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A path is defined as the vector's sum of the translation aratiost component of the
length unit belonging to the mass entity in motion on the sph&he fine structure
constant is an irrational number being a mirror of the patmmexity as well as the
sphere curvature where the path is made. The inverse vatlie Euclidean plane yields
ot = Vn2 + 132. The inverse fine structure constant on the elliptic spheserialler

and on the hyperbolic sphere is greater. The electron in ydrdgen atom should
move on the elliptic sphere of the radius of 3679 Compton Vesngths of the electron
according to the CODATA 2012 recommended empirical valtle= 137.035999074.

Such a small sphere radius implies the heterogeneous atev@tthe present universe.

1 Theoretical background cosx = V1 - siréx, (6)
In motion is an entity having some mass. Respecting Compi 1 1 k3s? Kin? + kon? — k3 ;
e . . —_ = — 4 —— — = .
ton the length unit is attributed to that mass: R2 kiﬂz k%nz k%ﬂz < kgnz kfnz % kgnz (7
1= % -1 1) The codficients are expressed as
o _ o sing sing sing

The infinite mass and zero length unit are objectively un-  ki=——, k=—F— and k=——. (8)
reachable. Nevertheless both can be theoretically appedac R R R
arbitrarily close by the diiciently great finite mass. They are arranged by size

A curved motion obeys the path complexity: it has the 15k >k >k 9
translation and rotation component. Describing the curved Zh=R=hs. ©)

path the Iength unit becomes not onIy the translation urtit bH the case oR? being a positive number Pythagoras’ theo-

the rotation unit, too. By the circumference of a circle comem holds only exceptionally. The next condition has to be
cluded patts, for instance, only apparently equals the tranggtisfied:

lation n, actually it is greater for the average rotatiomade

2 2
around the start point of the length unit: Kn? + K3 > K2 or k_é,TZ + % ®> & (10)
0+2rx1 5 5
T= . (2) . . K2 k% .
2 The ratios of cofficients 1 and 2 are according to (non)
The actual path is the vectorial sum of both components: #guation (9) greater than 1 or at least equal 1, therefore we
rotationr as well as translation: write: , ,
k
3=7+T. (3) én2+gn2>n2+n2>sz. (11)
The total roj[ation of the length unit equals the total Berry at the finite elliptic sphere radiuR Pythagoras’ theorem
phase atsplr% [1]. fails, because at non-equal ¢beients (9) the square area
1.1 Pathin the Euclidean plane ggtci]r;igr?tenuse is smaller than the sum of square areas upon
By the circumference of a circle concluded patim the Eu- 2 < 72 +n. (12)
clidean plane is calculated with the help of PythagorasmheAt R = oo and equal cofiicients (9) the elliptic sphere trans-

rem: forms into the Euclidean plane and Pythagoras’ theorem be-

_ 2 2
e ) gins to rule again (4).
1.2 Path on the elliptic sphere

By the circumference of a circle concluded patbn the el- 1.2.1  Approximation for cosx

liptic sphere is calculated with the help of the sphericel laHardy’s approximation [2] is close to the function dos
of cosines.

On the elliptic sphere of raditR holds: 2t t (%)2
s 7 n H (_R) = cosFe ~1- = (13)
= = _ _ T 2-2
cosR = cosR cosR, (5) % + (1_ %) a3
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At very largeR Hardy’s approximation can be simplified:  we write: ) )
2 I(l 2 k2 2 2 2 S2
2t t 2t S+ SN <a°+n°<s. (24)
H (—) =cos— ~1-— (—) . (14) K3 K3

7R R R
_ _ _ ~ Atthe finite hyperbolic sphere radii&sPythagoras’ theorem
The spherical law of cosines (5) with the help of the simpliails, because at non-equal ¢heients (22) the square area

fied Hardy approximation (14) enables to calculate the agyon hypotenuse is greater than the sum of square areas upon
proximate value of the sphere radius in cases of a tiny cgatheters:

vature where Pythagoras’ theorem approximately rules. The 2> 2+l (25)
explicit relation is expressed as . )
At R = o and equal ca@icients (22) the hyperbolic sphere
R ~ (2n)? (15) transforms into the Euclidean plane and Pythagoras’ tmeore
T mReg2-g begins to rule again (4).

The similar approximation is obtained with the help of equa- Fine structure constant and sphere radius
tion (7) at the assumption of cficients approximate equal-
ity: In the ground state of the Hydrogen atom the electron path

1k ~ ko~ ks. (16) around the nucleus equals the ratio of the Compton wave-
length of the electron and the fine structure constantThe

Then the sphere radius is expressed as wavelength equals the unit, so the circular path equalsithe i

2 verse fine structure constant:
R~ M) (17)
n+ 72— & N
s=a . (26)
1.3 Path on the hyperbolic sphere 2.1 Inverse fine structure constant on the non-Euclidean
By the circumference of a circle concluded patbn the hy- sphere and Euclidean plane
perbolic sphere is calculated with the help of the hypedolit the finite sphere radiug two possibilities are allowed ac-
law of cosines. cording the non-equations (12) and (25).
On the hyperbolic sphere of radiisolds: On the elliptic sphere holds:
s n n
COShﬁ = COShﬁ coshﬁ, (18) a2 <n?en 27)
coshx = V1 + sintex, (19) On the hyperbolic sphere holds:
2. 2.2
i__i_i_i_ﬂ_ a “>n°+n°, (28)
R ke K2 Kn? x kgn? At R = oo both non-Euclidean spheres transform into the Eu-
K22 — k%nz n k§52 clidean plane and according to the equation (4) holds:
=123 (20)
ki x kgn a?2=n?4n’. (29)

The codficients are expressed as ) . i
2.2 Calculation of the theoretical inverse fine structure

sinh% sinh3 sinh3 ' i
k= — R k= h R and ks = . R (21 constant in the Euclidean plane
R R R In the hydrogen atom the number= 137 is to the inverse

fine structure constamt™ the closest natural number which
concludes the start and end point of Bohr orbit. The number
1<k <k <Kks. (22) nisthe total average rotation component of the length unit.

The theoretical inverse fine structure constant in the Eu-

In the case oR? being.a positive number Pythagoras’ thecl:'lidean plane is calculated with the help of the equation.(29
rem holds only expgptlonally. o Its value is an irrational number:
The next condition has to be satisfied:

They are arranged by size

X K2 k2 a e = VN2 + 72 ~ 137.036015720 (30)
K> Kn +kBn* or €3> 2x%+ 22 (23)
k3 k3 2.3 Calculation of the sphere radius on the atomic level

The ratios of cofficients ki/kg and k%/kg are according to The inverse fine structure constant should be accordingeto th
(non)equation (22) smaller than 1 or at most equal 1, thezefequations (27) and (28) on the elliptic sphere smaller and on
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the hyperbolic sphere greater thagt, . the atomic world. If the sphere curvatures in the atomic and
The recommended CODATA 2012 value of the inverdlke macro-world would be the same, the inverse fine structure
fine structure constant is smaller than the theoreticalevedu constant should not significantly fiér from the theoretical

the Euclidean plane: one in the Euclidean plane.
a’;énm = 137035999074 a’gulcuo ~ 137036015720 (31) Submitted on: October 15, 2012ccepted on: October 23, 2012
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R = 3679 Compton wavelengths of the electron (32)

The estimate of the radius of the elliptic sphere with th@hel
of the simplified Hardy approximation (15) yields a littlet bi
greater value:

N 2.137
\/1372 + 2 — @ 2copma

= 4057 (33)

2.4 Estimation of the inverse fine structure constant on
the macro level

Let us consider the radius of the observable universe oftabou
4 x 10?°m [3] as the sphere radius:

R ~ 2 x 10°® Compton wavelengths of the electron(34)

This is a huge radius. A common calculator supports the
spherical law of cosines only for radius up<d.0*> Compton
wavelengths of the electron.

Fortunately a huge sphere radius is given by the simpli-
fied Hardy approximation (15) in the explicit relation with
the inverse fine structure constant:

(21377
T2+ 13R -2’

atx m = \/772+1372(1—1(T76) ~

~ V2 + 137 (36)

If the sphere curvature on the atomic level equals the curva-
ture of the hypothetical elliptic observable universe, ithe
verse fine structure constant should not significantiedi
from the theoretical constant in the Euclidean plane.

(35)

3 Conclusion

If the inverse fine structure constant is a mirror of the path
complexity as well as the curvature of the sphere where the
path is made, its theoretical inverse value in the Euclidean
planea = Va2 + 137 and the recommended empirical CO-
DATA 2012 valuee™ = 137.035999074 express the electron
motion on the elliptic sphere of the radius of 3679 Compton
wavelengths of the electron. This implies a huge curvatfire o
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