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The crucial role of a Lorentz scalar Lagrangian density whdanension is [~4]
(h=c=1) in a construction of a quantum theory is explained. It$uont that quan-
tum functions used in this kind of Lagrangian density havefinite dimension. It is
explained why quantum functions that have the dimensiot] [cannot describe parti-
cles that carry electric charge. Itis shown that the 4-cuméa quantum particle should
satisfy further requirements. It follows that the pion ahe\W* must be composite par-
ticles. This outcome is inconsistent with the electrowdwdoty. It is also argued that
the 125GeV particle found recently by two LHC collaborations is not ayg boson
but att meson.

1 Introduction following expansion of the phase,

The fundamental role of mathematics in the structure of the- 0 )

oretical physics is regarded as an indisputable elemetieof t p(a) = Z aa', 1)
theory [1]. This principle is utilized here. The analysiies i=0

on spec!al relatlvny_ and derives constrglnts on thel smtmﬂact.the inequalitya, # 0 holds for two or more values of the
of equations of motion of quantum particles. The discussi :

examines the dimensions of wave functions and explains w Y The requirement stating that all terms of a physical ex-

spin-0 and spin-1 elementary qu_antgm particles cann_oy _CargFession must have the same dimension and the form of the
an electric charge. This conclusion is relevant to the itglid .

fthe elect Kth dtoth . f t r (lght hand side of (1) prove thatmust be dimensionless. By
otthe electroweak theory and o tne meaning of recent LSy o5y e token, in a relativistic quantum thearynust also
concerning the existence of a particle having a mass of

a Lorentz scalar. (The possibility of using a pseudoscala
GeV[2,3]. factor is not discussed here because this work aims to ex-
Units where =c=1 are used in this work. Hence, onlyymine the parity conserving electromagnetic interactagizs
one dimension is required and it is the length, denoted by [quantum mechanical particle.) It is shown below how these
For example, mass, energy and momentum have the dimgis requirements impose dramatic constraints on acceptabl
sion L], etc. Greek indices run from 0 to 3 and the diagongliantum mechanical equations of motion of a charged parti-

metric used i, = (1, -1, -1, -1). The symbo}, denotes the ¢je.
partial diferentiation with respect t&* and an upper dotde-  Eyidently, a pure number satisfies the two requirements.
notes a_dfe_rentiation with respect to time. The summatiofgwever, a pure number is inadequate for our purpose, be-
convention is used for Greek indices. cause the phase varies with the particle’s energy and momen-
The second section shows that quantum functions hav@i@. The standard method of constructing a quantum theory
definite dimension. This property is used in the third sectigs to use the Plank’s constamtwhich has the dimension of
where it is proved that Klein-Gordon (KG) fields and those action, and to define the phase as the action divided by
of the W= particle have no self-consistent Hamiltonian. Thi In the units used heré,= 1 and the action is dimension-
final section contains a discussion of the significance of tlegs. Thus, a relativistic quantum theory satisfies the avo r
results obtained in this work. guirements presented above if it is derived from a Lagrangia
density.£ that is a Lorentz scalar having the dimensiar.

Indeed, in this case, the action
2 The dimensions of quantum fields

In this section some fundamental properties of quantum the- S= f£d4X” (2)

ory are used for deriving the dimensions of quantum fields. A

massive quantum mechanical particle is described by a wave dimensionless Lorentz scalar. It is shown below how
functiony(x*). The phase(«) is an important factor of(x*) the dimensionl[~*] of £ defines the dimension of quantum
because it determines the form of an interference pattem. fields.

the present discussion it is enough to demand that the phaséeing aware of these requirements, let us find the dimen-
is an analytic function which can be expanded in a power s#en of the quantum functions used for a description of three
ries that contains more than one term. It means that in #ieds of quantum particles. The Dirac Lagrangian density of
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a free spin-12 particle is [4, see p. 54] e. Finally, the outgoing particles depart. Relativistiaszl
- sical mechanics and classical electrodynamics describe
L= yly'io, - mly. ®3) the motion.
Here the operator has the dimensitny and the Dirac wave Evidently, in this kind of experiment, energy and momen-
functiony has the dimensiorL[%/2]. tum of the initial and the final states are well defined quan-
The Klein-Gordon Lagrangian density of a free spin4ities and their final state values abide by the law of energy-
particle is [4, see p. 38] momentum conservation. It means that the specific values of
. , . the energy-momentum of the final state agree with the corre-
L=¢,4.9" - ey . (4 sponding quantities of the initial state. Now, the initintiahe

final states are connected by processes that are described by
. : : RQM and QFT. In particular, the process of new patrticle cre-
functiong has the dimensiorif2]. < .
, A o . ation is described only by QFT. Hence, RQM and QFT must
The electrically charged spin\” particle is described “tell” the final state what are the precise initial values loé t

by a 4-vector functionW,. W, and the electromagnetic
4-potentialA, are linear combinations of related quantitie nergy—mome_ntum. Itfollows that RQM as well as QFT_must
use field functions that have a self-consistent Hamiltonian

[5, see p.518]. Evidently, they have the same dimension. The HamiltoniarH and the de Broglie relations between

Hence, like the KG field, the dimension ¥4, is [L™Y]. ficle’ ; dit " old
The dimension of each of these fields is used in the da particie’s energy-momentum and Its wave properties yie

cussions presented in the rest of this work. {ﬁe fundamental equation of quantum mechanics

. . , O
3 Consequences of the dimensions of quantum fields IE = Hy. (5)

Before analyzing the consequences of the dimension of quan-—rhe Hamiltonian densityH is derived from the Lagran-

tum fields and of the associated wave functions, it is requir&an density by the following well known Legendre transfor-
to realize the Hamiltonian’s role in quantum theories. The

following lines explain why the Hamiltonian is an indispens ation - 0L

able element of Relativistic Quantum Mechanics (RQM) and H = Z 'piwi -L

of Quantum Field Theory (QFT). This status of the Hamilto- . . ' .

nian is required for the analysis presented below. where the indexruns on all functlons. . .
The significance of hierarchical relationships that hold be Th_e standard }‘orm of reprgsentmg_the Interaction OT an

tween physical theories is discussed in the literatureds, Electric cha_rge with external fields relies on the following

pp.1-6] and [7, see pp. 85, 86]. The foundation of the argltrjgnsformatlon [8, see p.10]

ment can be described as follows. Physical theories take the 0 .0 ,

form of differential equations. These equations can be exam- “ioa g~ eAX). 7

ined in appropriate limits. Now RQM is a limit of QFT' The Now let us examine the electromagnetic interaction of the

former holds for cases where the number of particles cantRe

regarded as a constant of the motion. Therefore, if examme(jee kinds of quantum mechanical particle described in the

in this limit, OFT must agree with ROM. By the same tOker;?rewous section. This is done by adding an interaction term

. - . . - Lint to the Lagrangian density. As explained above, this term
the classical limit of RQM must agree with classical physmé'”t grang v P o
: ; must be a Lorentz scalar whose dimensionlis®*]. The
This matter has been recognized by the founders of quantum . d i f the el - .
mechanics who have proven that the classical limit of quarre1-qUIre orm o ¢ c electromagnetic llnteracfuon term rep-
resents the interaction of charged particles with elecagm

tum mecr_lamcs agrees_wnh classical p.hy.S'CS' The fOIIOW'Hgtic fieldsandthe interaction of electromagnetic fields with
example illustrates the importance of this issue. Let usexa

. . X . . charged particles. This term is written as follows [9, se&5p.
ine an inelastic scattering event. The chronological oader gedp [ e

this process is as follows: Line = — A (8)

a. First, two particles move in external electromagnefigre i is the 4-current of the quantum particle aydis the
fields. Relativistic classical mechanics and ClaSSiCéﬂectromagnetic 4-potential.
electrodynamics describe the motion. Charge conservation requires thjasatisfies the continu-
b. The two particles are very close to each other. RQl equation
describes the process. =0 9)

c. The two particles collide and interact. New particles The 0-component of the 4-vectgt represents density. It
are created. The process is described by QFT. follows that its dimension is[ 3] and the electromagnetic in-

d. Particle creation ends but particles are still very closeraction (8) is a term of the Lagrangian density. For thés re
to one another. RQM describes the state. son, it is a Lorentz scalar whose dimensionlis*]. Hence,

Here the operator has the dimensianj] and the KG wave

: (6)
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a quantum particle can carry electric charge provided a self Two results are directly obtained from the foregoing dis-
consistent 4-current can be defined for it. Furthermorelfa seussion. The Fock space, which denotes the occupation num-
consistent definition of density is also required for a carcst ber of particles in appropriate states, is based on fungtién
tion the Hilbert space where density is used for defining ttse associated Hilbert space. Hence, in the case of K@ or

inner product. function there are very serious problems with the construc-
It is well known that a self-consistent 4-current can ken of a Fock space because these functions have no Hilbert
defined for a Dirac particle [8, see pp. 8,9,23,24] space. Therefore, one also wonders what is the meaning of
— the creation and the annihilation operators of QFT.
" = epyry. (10) Another result refers to the 4-current. Thus, both the KG

This exoression has broperties that are consistent equations and thé/ function have a 4-current that satisfies
IS exp ! properti : Y [11, see p.12] and [12, see p. 199]. However, the contra-

general requirements of a quantum theoryj In particular, t ictions derived above prove the following important princ
4-current is related to a construction of a Hilbert spacaeHe S . . o
le: The continuity relatior(9) is just a necessary condition

N i )
the d_ensnyp_ v is the_ 0 compone_nt of the 4-current (10). AFor an acceptable 4-current. This condition is noff&ient
required, this quantity has the dimensidrij]. Thus, elec- :

L . ) : : and one must also confirm that a theory that uses a 4-current
tromagnetic interactions of charged spif2-Dirac particles

are properly described by the Dirac equation candidate is contradiction free.
Let us turn to the case of a charged KGWF particle. The contradictions which are described above hold for the

+ 1 1 1 -
Here the appropriate wave function has the dimensiof[[ KG and thew=* particles provided that these particles are ele

- ) . mentary pointlike quantum mechanical objects which are de-
This dimension proves that it cannot be used for constrgctin y P q )

) X 2 ~"scribed by a function of the form(x*). Hence,in order to
a self-con3|§tent Hilbert space. Indeedgieienote afunptlon avoid contradictions with the existence of charged piond an
of such a Hilbert space and létbe an operator operating o

this space. Then, the expectation valu®a$ r.wi’ one must demand that the piqns and th?ame compos-
' ' ite particles.Several aspects of this conclusion are discussed
i 3 in the next section. It should also be noted that the resiilts o
<0>= f¢ Ogd . (11) this section are consistent with Dirac’s lifelong objentim

the KG equation [13].
Now, < O > andO have the same dimension. Therefore

¢ must have the dimensiom.{*2]. This requirement is not 4 Discussion

satisfied by the function of a KG particle or byW" because an examination of textbooks provides a simple argument sup-
here the dimension i [*]. Hence, there is no Hilbert spacgorting the main conclusion of this work. Indeed, quantum
for a KG or W particle. For this reason, there is also ngyechanics is known for more than 80 years. It turns out that
Hamiltonian for these functions, because a Hamiltoniamis e Hamiltonian problem of the hydrogen atom of a Dirac par-
operator operating on a Hilbert space. Analogous results gf|e is discussed adequately in relevant textbooks [8,B]
presented for the specific case of the KG equation [10].  contrast, in spite of the long duration of quantum mechanics
The dimensionl[~*] of the KG and thé\* functions also a5 4 valid theory, an appropriate discussion of the Hamilto-
yields another very serious mathematical problem. Indeedpjan solution of a hydrogen-like atom of a relativistic elec
order to have a dimensioh %], their Lagrangian density hasyrically charged integral spin particle is not presentetbit-

terms that aréilinearin derivatives with respect to the spaceygoks. Note that the operator on the left hand side of the KG
time coordinates. Thus, the KG Lagrangian density is (4) agguation [14, see p. 886]

theWH Lagrangian density takes the following form [11, see . .
p.307] 0y +ieA)g" (0, +ieA)p = —mPe (13)

1 is notrelated to a Hamiltonian because (13) is a Lorentz scalar
Lw = —Z(ava = 0, W,, + gW, x W,)2. (12) whereas the Hamiltonian is a 0-component of a 4-vector.

An analogous situation holds for the Hilbert and the Fock

As is well known, an operation of the Legendre trangpaces that are created from functions on which the Hamil-

formation (6) on a Lagrangian density thatiiisear in time  tonian operates. Thus, in the case of a Dirac particle, the

derivatives yields an expression thatiislependentf time  densityyfy is the 0-component of the conserved 4-current

derivatives. Thus, the Dirac Lagrangian density (3) yielgg0). This expression is suitable for a definition of the iditb
a Hamiltonian that is free of time derivatives. On the Othgbace inner product of any pair of integrab|e functions

hand, the Hamiltonian density of the KG av# particles de-

pends on time derivatives. Indeed, using (5) , one infers tha (lp?,.pj) = f‘/’?‘/’i d3x. (14)

for these particles, the Hamiltonian density depends gaiadr

ically on the Hamiltonian. Hence, there is no explicit expre  Indeed, it is derivative free and this property enables the
sion for the Hamiltonian of the KG and thg particles. usage of the Heisenberg picture which is based on time-
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independent functions. Integration properties prove ¢h4} the W* have integral spin and dimensiohft]. However,

is linear inzp;" andy;. Thus, in order to have a self-consistent Hilbert and Fock spaces, a
: : : : function describing an elementary massive particle mugt ha
(@ + by, vj) =a(y;, ¢) + by, ¥j). the dimension [[-¥2]. Neither a KG function nor th&w

+ _ _ function satisfies this requirement.
Furthermore, ;. i) sa real non-negative number that van- e conclusion stating that the continuity equation (9) is
ishes if and only ify; = 0. These properties are required fror8n|y anecessary conditiorequired from a physically accept-

a Hilbert space inner product. It turns out that the construg, e 4_cyrrent and that further consistency tests must be ca
tion of a Hilbert space is the cormerstone used for calaatieq ¢, Jooks like a new result of this work that has a gehera
successful solutions of the Dirac equation and of its assOGhnificance

ated Pauli and Schroedinger equations as well. Before discussing the state of th¢* charged particles,

By contrast, in the case of particles having an integr} ;s examine the strength of strong interactions. Eacheof t
spin, one cannot find in the literature an exphcn CO”SFruﬁillowing arguments proves that strong interactions yetd
tion of a Hilbert space. Indeed, the'f] dimension of their tremely relativistic bound states and that the interacpiart

functions proves that the simple definition of an inner progs iha ‘Hamiltonian swallows a large portion of the quarks’
uct in the formfcpi*q),- d®x has the dimensionL] which is

unacceptable. An application of the 0-component of these
particles 4-current [11, see p.12] and [12, see p.199] is notA'
free of contradictions. Thus, the time derivative included
these expressions prevents the usage of the Heisenberg pic-
ture. Relation roves that in the case of a charged frrtic ) " .
the density deggnpds axternalquantities. These q%an!ﬁes itable to_ add th? mass of two quarks because the in-
may vary in time and for this reason it cannot be used in a creased interaction is very strong.

definition of a Hilbert space inner product. In the case of theB. The mass of the meson is about five times greater
WH function, the expression is inconsistent with the lingarit ~ than the pion’s mass. Now these mesorfiediby the

Antiquarks have been measured directly in the proton
[15, see p. 282]. This is a clear proof of the extremely
relativistic state of hadrons. Indeed, for reducing the
overall mass of the proton, it is energetically “prof-

required from a Hilbert space inner product. relative spin alignment of their quark constituents. Ev-
The results found in this work apply to particles described  idently, spin interaction is a relativistidfect and the
by a function of the form significantr, p mass diference indicates that strong in-
teractions are very strong indeed.
Y (x). (15) C. The pion is made of a,d quark-antiquark pair and

its mass is about 14deV. Measurements show that

Their dependence on a single set of four space-time coordi-
there are mesons made of thel flavors whose mass

nates¢* means that they describe an elementary pointlike par- | :
ticle. For example, this kind of function cannot adequately IS 9reater than 2000leV [6]. Hence, strong interac-
describe a pion because this particle is not an elementary pa  {10NS consume most of the original mass of quarks.
ticle but a quark-antiquark bound state. Thus, it consists o D. Let us examine the pion and find an estimate for the
quark-antiquark pair which are describedttw functions of intensity of its interactions. The first objective is to
the form (15). For this reason, one function of the form (15)  find an estimate for the strength of the momentum of
cannot describe a pion simply because a description of a pion the pion’s quarks. The calculation is done in units of
should use a larger number of degrees of freedom. It follows ~ fm, and 1fm™ ~ 200MeV. The pion’s spatial size is

that the existence of &, which is a spin-0 charged particle, ~ Somewhatsmaller than that of the proton [16]. Thus, let
does not provide an experimental refutation of the thecakti us assume that the pion’s quark-antiquark pair are en-
results obtained above. closed inside a box whose size i2 2mand the pion’s

Some general aspects of this work are pointed out here. quark wave function vanishes on its boundary. For the
There are two kinds of objects in electrodynamics of Dirac ~ X-component, one finds that the smallest absolute value

particles: massive charged spif2particles and charge-free of the momentum is obtained from a function of the
photons. The dimension of a Dirac functionis{/2] and the form sin(rx/2.2). Hence, the absolute value of this
dimension of the electromagnetic 4-potentiallis). Now, component of the momentum #g2.2. Thus, for the
the spin of any interaction carrying particle must take de-in three spatial coordinates, one multiplies this number
gral value in order that the matrix element connectingahiti by V3 and another factor of 2 accounts for the quark-
and final states should not vanish. The dimension of an inter- ~ antiquark pair. It follows that the absolute value of the
action carrying particle must b& ] so that the Lagrangian momentum enclosed inside a pion is

density. interaction ter.m have Fhe dimensidrr). T.h.ese | p| ~ 1000MeV. (16)
properties must be valid for particles that carry any kinghef

teraction between Dirac-like particles. Hence, the piams a This value of the momentum is much greater than the
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pion’s mass. It means that the system is extremalytcome is consistent with the Higgs boson inherent contra-
relativistic and (16) is regarded as the quarks’ kinetilictions which are discussed elsewhere [10].

energy. Thus, the interaction consumes abgidtdd
the kinetic energyand the entire mass of the quark-
antiquark pair. In other word, the pion’s kinetic energ
is about 7 times greater than its final mass. Itis interest-
ing to compare these values to the corresponding quaﬁ'—
tities of the positronium, which is an electron-positron
system bound by the electromagnetic force. Here the
ratio of the kinetic energy to the final mass is about
7/1000000. On the basis of this evidence one concludes
that strong interactions must be much stronger than the

experimental mass of the pion.
4,

Relying on these arguments and on the theoretical con-
clusion stating that th&/* must be composite objects, it is 5.
concluded that th&/* particles contain one top quark. Thus,
the W+ is a superposition of three meson familiéd; tsand &
tb. Here the top quark mass is 1@V and the mass of the
W is 80GeV[16]. The diference indicates the amount swal- "
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