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Should the Wave-Function be a Part of the Quantum Ontological State?
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We analyze the recent no go theorem by Pusey, Barrett and Rudolph (PBR) concerning
ontic and epistemic hidden variables. We define two fundamental requirements for the
validity of the result. We finally compare the models satisfying the theorem with the
historical hidden variable approach proposed by de Broglie and Bohm.

1 Introduction

Recently, a new no go theorem by M. Pusey, J. Barret and
T. Rudolph (PBR in the following) was published [1]. The
result concerns ontic versus epistemic interpretations of quan-
tum mechanics. Epistemic means here knowledge by oppo-
sition to “ontic” or ontological and is connected with the sta-
tistical interpretation defended by Einstein. This of course
stirred much debates and discussions to define the condition
of validity of this fundamental theorem. Here, we discuss two
fundamental requirements necessary for the demonstration of
the result and also discuss the impact of the result on possible
hidden variable models. In particular, we will stress the dif-
ference between the models satisfying the PBR theorem and
those who apparently contradict its generality.

2 The axioms of the PBR theorem

In order to identify the main assumptions and conclusions of
the PBR theorem we first briefly restate the original reason-
ing of ref. 1 in a slightly different language. In the simplest
version PBR considered two non orthogonal pure quantum
states |Ψ1⟩ = |0⟩ and |Ψ2⟩ = [|0⟩ + |1⟩]/

√
2 belonging to a

2-dimensional Hilbert space E with basis vectors {|0⟩, |1⟩}.
Using a specific (nonlocal) measurement M with basis |ξi⟩
(i ∈ [1, 2, 3, 4]) in E ⊗ E (see their equation 1 in [1]) they de-
duced that ⟨ξ1|Ψ1 ⊗ Ψ1⟩ = ⟨ξ2|Ψ1 ⊗ Ψ2⟩ = ⟨ξ3|Ψ2 ⊗ Ψ1⟩ =
⟨ξ4|Ψ2 ⊗ Ψ2⟩ = 0. In a second step they introduced hypo-
thetical “Bell’s like” hidden variables λ and wrote implicitly
the probability of occurrence PM(ξi; j, k) = |⟨ξi|Ψ j ⊗ Ψk⟩|2 in
the form:

PM(ξi; j, k) =
∫

PM(ξi|λ, λ′)ϱ j(λ)ϱk(λ′)dλdλ′ (1)

where i ∈ [1, 2, 3, 4] and j, k ∈ [1, 2]. One of the fundamen-
tal axiom used by PBR (axiom 1) is an independence crite-
rion at the preparation which reads ϱ j,k(λ, λ′) = ϱ j(λ)ϱk(λ′).
In these equations we introduced the conditional “transition”
probabilities PM(ξi|λ, λ′) for the outcomes ξi supposing the
hidden state λ, λ′ associated with the two independent Q-bits
are given. The fundamental point here is that PM(ξi|λ, λ′) is
independent of Ψ1,Ψ2. This a very natural looking-like ax-
iom (axiom 2) which was implicit in ref. 1 and was not fur-
ther discussed by the authors. We will see later what are the
consequence of its abandonment.

For now, from the definitions and axioms we obtain:∫
PM(ξ1|λ, λ′)ϱ1(λ)ϱ1(λ′)dλdλ′ = 0∫
PM(ξ2|λ, λ′)ϱ1(λ)ϱ2(λ′)dλdλ′ = 0∫
PM(ξ3|λ, λ′)ϱ2(λ)ϱ1(λ′)dλdλ′ = 0∫
PM(ξ4|λ, λ′)ϱ2(λ)ϱ2(λ′)dλdλ′ = 0


. (2)

The first line implies PM(ξ1|λ, λ′) = 0 if ϱ1(λ)ϱ1(λ′) , 0.
This condition is always satisfied if λ and λ′ are in the support
of ϱ1 in the λ-space and λ′-space. Similarly, the fourth line
implies PM(ξ4|λ, λ′) = 0 if ϱ2(λ)ϱ2(λ′) , 0 which is again
always satisfied if λ and λ′ are in the support of ϱ2 in the λ-
space and λ′-space. Finally, the second and third lines imply
PM(ξ2|λ, λ′) = 0 if ϱ1(λ)ϱ2(λ′) , 0 and PM(ξ3|λ, λ′) = 0 if
ϱ1(λ)ϱ2(λ′) , 0.

Taken separately these four conditions are not problem-
atic. But, in order to be true simultaneously and then to have

PM(ξi|λ, λ′) = 0 (3)

for a same pair of λ, λ′ (with [i = 1, 2, 3, 4]) the conditions
require that the supports of ϱ1 and ϱ2 intersect. If this is the
case Eq. 3 will be true for any pair λ, λ′ in the intersection.

However, this is impossible since from probability con-
servation we must have

∑i=4
i=1 PM(ξi|λ, λ′) = 1 for every pair

λ, λ′. Therefore, we must necessarily have

ϱ2(λ) · ϱ1(λ) = 0 ∀λ (4)

i.e. that ϱ1 and ϱ2 have nonintersecting supports in the λ-
space. Indeed, it is then obvious to see that Eq. 2 is satisfied
if Eq. 4 is true. This constitutes the PBR theorem for the
particular case of independent prepared states Ψ1,Ψ2 defined
before. PBR generalized their results for more arbitrary states
using similar and astute procedures described in ref. 1.

If this theorem is true it would apparently make hidden
variables completely redundant since it would be always pos-
sible to define a bijection or relation of equivalence between
the λ space and the Hilbert space: (loosely speaking we could
in principle make the correspondence λ ⇔ ψ). Therefore it
would be as if λ is nothing but a new name for Ψ itself. This
would justify the label “ontic” given to this kind of interpreta-
tion in opposition to “epistemic” interpretations ruled out by
the PBR result.
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However, the PBR conclusion stated like that is too strong
as it can be shown by carefully examining the assumptions
necessary for the derivation of the theorem. Indeed, using the
independence criterion and the well known Bayes-Laplace
formula for conditional probability we deduce that the most
general Bell’s hidden variable probability space should obey
the following rule

PM(ξi; j, k) =
∫

PM(ξi|Ψ j,Ψk, λ, λ
′)ϱ j(λ)ϱk(λ′)dλdλ′ (5)

in which, in contrast to equation 1, the transition probabilities
PM(ξi|Ψ j,Ψk, λ, λ

′) now depend explicitly on the considered
quantum states Ψ j,Ψk. We point out that unlike λ, Ψ is in this
more general approach not a stochastic variable. This differ-
ence is particularly clear in the ontological interpretation of
ref. 3 where Ψ plays the role of a dynamic guiding wave for
the stochastic motion of the particle. Clearly, relaxing this
PBR premise has a direct effect since we lose the ingredient
necessary for the demonstration of Eq. 4. (more precisely we
are no longer allowed to compare the product states |Ψ j ⊗Ψk⟩
as it was done in ref. 1). Indeed, in order for Eq. 2 to be simul-
taneously true for the four states ξi (where PM(ξi|Ψ j,Ψk, λ, λ

′)
now replace PM(ξi|λ, λ′)) we must have

PM(ξ1|Ψ1,Ψ1, λ, λ
′) = 0, PM(ξ2|Ψ1,Ψ2, λ, λ

′) = 0

PM(ξ3|Ψ2,Ψ1, λ, λ
′) = 0, PM(ξ4|Ψ2,Ψ2, λ, λ

′) = 0

 . (6)

Obviously, due to the explicit Ψ dependencies, Eq. 6 doesn’t
anymore enter in conflict with the conservation probability
rule and therefore doesn’t imply Eq. 4. In other words the
reasoning leading to PBR theorem doesn’t run if we abandon
the axiom stating that

PM(ξi|Ψ j,Ψk, λ, λ
′) := PM(ξi|λ, λ′) (7)

i.e. that the dynamic should be independent of Ψ1,Ψ2. This
analysis clearly shows that Eq. 7 is a fundamental prerequisite
(as important as the independence criterion at the preparation)
for the validity of the PBR theorem [4]. In our knowledge this
point was not yet discussed [5].

3 Discussion

Therefore, the PBR deduction presented in ref. 1 is actually
limited to a very specific class of Ψ-epistemic interpretations.
It fits well with the XIXth like hidden variable models us-
ing Liouville and Boltzmann approaches (i.e. models where
the transition probabilities are independent of Ψ) but it is not
in agreement with neo-classical interpretations, e.g. the one
proposed by de Broglie and Bohm [3], in which the transition
probabilities PM(ξ|λ,Ψ) and the trajectories depend explicitly
and contextually on the quantum states Ψ (the de Broglie-
Bohm theory being deterministic these probabilities can only
reach values 0 or 1 for discrete observables ξ). As an illustra-
tion, in the de Broglie Bohm model for a single particle the

spatial position x plays the role of λ. This model doesn’t re-
quire the condition ϱ1(λ) · ϱ2(λ) = |⟨x|Ψ1⟩|2 · |⟨x|Ψ1⟩|2 = 0 for
all λ in clear contradiction with Eq. 4. We point out that our
reasoning doesn’t contradict the PBR theorem per se since the
central axiom associated with Eq. 7 is not true anymore for
the model considered. In other words, if we recognize the im-
portance of the second axiom discussed before (i.e. Eq. 7) the
PBR theorem becomes a general result which can be stated
like that:

i) If Eq. 7 applies then the deduction presented in ref. 1
shows that Eq. 4 results and therefore λ ↔ Ψ which means
that epistemic interpretation of Ψ are equivalent to ontic in-
terpretations. This means that a XIXth like hidden variable
models is not really possible even if we accept Eq. 7 since we
don’t have any freedom on the hidden variable density ρ(λ).

ii) However, if Eq. 7 doesn’t apply then the ontic state of
the wavefunction is already assumed - because it is a variable
used in the definition of PM(ξ|λ,Ψ). This shows that ontic
interpretation of Ψ is necessary. This is exemplified in the
de Broglie-Bohm example: in this model, the ”quantum po-
tential” is assumed to be a real physical field which depends
on the magnitude of the wavefunction, while the motion of
the Bohm particle depends on the wavefunction’s phase. This
means that the wavefunction has ontological status in such a
theory. This is consistent with the spirit of PBR’s paper, but
the authors didn’t discussed that fundamental point.

We also point out that in the de Broglie-Bohm ontological
approach the independence criterion at the preparation is re-
spected in the regime considered by PBR. As a consequence,
it is not needed to invoke retrocausality to save epistemic ap-
proaches.

It is important to stress how Eq. 4, which is a consequence
of Eq. 7, contradicts the spirit of most hidden variable ap-
proaches. Consider indeed, a wave packet which is split into
two well spatially localized waves Ψ1 and Ψ2 defined in two
isolated regions 1 and 2. Now, the experimentalist having ac-
cess to local measurements ξ1 in region 1 can define probabil-
ities |⟨ξ1|Ψ1⟩|2. In agreement with de Broglie and Bohm most
proponents of hidden variables would now say that the hid-
den variable λ of the system actually present in box 1 should
not depends of the overall phase existing between Ψ1 and Ψ2.
In particular the density of hidden variables ϱΨ(λ) in region
1 should be the same for Ψ = Ψ1 + Ψ2 and Ψ′ = Ψ1 − Ψ2
since |⟨ξ1|Ψ⟩|2 = |⟨ξ1|Ψ′⟩|2 for every local measurements ξ1
in region 1. This is a weak form of separability which is ac-
cepted even within the so exotic de Broglie Bohm’s approach
but which is rejected for those models accepting Eq. 4.

This point can be stated differently. Considering the state
Ψ = Ψ1+Ψ2 previously discussed we can imagine a two-slits
like interference experiment in which the probability for de-
tecting outcomes x0, ie., |⟨x0|Ψ⟩|2 vanish for some values x0
while |⟨x0|Ψ1⟩|2 do not. For those models satisfying Eq. 7 and
forgetting one instant PBR theorem we deduce that in the hy-
pothetical common support of ϱΨ1 (λ) and ϱΨ(λ) we must have
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PM(ξ0|λ) = 0 since this transition probability should vanish
in the support of Ψ. This allows us to present a “poor-man”
version of the PBR’s theorem: The support of ϱΨ1 (λ) can not
be completely included in the support of ϱΨ(λ) since other-
wise PM(ξ0|λ) = 0 would implies |⟨x0|Ψ1⟩|2 = 0 in contradic-
tion with the definition. PBR’s theorem is stronger than that
since it shows that in the limit of validity of Eq. 7 the support
of ϱΨ1 (λ) and ϱΨ(λ) are necessarily disjoints. Consequently,
for those particular models the hidden variables involved in
the observation of the observable ξ0 are not the same for the
two states Ψ and Ψ1. This is fundamentally different from de
Broglie-Bohm approach where λ (e.g. x(t0)) can be the same
for both states.

This can lead to an interesting form of quantum correla-
tion even with one single particle. Indeed, following the well
known scheme of the Wheeler Gedanken experiment one is
free at the last moment to either observe the interference pat-
tern (i.e. |⟨x0|Ψ⟩|2 = 0) or to block the path 2 and destroy
the interference (i.e. |⟨x0|Ψ1⟩|2 = 1/2). In the model used
by Bohm where Ψ acts as a guiding or pilot wave this is not
surprising: blocking the path 2 induces a subsequent change
in the propagation of the pilot wave which in turn affects the
particle trajectories. Therefore, the trajectories will not be the
same in these two experiments and there is no paradox. How-
ever, in the models considered by PBR there is no guiding
wave since Ψ serves only to label the non overlapping den-
sity functions of hidden variable ϱΨ1 (λ) and ϱΨ(λ). Since the
beam block can be positioned after the particles leaved the
source the hidden variable are already predefined (i.e. they
are in the support of ϱΨ(λ)). Therefore, the trajectories are
also predefined in those models and we apparently reach a
contradiction since we should have PM(ξ0|λ) = 0 while we
experimentally record particles with properties ξ0. The only
way to solve the paradox is to suppose that some mysterious
quantum influence is sent from the beam blocker to the parti-
cle in order to modify the path during the propagation and
correlate it with presence or absence of the beam blocker.
However, this will be just equivalent to the hypothesis of
the de Broglie-Bohm guiding wave and quantum potential
and contradicts apparently the spirit and the simplicity of Ψ-
independent models satisfying Eq. 7.

4 An example

We point out that despite these apparent contradictions it is
easy to create an hidden variable model satisfying all the re-
quirements of PBR theorem. Let any state |Ψ⟩ be defined
at time t = 0 in the complete basis |k⟩ of dimension N as
|Ψ⟩ = ∑N

k Ψk |k⟩ with Ψk = Ψ
′
k + iΨ′′k . We introduce two

hidden variables λ, and µ as the N dimensional real vectors
λ := [λ1, λ2..., λN] and µ := [µ1, µ2..., µN]. We thus write the
probability PM(ξ, t,Ψ) = |⟨ξ|U(t)Ψ⟩|2 of observing the out-

come ξ at time t as∫
PM(ξ, t|{λk, µk}k)

N∏
k

δ(Ψ′k − λk)δ(Ψ′′k − µk)dλkdµk

= PM(ξ, t|{Ψ′k,Ψ′′k }k) = |
∑

k

⟨ξ|U(t)|k⟩Ψk |2 (8)

where U(t) is the Schrodinger evolution operator. Since Ψ
can be arbitrary we thus generally have in this model

PM(ξ, t|{λk, µk}k) = |
∑

k

⟨ξ|U(t)|k⟩(λk + iµk)|2.

The explicit time variation is associated with the unitary
evolution U(t) which thus automatically includes contextual
local or non local influences (coming from the beam blocker
for example). We remark that this model is of course very for-
mal and doesn’t provide a better understanding of the mech-
anism explaining the interaction processes. The hidden vari-
able model we proposed is actually based on a earlier version
shortly presented by Harrigan and Spekkens in ref. [2]. We
completed the model by fixing the evolution probabilities and
by considering the complex nature of wave function in the
Dirac distribution. Furthermore, this model doesn’t yet sat-
isfy the independence criterion if the quantum state is defined
as |Ψ⟩12 = |Ψ⟩1 ⊗ |Ψ⟩2 in the Hilbert tensor product space.
Indeed, the hidden variables λ12,k and µ12,k defined in Eq. 8
are global variables for the system 1,2. If we write

|Ψ⟩12 =

N1,N2∑
n,p

Ψ12;n,p|n⟩1 ⊗ |p⟩2

=

N1,N2∑
n,p

Ψ1;nΨ2;p|n⟩1 ⊗ |p⟩2 (9)

the indices k previously used become a doublet of indices n, p
and the probability

PM(ξ, t|Ψ12) = |
N1,N2∑

n,p

⟨ξ|U(t)|n, p⟩12Ψ12;n,p|2

in Eq. 8 reads now:∫
PM(ξ, t|{λ12;n,p, µ12;n,p}n,p)

×
N1∏
n

N2∏
p

δ(Ψ′12;n,p − λ12;n,p)

×δ(Ψ′′12;n,p − µ12;n,p)dλ12;n,pdµ12;n,p

= PM(ξ, t|{Ψ′12;n,p,Ψ
′′
12;n,p}n,p) (10)

which indeed doesn’t show any explicit separation of the hid-
den variables density of states for subsystems 1 and 2. How-
ever, in the case where Eq. 9 is valid we can alternatively
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introduce new hidden variable vectors λ1, λ2 and µ1, µ2 such
that PM(ξ, t|Ψ12) reads now:∫

PM(ξ, t|{λ1;n, λ2;p, µ1;n, µ2;n}n,p)

×
N1∏
n

δ(Ψ′1;n − λ1;n)δ(Ψ′′1;n − µ1;n)dλ1;ndµ1;n

×
N2∏
p

δ(Ψ′2;p − λ2;p)δ(Ψ′′2;p − µ2;p)dλ2;ndµ2;p

= PM(ξ, t|{Ψ′1;n,Ψ2′2;p,Ψ
′′
1;n,Ψ

′′
2;n}n,p). (11)

Clearly here the density of probability ϱ12(λ1, λ2, µ1, µ2) can
be factorized as ϱ1(λ1, µ1) · ϱ2(λ2, µ2) where

ϱ1(λ1, µ1) =
N1∏
n

δ(Ψ′1;n − λ1;n)δ(Ψ′′1;n − µ1;n)

ϱ2(λ2, µ2) =
N2∏
n

δ(Ψ′2;n − λ2;n)δ(Ψ′′2;n − µ2;n) (12)

Therefore, the independence criterion at the preparation (i.e.
axiom 1) is here fulfilled.

Additionally, since by definition Eq. 8 and 10 are equiva-
lent we have

PM(ξ, t|{Ψ′1;n,Ψ2′2;p,Ψ
′′
1;n,Ψ

′′
2;n}n,p)

= PM(ξ, t|{Ψ′12;n,p,Ψ
′′
12;n,p}n,p). (13)

Moreover, since Ψ1;n and Ψ2;n can have any complex values
the following relation holds for any value of the hidden vari-
ables:

PM(ξ, t|{λ1;n, λ2;p, µ1;n, µ2;n}n,p)
= PM(ξ, t|{λ12;n,p, µ12;n,p}n,p) (14)

with λ12;n,p + iµ12;n,p = (λ1;n + iµ1;n)(λ2;p + iµ2;p). This clearly
define a bijection or relation of equivalence between the hid-
den variables [λ12, µ12] on the one side and [λ1, µ1, λ2, µ2] on
the second side. Therefore, we showed that it is always pos-
sible to define hidden variables satisfying the 2 PBR axioms:
i) statistical independence at the sources or preparation

ϱ j,k(λ, λ′) = ϱ j(λ)ϱk(λ′)

(if Eq. 9 is true) and ii) Ψ-independence at the dynamic level,
i.e., satisfying Eq. 7. We point out that the example discussed
in this section proves that the PBR theorem is not only formal
since we explicitly proposed a hidden variable model satisfy-
ing the two requirements of PBR theorem. This model is very
important since it demonstrates that the de Broglie Bohm ap-
proach is not the only viable hidden variable theory. It is
interesting to observe that our model corresponds to the case
discussed in point i) of section 3 while Bohm’s approach cor-
responds to the point labeled ii) in the same section 3. Ad-
ditionally, the new model is fundamentally stochastic (since

the transition probabilities PM(ξ|λ) have numerical values in
general different from 1 or 0) while Bohm’s approach is de-
terministic.

5 Conclusion

To conclude, we analyzed the PBR theorem and showed that
beside the important independence criterion already pointed
out in ref. 1 there is a second fundamental postulate associ-
ated with Ψ-independence at the dynamic level (that is our
Eq. 7). We showed that by abandoning this prerequisite the
PBR conclusion collapses. We also analyzed the nature of
those models satisfying Eq. 7 and showed that despite their
classical motivations they also possess counter intuitive fea-
tures when compared for example to de Broglie Bohm model.
We finally constructed an explicit model satisfying the PBR
axioms. More studies would be be necessary to understand
the physical meaning of such hidden variable models.
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