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By using a computer simulated search program, the experimental gamma transition en-
ergies for superdeformed rotational bands (SDRB’spin 150 region are fitted to
proposed three-parameters model. The model parameters and the spin of the bandhead
were obtained for the selected ten SDRB’s nam&RGd (yrast and excited SD bands),
51T (yrast and excited SD band$)?Dy (yrast SD bands);**Gd (SD-1,SD-6)4°Gd
(SD-1),'*®Dy (SD-1) and“*®Eu (SD-1). The Kinematid® and dynamic)® moments

of inertia are studied as a function of the rotational frequéneyFrom the calculated
results, we notic that the excited SD bands have identical energies to #einedgh-

bours for the twinned SD bands ind86 nuclei. Also the analysis done allows us to
confirmAl = 2 staggering in the yrast SD bands'$iGd, 14°Gd, 1>°Dy, and'*®Eu and

in the excited SD bands df8Gd, by performing a staggering parameter analysis. For
each band, we calculated the deviation of the gamma ray energies from smooth ref-
erence representing the finitefférence approximation to the fourth derivative of the
gamma ray transition energies at a given spin.

1 Introduction retical interest [44, 45]. The first interpretation [46] to IB's

The superdeformed (SD) nuclei is one of the most interestivr\{als done within the framework of the strong coupling fimit

. . Hhe particle-rotor model, in which one or more particles are
topics of nuclear structure studies. Over the past two deca@%%pled to a rotating deformed core and follow the rotation

many superdeformed rotational bands (SDRB's) have beae labatically. Investigation also suggest that the phenomena

observed in several region of nuclear chart [1]. At present 8rip's may result from a cancelation of contributions to the

though a general understanding of these SDRB’s have b Tohent of inertia occurring in mean field method [47].

achieved, there are still many open problems. For examp eIn the present paper we suagest a three-particle model to
the spin, parity and excitation energy relative to the ground . pres paper we sugg parti

state of the SD bands have not yet been measured. The Qﬁ?—dmt the spins of the rotayonal pands and t'o study the prop-
ficulty lies with observing the very weak discrete transitione§rtles Of. the SDRB's gnd to'|nvest|gate the emstenalyelof. 2
which link SD levels with normal deformed (ND) levels. un>'adgenng and also lnvgstlgate the presence of IB's observed
til now, only several SD bands have been identified to exfrs]ttheA ~ 150 mass region.

the transition from SD levels to ND levels. Many theoretical "

approaches to predict the spins of these SD bands have beefluclear SDRB's in framework of three parameters ro-

proposed [2-11]. tational model

Several SDRB’s in thé\ ~ 150 region exhibit a ratherin the present work, the energies of the SD nuclear RI8I$
surprising feature of Al = 2 staggering [12—25] in its transi-as a function of the unknown spin | are expressed as:
tion energiesi.e. sequences of statedi#iring by four units of
angular momentum are displaced relative to each other. The E(I) = Eo + a[[L + biZ]¥2 — 1] + ci? 1)
phenomenon oAl = 2 staggering has attached much atten-
tion and interest, and has thus become one of the most fiéth i2 = I (I + 1), wherea, b andc are the parameters of the
guently considerable subjects. Within a short period, a canedel. The rotational frequendyw is defined as the deriva-
siderable a mounts offfert has been spent on understandive of the energy E with respect to the angular momenitum
ing its physical implication based on various theoretical ideas

[9,26-41]. Despite suchfferts, definite conclusions have not T dE
yet been reached until present time. di (2)
The discovery of the phenomenon of identical bands (IBs) =[2c+ ab[1 + bI(l + D]YZ(1(1 + 1))"Y2.

[42, 43] at high spin in SD states in even-even and odd-A

nuclei aroused a considerable interest. It was found that theTwo possible types of nuclear moments of inertia have
transition energies and moments of inertia in neighboring rheen suggested which reflect twdfdrent aspects of nuclear
clei much close than expected. This has created much théymamics. The kinematic moment of inert#", which is
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Table 1: The adopted best parameteis ¢ of the model and the band-head spin assignrhgof our ten SDRB'’s. The rms deviations are

also shown.

SD Band

Ey(l+2—-1) lo a b c §%
(keV) () (keV) (keV) (keV)

148Gd (SD-1) 699.9 31 | -0.313446E07 | 0.163069E-04 0.311027E02 | 7.387009E-01
(SD-6) 802.2 39 | -0.106162E06 | 0.107495E-03 0.105003E02 | 2.104025E-01
150Gd (SD-1) 815.0 47 | -0.148586E06 | -0.517219E-04] 0.954401E-01| 5.250988E-01
(SD-2) 727.9 31 | -0.617154E06 | -0.134929E-04 0.163288E-01 | 1.734822E-00
152Dy (SD-1) 602.4 26 | -0.144369E06 | 0.207972E-04 0.733270E01 | 5.217181E-01
149Gd (SD-1) 617.8 27.5| -0.825976E-05 | -0.698261E-04 0.285641E01 | 4.559227E-01
148Eu (SD-1) 747.7 29 | -0.131028E06 | 0.432608E-04 0.928191E01 | 7.010767E-01
51T (SD-1) 726.5 30.5| -0.852833E06 | -0.546382E-05 0.364770E01 | 2.023767E00
(SD-2) 602.1 26.5| -0.136986E-07 | -0.431179E-05 0.289128E01 | 6.644767E-01
153Dy (SD-1) 721.4 30.5| -0.671437E06 | -0.386442E-05 0.464507E01 | 2.171267E00

equal to the inverse of the slope of the curve of energy E ving rotational sequences, where the expected regular behav-

susi ior of the energy levels with respect to spin or to rotational
frequency is perturbed. The result is that the rotational se-

(3) Quence is split into two parts with states separatedlby 4
(bifurcation) shifting up in energy and the intermediate states
shifting down in energy. The curve found by smoothly inter-

and the dynamic moment of inerti#?, which is related to Polating the band energy of the spin sequence4,,1+8. . .is

the curvature in the curve of E versls somewhat displaced from the corresponding curve of the se-

quence +2, 1+6, 1+10....

To explore more clearly thal = 2 staggering, for each
band the deviation of the transition energies from a smooth
referenceAE, is determined by calculating the fourth deriva-
tive of the transition energids, (1) at a given spinl by

- dE
JO mi(—)"*
(dl)

2 12, 1
%[1+bl(l+l)] +Z:

2
hz(d—,\f)_l

2 o L @)
- 32 . —

ab[l +bl(l + 1)]”° + >

J@

For the SD bands, one can extract the rotational frequency,
dynamic and kinematic moment of inertia by using the exper-

imental interband E2 transition energies as follows: AR,(1) =

2(E,(1) - $[4E,(1 - 2) + 4E,(1 + 2)

®)
—E,(1 -4) - E,(I + 4)]).

1
ho = Z[Ey(l +2)+ E,(1], (5)
’ This expression was previously used in [15] and is identi-
JA) ﬂ (6) cal to the expression fa*E, (1) in Ref. [33]. We chose to the
AE, use the expression above in order to be able to follow higher
2 order changes in the moments of inertia of the SD bands.
D1 -1) = r2 -1) (7)
E, 4 Superdeformed identical bands
where A particularly striking feature of SD nuclei is the observation
of numerous bands with nearly identical transition energies
E, = E(0)-E(l-2), in nuclei difering by one or two mass unit [42—45]. To de-
AE, = E(+2)-E/() termine whether a pair of bands is identical or not, one must

compare the dynamical moment of inertia or compare the E2

It is seen that whereas the extract#® depends on | transition energies of the two bands.

proposition,J? does not. . _ _ .
5 Numerical calculations and discussions

3 Analysis of theAl = 2 staggering dfects Nine SDRB'’s observed in nuclei of mass numider 150

It has been found that some SD rotational bands firedint have been analyzed in terms of our three parameter model.
mass region show an unexpecteld= 2 staggering ects in The experimental transition energies are taken from Ref. [1].
the gamma ray energies [12-25]. Thieet is best seen inThe studied SDRB’s are namely:
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Fig. 1: Calculated Kinematid® (open circles) and dynamid®

: o\ . : i, o i ig® i )
(closed circles) moments of inertia as a function of rotational frEig- 2: Calculated Kinematig* (open circles) and dynamid

quencyfiw for the set of identical band§!Tb(SD-1), 15?Dy(SD-1) (closed circles) moments of inertia as a function of rotational
150Gd(SD-3) andS'Th(SD-2). ' " frequencyfiw for the SDRB's8Gd(SD-1, SD-6),14°Gd(SD-1),

153Dy(SD-1) and*“®Eu(SD-1).

150Gd(SD1, SD2)151Th(SD1, SD2)152Dy(SD1),248Gd(SD1, ,

SD6), 149Gd(SD1),15%Dy(SD1) and“8Eu(SD1). The dier- & b, c and the bandhead spipwere obtained by the adopted
ence between the SD bands in various mass region are f§rocedure. The procedure is repeated for several sets of
viously evident through the behavior of the dynamig& frail valuesa,b,c andlo. The spinlo is taken as the near-
and kinematicJ® moments of inertia seems to be very us€St integer number, then another fit with oriyb andc as

ful to the understanding of the properties of the SD bandikee parametgrs is made to determine their values. The lowest
The bandhead moment of inertig at J@ = J® s a sensi- Pandhead spify and the best parameters of the moaldd, c
tive guideline parameter for the spin proposition. for each band is listed in Table(1). The SD bands are identi-

A computer simulated search program has been used€d PY the lowest gamma transition enerdigglo + 2 — o)
get a minimum root mean square (rms) deviation between fiRserved. > . - _
experimental transition energi&§*® and the calculated ones ~ The dynamicall'> and kinematic)*> moments of iner-

derived from our present three parameter m(ﬁ;élt tia using our proposed model at the assigned spin values are
calculated as a function of rotational frequericy and illus-
o | ecal expyy + (2112 trated in Figs. (1,2).J@ mostly decrease with a great deal
1 EVH(H) - E; V(1) iati '
Y= = Z 9) of variation from nucleus to nucleus. The properties of the
N |4 SESN(1h) SD bands are mainly influenced by the number of the high-

N intruder orbitals occupied. For example the large slopes of
where N is the number of data points enters in the fitting prd®®) againstiw in %°Gd and'®'Tb are due to the occupation of
cedure andE; (i) is the uncertainties in the-transitions. 76, v7, orbitals, while in'>?Dy thex6, level is also occupied
For each SD band the optimized best fitted four parametarsi this leads to a more constal¥? againstiw. A plot of

Khalaf A.M., Taha M.M. and Kotb M. Identical Bands and = 2 Staggering in Superdeformed NucleiAn~ 150 Mass Region 41



Volume 4 PROGRESS IN PHYSICS October, 2012

04+
0.8
"S2py (SD-1) (yrast) "“*Eu (SD-1)
"*'Tb (SD-2) (excited) 024 .
0.0 —~ [3
L= > .« e
,>-(\ * ° 5 0.0 ° * .
0.8 - .
F-ﬂ?. -/./ /\/. vllu : ¢ A
\>~ / . ‘./. < -0.24
W6 ¥ \ . - ./. .
s - \/ \/ ® 04 0?5 0?6 0?7 0?8
L4 0.4+
24 y . y , . “Gd (SD-6)
20 30 40 50 60 70
6 02- . 2
o~ .
'Gd (SD-3) (yrast) % . ? .
4 __\\ "5'Tb (SD-1) (excited) X ol
o - w”
S 2 / i < hd
X | \';'"/. < 024 y ¢ . ¢
=~ 0+ /.
E \ ﬁ e 0424 05 06 07
= -2 [ ] .
;;/ "“Gd(SD-1) o
“ o~ 024
20 " 3‘0 ) 4‘0 ) 5’0 ) 6‘0 ) 7‘0 % o ° . . i
Spin of Initial State (%) E3 .
I.IJ!. 0.0 PREPSE
Fig. 3: Percentage filerencesAE, /E, in transition energieg, = K ¢ . . -
. . . . L]
E(l) — E(I - 2) as a function of spih for the set of identical bands ¢
.2
(*51T b(SD-2),52Dy(SD-1)) and t°°Gd(SD-2),%'T b(SD-1)). ° 04 06 08
fio (MeV)

J®@ againstiw for the excited SD band it?'Tb gives a curve Fig. 4: The calculatedh*E, staggering as a function of rota-
that is practically constant and which closely follows t8 tional frequencyZiw of the SDRB's *®Eu(SD-1), **%Gd(SD-6),
curved traced out by the yrast SD band32Dy but which is '*°Gd(SD-1).
very different from the yrast SD band H#'Tb. Similarly the
150Gd excited SD band ha¥? values which resemble thos . . .

. 61 . ole in the'>?Dy core. The orbitala6, andy7, are occupied
observed in thé>'Tb yrast SD band. It is concluded that th?e1 151Th, while in 152Dy the 76, level is occupied and this

N=86 isotones SD nuclei have identical supershell structurr?s. ) i .
P eads to a more constant in dynamic moment of ineitfa

. Clearly theJ® values for the excited SD bands are very sim-
Nucl Y E

15::((;;“5 ;St;?:g T 2 SéCIZe?ob:Tf — ilar to the yrast SD bands in theirZ, N=86 isotones. The
64 ( ),[( O G ),[( U QNICER) plot of percentage fierencesAE,/E, in transition energies
65 1D 7(3P[(4)°5)*1(1132)°  n(3)'[(4)*%5)*’I(i132)*  versus spin for the two paird*Tb(SD-2),152Dy(SD-1)) and
152, 231406 (152" 7M@) 10G)(152)°  (*°°Gd(SD-2),*'Th(SD-1)) are illustrated in Fig. (3).

7 Al =2 Staggering

6 Identical bands in the isotones nuclei 86 . .
Another result of the present work is the observation of a

A particularly Striking feature of SD nuclei is the Observati0ﬂ| =2 Staggering fectsin th@,_ray energieS, where the two
of a numerous bands with nearly identical transition energ@quences for spifs= 4j,4j + 1 (j=0,1,2,...) and = 4j + 2

in neighboring nuclei. Because of the large single particle ${20,1,2,...) are bifurcated. For each band the deviation of
gaps at 266 and N-86, the nucleus*>Dy is expected to be the y—ray energies from a smooth referens, is deter-

a very good doubly magic SD core. Thetdrence iny—ray mined by calculating the fourth derivative of theray ener-
energies\E, between transition in the two pairs 0HS86 iso- giesAE, (1) at a given spil\*E,.. The staggering in the-ray
tones (excited>'Tb (SD-2), yrast®?Dy (SD-1)) and (excited energies is indeed found for the SD bands'4fEu(SD-1),

19Gd (SD-2), yrast®'Tb (SD-1)) were calculated. 148Gd(SD-6) and“9Gd(SD-1) in Fig. (4).
The gamma transition energies of the excited band (SD-2)
in 1Tb are almost identical to that of the yrast band (SD-1) Submitted on June 11, 2012ccepted on June 25, 2012

in 152Dy. This twin band has been associated with a [3¢02]1
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