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A path is defined as the vector’s sum of the translation and rotation component of the
length unit belonging to the mass entity in motion on the sphere. The fine structure
constant is an irrational number being a mirror of the path complexity as well as the
sphere curvature where the path is made. The inverse value inthe Euclidean plane yields
α−1 =

√
π2 + 1372. The inverse fine structure constant on the elliptic sphere is smaller

and on the hyperbolic sphere is greater. The electron in the Hydrogen atom should
move on the elliptic sphere of the radius of 3679 Compton wavelengths of the electron
according to the CODATA 2012 recommended empirical valueα−1 = 137.035999074.
Such a small sphere radius implies the heterogeneous curvature of the present universe.

1 Theoretical background

In motion is an entity having some mass. Respecting Comp-
ton the length unit is attributed to that mass:

λ =
h

mc
= 1 . (1)

The infinite mass and zero length unit are objectively un-
reachable. Nevertheless both can be theoretically approached
arbitrarily close by the sufficiently great finite mass.

A curved motion obeys the path complexity: it has the
translation and rotation component. Describing the curved
path the length unit becomes not only the translation unit but
the rotation unit, too. By the circumference of a circle con-
cluded paths, for instance, only apparently equals the trans-
lation n, actually it is greater for the average rotationπ made
around the start point of the length unit:

π =
0+ 2π × 1

2
. (2)

The actual path is the vectorial sum of both components: the
rotationπ as well as translationn:

−→s = −→π + −→n . (3)

The total rotation of the length unitπ equals the total Berry
phase at spin12 [1].

1.1 Path in the Euclidean plane

By the circumference of a circle concluded paths in the Eu-
clidean plane is calculated with the help of Pythagoras’ theo-
rem:

s2 = π2 + n2. (4)

1.2 Path on the elliptic sphere

By the circumference of a circle concluded paths on the el-
liptic sphere is calculated with the help of the spherical law
of cosines.

On the elliptic sphere of radiusR holds:

cos
s
R
= cos

π

R
cos

n
R
, (5)

cosx =
√

1− sin2x , (6)
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. (7)

The coefficients are expressed as

k1 =
sin πR
π

R

, k2 =
sin n

R
n
R

and k3 =
sin s

R
s
R

. (8)

They are arranged by size

1 > k1 > k2 > k3 . (9)

In the case ofR2 being a positive number Pythagoras’ theo-
rem holds only exceptionally. The next condition has to be
satisfied:
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The ratios of coefficients
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2
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are according to (non)

equation (9) greater than 1 or at least equal 1, therefore we
write:
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> s2. (11)

At the finite elliptic sphere radiusR Pythagoras’ theorem
fails, because at non-equal coefficients (9) the square area
upon hypotenuse is smaller than the sum of square areas upon
catheters:

s2 < π2 + n2. (12)

At R = ∞ and equal coefficients (9) the elliptic sphere trans-
forms into the Euclidean plane and Pythagoras’ theorem be-
gins to rule again (4).

1.2.1 Approximation for cosx

Hardy’s approximation [2] is close to the function cost
r :

H

(

2t
πR

)

= cos
t
R
≈ 1−

(

2t
πR

)2

2t
πR +

(

1− 2t
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)
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3

. (13)
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At very largeR Hardy’s approximation can be simplified:

H

(

2t
πR

)

= cos
t
R
≈ 1−

(

2t
πR

)2

. (14)

The spherical law of cosines (5) with the help of the simpli-
fied Hardy approximation (14) enables to calculate the ap-
proximate value of the sphere radius in cases of a tiny cur-
vature where Pythagoras’ theorem approximately rules. The
explicit relation is expressed as

R2 ≈
(2n)2

n2 + π2 − s2
. (15)

The similar approximation is obtained with the help of equa-
tion (7) at the assumption of coefficients approximate equal-
ity:

1 ≈ k1 ≈ k2 ≈ k3 . (16)

Then the sphere radius is expressed as

R2 ≈
(πn)2

n2 + π2 − s2
. (17)

1.3 Path on the hyperbolic sphere

By the circumference of a circle concluded paths on the hy-
perbolic sphere is calculated with the help of the hyperbolic
law of cosines.

On the hyperbolic sphere of radiusR holds:

cosh
s
R
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π

R
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n
R
, (18)

coshx =
√

1+ sinh2x, (19)
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The coefficients are expressed as

k1 =
sinh πR
π

R

, k2 =
sinh n

R
n
R

and k3 =
sinh s

R
s
R

. (21)

They are arranged by size

1 6 k1 6 k2 6 k3 . (22)

In the case ofR2 being a positive number Pythagoras’ theo-
rem holds only exceptionally.

The next condition has to be satisfied:
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The ratios of coefficientsk2
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(non)equation (22) smaller than 1 or at most equal 1, therefore

we write:
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At the finite hyperbolic sphere radiusR Pythagoras’ theorem
fails, because at non-equal coefficients (22) the square area
upon hypotenuse is greater than the sum of square areas upon
catheters:

s2 > π2 + n2. (25)

At R = ∞ and equal coefficients (22) the hyperbolic sphere
transforms into the Euclidean plane and Pythagoras’ theorem
begins to rule again (4).

2 Fine structure constant and sphere radius

In the ground state of the Hydrogen atom the electron path
around the nucleus equals the ratio of the Compton wave-
length of the electronλ and the fine structure constantα. The
wavelength equals the unit, so the circular path equals the in-
verse fine structure constant:

s = α−1. (26)

2.1 Inverse fine structure constant on the non-Euclidean
sphere and Euclidean plane

At the finite sphere radiusR two possibilities are allowed ac-
cording the non-equations (12) and (25).

On the elliptic sphere holds:

α
−2
< π

2 + n2
. (27)

On the hyperbolic sphere holds:

α−2 > π2 + n2. (28)

At R = ∞ both non-Euclidean spheres transform into the Eu-
clidean plane and according to the equation (4) holds:

α−2 = π2 + n
2
. (29)

2.2 Calculation of the theoretical inverse fine structure
constant in the Euclidean plane

In the hydrogen atom the numbern = 137 is to the inverse
fine structure constantα−1 the closest natural number which
concludes the start and end point of Bohr orbit. The number
π is the total average rotation component of the length unit.

The theoretical inverse fine structure constant in the Eu-
clidean plane is calculated with the help of the equation (29).
Its value is an irrational number:

α
−1

EUCLID =
√

n2 + π2 ≈ 137.036015720. (30)

2.3 Calculation of the sphere radius on the atomic level

The inverse fine structure constant should be according to the
equations (27) and (28) on the elliptic sphere smaller and on
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the hyperbolic sphere greater thanα−1
EUCLID.

The recommended CODATA 2012 value of the inverse
fine structure constant is smaller than the theoretical value in
the Euclidean plane:

α−1
CODATA = 137.035999074< α−1

EUCLID ≈ 137.036015720. (31)

This implies the elliptic sphere in the Hydrogen atom.
The calculus of the radius of the elliptic sphere with the

help of the equation (5) yields:

R = 3679 Compton wavelengths of the electron. (32)

The estimate of the radius of the elliptic sphere with the help
of the simplified Hardy approximation (15) yields a little bit
greater value:

R ≈
2.137

√

1372 + π2 − α−2
CODATA

= 4057. (33)

2.4 Estimation of the inverse fine structure constant on
the macro level

Let us consider the radius of the observable universe of about
4× 1026m [3] as the sphere radius:

R ≈ 2× 1038 Compton wavelengths of the electron. (34)

This is a huge radius. A common calculator supports the
spherical law of cosines only for radius up to∼ 1015 Compton
wavelengths of the electron.

Fortunately a huge sphere radius is given by the simpli-
fied Hardy approximation (15) in the explicit relation with
the inverse fine structure constant:

R2 ≈
(2.137)2

π2 + 1372 − α−2
, (35)

α−1 ≈

√

π2+1372

(

1−
4

R2

)

=

√

π2+1372
(

1−10−76
)

≈

≈
√
π2 + 1372. (36)

If the sphere curvature on the atomic level equals the curva-
ture of the hypothetical elliptic observable universe, thein-
verse fine structure constant should not significantly differ
from the theoretical constant in the Euclidean plane.

3 Conclusion

If the inverse fine structure constant is a mirror of the path
complexity as well as the curvature of the sphere where the
path is made, its theoretical inverse value in the Euclidean
planeα−1=

√
π2 + 1372 and the recommended empirical CO-

DATA 2012 valueα−1= 137.035999074 express the electron
motion on the elliptic sphere of the radius of 3679 Compton
wavelengths of the electron. This implies a huge curvature of

the atomic world. If the sphere curvatures in the atomic and
the macro-world would be the same, the inverse fine structure
constant should not significantly differ from the theoretical
one in the Euclidean plane.

Submitted on: October 15, 2012/ Accepted on: October 23, 2012

References
1. Binder B. Berry’s Phase and Fine Structure. http://philsci-archive.pitt.

edu/682/1/alfa137MN5p.pdf. Retrieved September 2012.

2. Weisstein E. W. Cosine. http://mathworld.wolfram.com/Cosine.html.
Retrieved October 2012.

3. WolframAlpha. http://www.wolframalpha.com/input/?i=size+of+ uni-
verse. Retrieved November 2011.
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