordinate radiusis not entirely calcu-

n <1).

by the 121 x 10*°dyne force in the denominator of (4) leads
to the n-ratiosn, = 0.0002 andn, = 0.2 at the surface of
the white dwarf and neutron star respectively. The surfaces

lable:

R0 = [ ' (Cgua)¥2dr

- fo " oxr+

,
(—911)1/2dr
rs/2

(A5)

of these two objects are real physical surfaces — thus thfje to the failure of the general theory in the regior © <

cannot be black holes.
On the other hand, SgtA[3, p. 156] is thought to be a

rs/2
The metric cofficients of interest in the text fodd =

[2].

supermassive black-hole with a mass of aboRt410° solar dg = 0 are

masses and a radius confined to 22x 10! [cm], leading to

the SgrA n-ration, > 0.28. For an n-ratio of 0.28, however,
the plots in Figures 2—-4 show that the behavior of spacetime
and the PV is smooth. To reach the = 0.5 value and the
dogleg, the SgrAradius would have to be about %210
[cm], a result not significantly out of line with the measure-
ments.

Finally, it should be noted that the black-hole formalisrgnd from (A8)

is the result of substituting, = r in the metric (A1) of the
Appendix. Unfortunately, sinc,/r > 1 signifies a response
of the vacuum to the perturbation at the coordinate radius
r, the dfect of this substitution is to eliminate that response.
This is tantamount to setting = 0 in the second-to-last ex-
pression of (A3).

1.
Appendix: Crothers Vacuum Metrics

The general solution to the Einstein vacuum field [5] [6] for?
a point massn atr = 0 consists of the infinite collection
(n =1,2,3,--) of Schwarzschild-like metrics that aren- 5
singularfor all r > 0:

d< = (1-rs/Ry) c2dt? — M_

1-rs/Ry (A1)
—RE(d¢? + sir? 6d¢?) 5
where 2
mG m 6.
rs = = = —m*cz/r* = 2rn; (A2)
1 2nnn 1/n
Ry = (" + 10 = (14 20 = r L2 )

2n;
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goo = (1 —1s/Ry) (A6)
_ (/R 1
T TITR, T g (A7)
From (A3)
R _ L1 ___
o (L+ 2np)a-um (A8)
dgoo _ I's Ry
o TR (A9)
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