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Dr. Cai Wen defined in his 1983 paper: — the distance formutaden a pointx and
a one-dimensional (1D) intervala, b>; — and the dependence function which gives
the degree of dependence of a point with respect to a pairciided D-intervals.
His paper inspired us to generalize the Extension Set todiw@nsions, i.e. in plane
of real numbersR?> where one has a rectangle (instead of a segment of line)-dete
mined by two arbitrary point&(as, a;) and B(by, b,). And similarly in R®, where one
has a prism determined by two arbitrary poidi&;, a,, az) and B(by, by, bs). We ge-
ometrically define the linear and non-linear distance betwe point and the2 and
3D-extension set and the dependent function for a nest of teloded 2 and D-
extension sets. Linearly and non-linearly attraction ppiinciples towards the optimal
point are presented as well. The same procedure can be tedrcossidering, instead
of a rectangle, any boundedzsurface and similarly any bounde®3olid, and any
bounded § — D)-body inR". These generalizations are very important since the Ex-
tension Set is generalized from one-dimension to 2, 3 andedémensions, therefore
more classes of applications will result in consequence.

1 Introduction a X 5 X b

Extension Theory (or Extenics) was developed by Professor g
Cai Wen in 1983 by publishing a paper called Extension Set Fig. 1:

and Non-Compatible Problems. Its goal is to solve contradic

tory problems and also nonconventional, nontraditioneh&l % a ath b X

in many fields. Extenics is at the confluence of three dis: — - >

plines: philosophy, mathematics, and engineering. A con-
tradictory problem is converted by a transformation funrcti
into a non-contradictory one. The functions of transfoiiprat

are: extension, decomposmon, combination, etc. EXEEI’]&. its minimum range value b_za) depends on the interval

has many practical applications in Management, Decisiq@ e mitiesa andb, and it occurs when the poirg coincides
Making, Strategic Planning, Methodology, Data Mining, Atz the midpoint of the intervaX, i.e. X = b The closer

tificial Inte]liggnce, Information Systems,. Control Thgor ig theinterior point % to the midpoint of the intervata, b,
et<|:.tExter|1|cs |stbased on matter-elemeffginelement, and y,, negatively larger is (xo, X).
relation-element. In Fig. 1, for interior pointx, betweera and%b, the ex-
tension distance (X, X) = a—Xg is thenegative length of the
et h ati b § kind of closed brown line segmeriteft side]. Whereas for interior poingy
et's use the notatiora, b> for any kind of closed, open, or a+h ; ; oy

half-closed intervald, b], (a, b), (a, b], [a, b). Prof. Cai Wen between-,  andb, the extension distange(x,. X) = X - b

X ' /1 ' - is the negative length of the blue line segménght side].
has defined the extension distance between a pgiand a gjmjjarly, the further isexterior point % with respect to the

Fig. 2:

2 Extension Distancein 1D-space

real intervalX = <a, b>, by closest extremity of the intervata, b> to it (i.e. to either or
a+b| b-a b), the positively larger i (Xo, X).
p (X0, X) = ‘XO T | T T @) In Fig. 2, for exterior poinixy<a, the extension distance

p (X0, X) = a— X is the positive length of the brown line
segment [left side]. Whereas for exterior poigt-b, the ex-
0 (RRR) > (~00, +0). 2) tension distance (X, X) = X — b is thepositive length of the
blue line segmerjtight side].
Algebraically studying this extension distance, we find
that actually the range of it is: 3 Principleof the Extension 1D-Distance

where in general:

Geometrically studying this extension distance, we find the
3) following principle that Prof. Cai Wen has used in 1983

p (X0, X) € [_b;za,m
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defining it: y
. . . . A 1,42, N bll 2,
o (X0, X) is the geometric distance between the point : faz:) (bu:)
and the closest extremity point of the interval b > to

it (going in the direction that connectg with the op-
timal point), distance taken as negative i «<a, b>,

and as positive if xc <a, b >.

This principle is very important in order to generalize th
extension distance from 0L to 2D (two-dimensional M(ay,b,) B(by,b,)
real space), B (three-dimensional real space), andD

(n-dimensional .real space). . . Fig. 3: Pis an interior point to the rectangheM BN and the optimal
The extremity points of intervak a b> are the poina point O is in the center of symmetry of the rectangle.

andb, which are also the boundary (frontier) of the interval
<a, b>. 4

>
>

y
L Alaya,) N(b,a)
4 Dependent Function in 1D-Space

Prof. Cai Wen defined in 1983 i0lthe Dependent Function
K(y). If one considers two interval&, and X, that have no
common end point, andy c X, then:

X
PG X) (@) M(a,b.) Bilbubs)

KO = X0 -p . %) ,

SinceK(y) was constructed in[1 in terms of the exten- gig 4. pis an exterior point to the rectanghMBN and the optimal

sion distance (., .), we simply generalize it to higher dimennoint O is in the center of symmetry of the rectangle.
sions by replacing (., .) with the generalized in a higher di-

mension. . . . S
This step can be done in the following way: considering

P’ as the intersection point between the IP® and the fron-
tier of the rectangle, and taken among the intersectiontpoin
Instead of considering a segment of liAB representing the that pointP’ which is the closest t®; this case is entirely
interval <a, b> in 1R, we consider a rectangl@MBN rep- consistent with Dr. Cai’s approach in the sense that when re-
resenting all points of its surface iD2 Similarly as for D- ducing from a ®-space problem to twoll-space problems,
space, the rectangle ib2space may be closed (i.e. all pointene exactly gets his result.
lying on its frontier belong to it), open (i.e. no point lyirog The Extension P-Distance, forP # O, will be:
its frontier belong to it), or partially closed (i.e. someims _ . _
lying on its frontier belong to it, while other points lyingo p (0, yo), AMBN) = d (pointP, rectangleAMBN) =
its frontier do not belong to it). =|PQ - POl = £|PP, (5)
Let's consider two arbitrary poin#§(ay, &) andB(by, by). i) which is equal to the negative length of the red seg-
Through the point& andB one draws parallels to the axes of ment|PP'| in Fig. 3, whenP is interior to the rectangle
the Cartesian systeiY and one thus one forms a rectangle 5 BN;
AMBNwhose one of the diagonals is jusB.
Let’s note byO the midpoint of the diagona\B, but O

5 Extension Distancein 2D-Space

i) or equal to zero, wher lies on the frontier of the rect-

: . . . angleAMBN(i.e. on edge&M, MB, BN, or NA) since
is also the center of symmetry (intersection of the diaggnal p cgoincides v(\;ithP" g )

of the rectangl@MBN. Then one computes the distance be- . ”

tween a poinP (Xo, yo) and the rectanglaMBN. One can do iil) or equal to the positive length of the blue segmi@#®|

that following the same principle as Dr. Cai Wen did: in Fig.4, whenP is exterior t_o the r_ectangIAMBN,
where|PQ| means the classicall2distance between

— compute the distance ir2(two dimensions) between the pointP andO, and similarly forlP’O| and|PP’|.
t_he p?th andltr’ledgenteG |Of .the rectangle (intersec- The Extension B-Distance, for the optimal point, i.e.
tion of rectangle’s diagonals); P = O, will be
— next compute the distance between the pBiand the 3 . 3
closest point (let’s note it by’) to it on the frontier (the © (O, AMBN) = d(pointO, rectangleAMBN) =
rectangle’s four edges) of the rectangls1BN. = —maxd (pointO, pointM on the frontier ofAMBN). (6)
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The last step is to devise the Dependent FunctiorDn 2where

space similarly as Dr. Cai’s defined the dependent function i
1D. The midpoint (or center of symmetr) has the coordi-

nates

O(a1+b1 a2+b2). (7)

2 7 2
Let's compute the

PO - PO (8)

In this case, we extend the li@P to intersect the frontier
of the rectanglAMBN. P’ is closer toP thanP”, therefore
we conside’. The equation of the lin@0O, that of course

passes through the poirfgxo, yo) andO(al%bl, angz) ,is:

a+by

2. — Yo
y—y0=w(X—X0)-
2

—Xo
Since thex-coordinate of poinP’ is a; becausé’ lies on
the rectangle’s edg&M, one gets thg-coordinate of poinP’
by a simple substitution ofp = a; into the above equality:

9)

a+ by -2y

a; + b1 - 2X() (10)

Yy =Yo t (a1 — %) .

ThereforeP’ has the coordinates
az+by—2yo

B0 (o xo>]. (1)

i [Xp’ =ay, yp = Yo+

The distance

d(PQ = IPQ = \/(xO -2 '01)2 ¥ (yo -

while the distance

d(P’,Q) =IP'Ql =

_ a1+b12 az+b22_
= ap — 2 +\yp — > =

a2+b2

)2, (12)

2 2
- \/(algbl) + (yp, - az;bz) . (13)
Also, the distance
d(PP) = IPP| = \(as - %)% + (v —yo)2.  (14)
Whence the Extensiori2distance formula
p (%o, yo), AMBN] =
= d[P (X0, y0), A(a1, a2) MB(by, b2) N] =
=|PQ - IP'Q| (15)
(-2 oo 2 (2 - (16)
= +|PP| a7
= (a1 - %0)? + (e - 0. (18)

56

a+ by -2y

ai + bl - 2Xo (19)

Yy = Yo+ (a1 — Xo) -

6 Properties
As for 1D-distance, the following properties hold D2

6.1 Propertyl

a) X y) € Int(AMBN) if p[(x,y), AMBN] < 0, where
Int (AMBN) means interior o0AMBN;

b) (x,y) € Fr(AMBN) if p[(X, ), AMBN] = 0, where
Fr (AMBN) means frontier oAMBN,;

c) (% y) € AMBNIf p[(% 1), AMBN] > 0.

6.2 Property 2

Let AgMpBoNo andAMBN be two rectangles whose sides are
parallel to the axes of the Cartesian system of coordinates,
such that they have no common end points, AgidoByNgy C
AMBN. We assume they have the same optimal points
O; = Oy = Olocated in the center of symmetry of the two
rectangles. Then for any pointx,() c R?> one has

P [(X.y), AoMoBoNo] > p[(x, y), AMBN]. See Fig. 5.

A
y

Alaya,) N(bya,)

M(ayb,) B(byb,) X

>
>

Fig. 5: Two included rectangles with the same optimal podits=
O, = Olocated in their common center of symmetry.

7 Dependent 2D-Function

Let AoMoBoNy andAMBN be two rectangles whose sides are
parallel to the axes of the Cartesian system of coordinates,
such that they have no common end points, AgidoByNgy C
AMBN.

The DependentR-Function formula is:

pl(xy), AMBN|

PTx.5). AMBN] — p[(x ). AMoBoNg] © 20

Kap(xy) =

7.1 Property 3

Again, similarly to the Dependent Function irDispace,
one has:

a) If (x,y) € Int(AoMoBoNp), thenKop(y,) > 1;
b) If (X, y) € Fr (AOMOBONO), thenKop(y,) = 1;
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c) If (x,y) € Int(AMBN — AgMoBoNo), ty § .|
then 0< Kop(xy) < 1; AN :. s
d) If (x,y) € Fr (AMBN), thenKop(x,) = 0; N S )
e) If (x,y) ¢ AMBN, thenK2D(x, y) < 0. , NPT
7 f—_“ﬂ/ g " T : ':;; -

8 General Casein 2D-Space ( L T
One can replace the rectangles by any finite surfaces, bdur / oo~ T
by closed curves in2-space, and one can consider any o|
timal pointO (not necessarily the symmetry center). Agail : X,
we assume the optimal points are the same for this nest of two
surfaces. See Fig. 6. Fig. 7: The optimal point O as an attraction point for all atheints

P1, Py, ..., Pgin the universe of discourd?.
A

y
10 Remark 1

Another possible way, for computing the distance between

the pointP and the closest poir®®’ to it on the frontier (the

rectangle’s four edges) of the rectan@l® BN, would be by

drawing a perpendicular (or a geodesic) frBranto the clos-

est rectangle’s edge, and denoting®ythe intersection be-

tween the perpendicular (geodesic) and the rectangleis.edg
» And similarly if one has an arbitrary s& in the 2Dspace,

bounded by a closed urve. One computes
Fig. 6: Two included arbitrary bounded surfaces with thesapti-

mal points situated in their common center of symmetry. d(P,S) =Inf |PQ (21)
QeS

9 Linear Attraction Point Principle as in the classical mathematics.

We introduce the Attraction Point Principle, which is thé fo 11 Extension Distance in 3D-Space

lowing: _ _ _ _ We further generalize to3-space the Extension Set and the
LetS be a given setin the universe of discoutseand Dependent Function. Assume we have two poiaisd, as)
the optimal poinO ¢ S. Then each poinP (x1, Xz, ..., %) and fy, by, bs) in D. Drawing through endB parallel planes
from the universe of discourse tends towards, or is attdactg ine planes’ axesX(Y, XZ Y2) in the Cartesian systeY Z
py, the optimal p_omlO, because the optimal poi@ is an e get a prismAM;M>M3BNiN,N; (with eight vertices)
ideal of each point. That's why one computes the extefnose one of the transversal diagonals is just the line segme
sion (1-D)-distance between the poiftand the seS as Ap. | et's note byO the midpoint of the transverse diagonal
P (%1, %, ..., q), S] on the direction determined by the poin\g byt 0 is also the center of symmetry of the prism.
P and the optimal poin®, or on the linePQ, i.e.: Therefore, from the line segmeB in 1D-space, to
a) p[(x1, X2, ..., %), S] is the negative distance betweea rectangleAMBN in 2D-space, and now to a prism
P and the set frontier, iP is inside the se¥; AM;M2M3BN;NzN3 in 3D-space. Similarly to D- and D-

b) p[(X1, X, - - -, %), S] = 0, if P lies on the frontier of the space, the prism may be closed (i.e. all points lying on its
setS; frontier belong to it), open (i.e. no point lying on its froert

¢) p[(X1, %o, . ... %), S] is the positive distance between Pelong to it), or partially closed (i.e. some points lyingit:
and the set frontier. iP is outside the set. frontier belong to it, while other points lying on its froati

It is a king of convergengattraction of each point to do not belong to it).
9 geng P Then one computes the distance between a point

wards the optimal point. There are classes of examples wher o, ) and the prismAM; MyMsBN;NoNs. One can do

;uch attraction point pr.|nC|pIe works. If thls prmmp_legeoq that following the same principle as Dr. Cai's:
in all cases, then there is no need to take into considerdion

center of symmetry of the s& since for example if we have — compute the distance if38(two dimensions) between
a 2D piece which has heterogeneous material density, then the pointP and the cented of the prism (intersection
its center of weight (barycenter) isftiirent from the center of prism's transverse diagonals);

of symmetry. Let’s see below such example in tliegpace: — next compute the distance between the pBiand the
Fig. 7. closest point (let's note it b#?’) to it on the frontier of
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the prismAM; M,M3BN; N2 N3 (the prism’s lateral sur- AM;M>M3BN;N2N3. We assume they have the same opti-
face); considering as the intersection point betweemal pointsO; = O, = O located in the center of symmetry of
the line OP and the frontier of the prism, and takerthe two prisms.

among the intersection points that poiitwhich is the Then for any pointX, y,2) € R® one has

closest toP; this case is entirely consistent with Dr.

Cai's approach in the sense that when reducing from £ [(% ¥, 2), AoMo1Mo2Mo3BoNo1No2N] o3 >

3D-space to D-space one gets exactly Dr. Cai’s result; o [(% v, 2AM;MaM3BNyNoN3] .

— the Extension B-Distanced(P, AM;M;M3BN; N2N3)
is d(P, AM;M>M3BN;N2N3) = |PO| - |P’O| = +|PP/, i .
where|PO| means the classical distance ib-3pace 14 The Dependent 3D-Function

between the poir® andO, and similarly forP’O] and The last step is to devise the Dependent Functiobirspace
IPP'|. See Fig.8. similarly to Dr. Cai’'s definition of the dependent function

in 1D-space. Let the prism@oM01M02M0380N01N02N03 and
A AM;M>M3BN;N2N3 be two prisms whose faces are paral-
z i lel to the axes of the Cartesian system of coordinXt¥g,
: such that they have no common end points in such a way that

o AgMo1Mo2Mo3BgNg1Ng2Ngzs € AM; MoM3BN; NoN3. We as-

/ sume they have the same optimal poi@ts= O, = O located
in the center of symmetry of these two prisms.
L~ The Dependent 3D-Function formula is:

Kapgeya) = (£ [(% .2, AMIMaM3BNiNoNg] ) x
B X (P[(X, Y,2), AMiMaM3BN;N2N3, | -

-1
— p[(% . 2). AoMo1MozMo3BNo1NoaNog] ) (22)

15 Property 6
y Again, similarly to the Dependent Function ilDiand D-
spaces, one has:
a) If (x,y,2) € Int(AoMo1Mo2MozBoNo1No2No3),
thenKsp(X,y,2) > 1;
Fig. 8: Extension B-Distance between a point and a prism, where b) If (X, y, 2) € Fr (AgMo1Mo2Mg3BoNo1No2No3),

\ 4

O is the optimal point coinciding with the center of symmetry. thenKap (X, y,2) = 1;
c) If (X, y,2 € Int(AM;MaM3BN;N2N3—
12 Property 4 —AoMo1Mo2Mo3BoNo1No2No3),

then O< Kap(X,y,2) < 1;

d) If (X, Yy, Z) e Fr (AMleMgBN]_NQNg),
thenKsp(X,y,2) = 0;

a) (X, Yy, Z) € Int (AMleMgBNlNQNg)
if p[(X,y,2), AM{M>M3BN1N>N3] < O,
where Int AM; M>M3BN;N2N3) means interior
of AM; MaM3BN;NoN: e) If (x,y,2) ¢ AM;MaM3BN;NoNg,
thenK 0.
b) (X 1.2) € Fr (AMiMaM3BNiN2Ns) enkan(x.4.2) <
if p[(X,y,2), AMiM2M3BN1N2Ng] = 0
means frontier oAM; M>M3BN; NoNs;
C) (X,y,2 ¢ AMiM>M3BN;N2N3
if p[(X,y,2), AM{M>M3BN;N>N3] > 0.

16 General Casein 3D-Space

One can replace the prisms by any fini2-Bodies, bounded

by closed surfaces, and one considers any optimal f@int
(not necessarily the centers of surfaces’ symmetry). Again
we assume the optimal points are the same for this nest of
13 Property 5 two 3D-bodies.

Let AgMo1Mo2Mo3BoNo1Ng2Nos and AM;M>M3BN;N>N3

be two prisms whose sides are parallel to the axes of thé Remark 2

Cartesian system of coordinates, such that they have Amother possible way, for computing the distance between
common end points, andyMo1Mo2Mo3BoNo1No2Ngz < the pointP and the closest poiit to it on the frontier (lateral
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surface) of the prismAM;M>M3BN;N2N3 is by drawing a

perpendicular (or a geodesic) frdPonto the closest prism’s
face, and denoting by’ the intersection between the perper

dicular (geodesic) and the prism’s face.
And similarly if one has an arbitrary finite bodyin the

3D-space, bounded by surfaces. One computes as in clas:

mathematics:

d(P, B) =Inf |PB. (23)
QeB

18 Linear Attraction Point Principlein 3D-Space

A

p1f

z

Fig. 9: Linear Attraction Point Principle for any bounded-Body.

19 Non-Linear Attraction Point Principle in 3D-Space,
and in (n—-D)-Space

There might be spaces where the attraction phenomena up(P, S) =
dergo not linearly by upon some specific non-linear curves.

Let's see below such example for poilRswhose trajecto-

Fig. 10: Non-Linear Attraction Point Principle for any baled -
body.

two pointsP andP’; Fr (S) means the frontier of s&; and
|OP| means the line segment between the podtand P/
(the extremity point® andP’ included), therefor® € |OP'|
means thaP lies on the lineOF’, in between the point®
andP’.

For P coinciding with O, one defined the distance be-
tween the optimal poird and the se® as the negatively max-
imum distance (to be in concordance with tH2-definition).

And the Extension Non-Linean{D)-Distance between
pointP and ses, is:

—d.(P, P), P+#0, Pec(OP)
P’ eFr(S)

d.(P, P), P+0, PP ec(OP) (25)
P/ eFr(S)

—maxd(P,M), P=0

P’ €Fr (S), Mec(0)

ries of attraction towards the optimal point follow some non

linear -curves.

20 (n-D)-Space

In general, in a universe of discoungde let’s have anirf—D)-
setS and a pointP. Then the Extension Lineamn{D)-
Distance between poift and sefS, is:

—d(P, P), P+0, Pe|OP|
P’ eFr(S)
o(P.S) = dg/lz;g’), P+0, PPe|OPF (24)
—maxd(P,M), P=0

P’ eFr (S)

where means the extension distance as measured along the
curvec; O is the optimal point (or non-linearly attraction
point); the points are attracting by the optimal point on tra
jectories described by an injective curgedc(P, P’) means
the non-linearly (1 —D)-distance between two poing and
P’, or the arc length of the curve ¢ between the poihend
P’; Fr (S) means the frontier of s&; andc (OP’) means the
curve segment between the poi@sand P’ (the extremity
pointsO andP’ included), therefor® € (OP’) means thaP
lies on the curve in between the point® andP’.

For P coinciding with O, one defined the distance be-
tween the optimal poin© and the seS as the negatively

where O is the optimal point (or linearly attraction point);maximum curvilinear distance (to be in concordance with the
d(P, P") means the classical linearlyg £ D)-distance between 1D-definition).
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In general, in a universe of discourse let's have a nest
of two (n-D)-sets,S; c S,, with no common end points,
and a poinP. Then the Extension Linear Dependemt-0D)-
Function referring to the poirR (xg, Xo, . . ., Xq) iS:

p(P.S)
p(P.S2)-p(P.S1)’

where is the previous extension linear—D)-distance be-
tween the poinP and the (—D)-setS,.

And the Extension Non-Linear Dependent{D)-Func-
tion referring to poinP (x, Xz, . . ., X,) along the curve is:

pc(P.S2)
pC(P’ SZ) - pC(P’ Sl) ’

where is the previous extension non-linear-D)-distance
between the poir® and the (G —D)-setS; along the curve.

Knp(P) = (26)

Knp(P) = (27)

21 Remark 3

Particular cases of curvescould be interesting to studying,
for example if c are parabolas, or have elliptic forms, osarc
of circle, etc. Especially considering the geodesics wdnald

for many practical applications. Tremendous number of ap-

plications of Extenics could follow in all domains where at-
traction points would exist; these attraction points cdaddn
physics (for example, the earth center is an attractiontpoin
economics (attraction towards a specific product), sogiplo
(for example attraction towards a specific life style), etc.

22 Conclusion

In this paper we introduced tHenear and Non-Linear At-
traction Point Principle which is the following:

Let S be an arbitrary set in the universe of discoutse
of any dimension, and the optimal poi@te S. Then each
pointP (X1, Xz, .. ., Xn), N > 1, from the universe of discourse
(linearly or non-linearly) tends towards, or is attractgdthe
optimal pointO, because the optimal poift is an ideal of

of pointP (xg, Xo, . . .

1) p[(X1, X2, ..., %n), S] is the negative distance between
P and the set frontier, iP is inside the se$;

2) p[(x1, X2, ..., Xn), S] = 0, if Plies on the frontier of the
setS;
3) p[(X1, X2, ..., Xn), S]is the positive distance betweén

and the set frontier, iP is outside the set.
We got the following properties:

4) ltis obvious from the above definition of the extension
(n—D)-distance between a poiftin the universe of
discourse and the extensian<{D)-setS that:

i) PointP(xg, X, ..., %) € Int(S)
if p[(X1, X2, ... %), S] < 0;

i) PointP (X1, X2, ..., %) € Fr(S)
If P [(Xl, XZ’ e Xn)’ S] = 01

iii) PointP(x1,x2,...,%X) &S
if o[(X1,X2,...%),S] > 0.

5) LetS; andS; be two extension sets, in the universe
of discourseU, such that they have no common end
points, andS; c S,. We assume they have the same
optimal pointsO1 = O2 = O located in their center

of symmetry. Then for any poim (xz, Xz, ..., X,) € U
one has:
p (X, X2, .. %), S2] = p[(X1, X2, ... %n), Sa] . (28)

Then we proceed to the generalization of the dependent

function from ID-space to Linear (or Non-Linearh ¢D)-
space Dependent Function, using the previous notations.

TheLinear (or Non-Linea) Dependen{n —D)-Function
, Xp) along the curve, is:

%) = (pel(¥1. X, .. X0). S2] ) X

x (pel(X. Y. ). Sl = pel (1. You . x0). S ) (29)

Knp(X1, X2, . .

each point. . .
. . . . (wherec may be a curve or even a line) which has the follow-
It is a king of convergengattraction of each point to-. s
|%property.

wards the optimal point. There are classes of examples a

applications where such attraction point principle maylgpp 6) If point P (x, Xz, ..., Xn) € Int(S1),
I this principle is good in all cases, then there is no need  thenKnp(xy, X, ..., Xn) > 1;

to take into consideration the center of symmetry of the set7) If point P (x4, X2, . . ., %) € Fr(S1),

S, since for example if we have aX2factory piece which thenKnp(X1, X2, ..., Xa) = 1;

has heteroge_neous material density, then its center ohiveig 8) If point P (x1, %, ..., %) € Int (S2 - S1),

(barycenter) is dierent from the center of symmetry. thenK,p(x1, X2 Xy € (0, 1);
Then we generalized in the track of Cai Wen’s idea _ e T

to extend D-set to an extensiom(D)-set, and thus de- 9 IfPOINtP (X1, Xz, ..., xy) € Int(S2),

fined theLinear (or Non-Linea) Extension(n —D)-Distance thenKnp(x1, X, - -, %) = 0

between a poinP (xg, X, ..., %) and the f—D)-setS as  10) If pointP (x1, X2, ..., X)) € Int(S2),

p[(X1, X2, ..., Xn), S] on the linear (or non-linear) direction thenKnp(Xg, X, . .., Xn) < 0.

determined by the poir® and the optimal poin® (the line

PO, or respectively the curviline@0) in the following way: Submitted on July 15, 2012Accepted on July 18, 2012
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