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The Cosmological ConstantΛ within the modified form of the Einstein Field Equa-
tion (EFE) is now thought to best represent a “dark energy” responsible for a repulsive
gravitational effect, although there is no accepted argument for its magnitude or even
physical presence. In this work we compare the origin of theΛ argument with the
concept of unimodular gravity. A metaphysical interpretation of the Poisson equation
during introduction ofΛ could account for the confusion.

1 Introduction

In 1916, Einstein introduced his general theory of relativity
as a geometrical theory of gravity [4] resulting in the Einstein
field equation (EFE),

Rμν −
1
2
gμνR= Gμν =

8πG
c4

Tμν. (1)

It has been well documented and studied that the EFE did
not predict a stable static universe, as it was theorized to be
at the time [3]. The equation, however, did accurately predict
gravitational redshift, magnitudes of gravitational lensing and
account for Mercury’s precessing orbit, which the Newtonian
equation could not. In order to manufacture an equation that
could account for a static universe, but still be empirically
accurate, it is often stated that Einstein ad hoc threw in an-
other constantΛ which is known as the cosmological con-
stant. This would have been placed back into the EFE with
the metricgμν as

Rμν −
1
2
gμνR+ gμνΛ = Gμν. (2)

Once it was discovered that the universe actually appeared
to be in a decelerating or coasting expansion mode, Einstein
quickly removed theΛ term. Today, though, there is empiri-
cal evidence that a very small magnitudeΛ exists, but some
quantum field theorists estimate it as being over 120 orders
of magnitude smaller than their calculations, “probably the
worst theoretical prediction in the history of physics” [3]. In
addition, the observed small value ofΛ requires an extremely
high level of arbitrary fine tuning “for no good reason” and
is a “cosmologist’s worst nightmare come true” [6]. This
transformation from a minor but rich interest exploded (5000
papers submitted to date [10]) near the end of the past mil-
lennium due to a startling simultaneous discovery of positive
acceleration from two teams [7,8].

The source of this unforeseen positive acceleration has
come to be known as “dark energy”. The lack of progress
in explaining the phenomena led to the creation of a Dark
Energy Task Force in 2006 which stated in a report [1]:

“Most experts believe that nothing short of a rev-
olution in our understanding of fundamental

physics will be required to achieve a full under-
standing of the cosmic acceleration.”

This dark energy is currently expected to contribute over
73.4% [5] of the mass-energy of the universe, and there is no
sound logical theory for what it is. Consider that this leaves
some type of mysterious never-observed particle known as
dark matter to contribute another 22.2%, leaving only 4.4%
for the normal matter we are familiar with. With this in mind,
we propose that it is reasonable to re-examine any argument
that has lead us to our current state of physics.

2 Poisson Equation and Gauss’ Theorem

The Poisson equation,

−∇2u = f, (3)

is well known to relate the functionf as the “source” or
“load” of the effect onu of the left hand side. Let us ex-
amine what this meansexactlymore in depth and what we
can conclude from this tool. As an example, for a functionf
given on a three dimensional domain denoted byΩ ⊂ R3 we
have

αu+ β
∂u
∂n

= g on ∂Ω. (4)

This is a solutionu satisfying boundary conditions on
the boundary∂Ω of Ω. α andβ are constants and∂u

∂n rep-
resents the directional derivative in the direction normaln to
the boundary∂Ω which by convention points outwards. Al-
though ifα = 0 is referred to as a Neumann boundary con-
dition, even withα = constantthe solution is said to only be
unique up to this additive constant. Let us examine whether
this statement is entirely accurate.

2.1 Graphical Meaning of Poisson Equation

Let us take the divergence ofg so that

∇ ∙ αu+ ∇ ∙ β
∂u
∂n

= ∇ ∙ g (5)

and

0+ ∇ ∙ β
∂u
∂n

= ∇ ∙ g. (6)

Jeffrey P. Baugher. The Poisson Equation, the Cosmological Constant and Dark Energy 15



Volume 1 PROGRESS IN PHYSICS January, 2013

We can see that the presence ofαu seems arbitrary since it
has no effect. Let us examine a two dimensional slice of scalar
values inR3 to graphically give a better understanding. In Fig.
1 we have an example of Eq. 4 using a Euclidean coordinate
system.

Fig. 1: Two Dimensional Scalar Field

For any derivative of Eq. 5, the constant term of course
would result in no vector since there is no directional deriva-
tive fromαu.

We note that this equation can also be written as

αu− β
−∂u
∂n

= g, (7)

shown in Fig. 2, which does not mathematically make a dif-
ference but can, however, introduce a question of uniqueness.

Fig. 2: Alternate Two Dimensional Scalar Field

Let us define the previous scalar field u asu1 and a second
scalar field asu2. If ξ andγ are constants, then Eq. 8 and
Fig. 3 present a dilemma. While there may be no directional
derivatives from the constant term, we could also equivalently
model this as orthogonal vectors with the sum of 0.

ξu2 − γ
∂u2

∂n
= g2 (8)

Fig. 3: Second Two Dimensional Scalar Field

From this we can see that there are no unique solutions of
u for g from the Poisson equation, if

αu1 + β
∂u1

∂n
= g1 (9)

and

ξu2 − γ
∂u2

∂n
= g2 (10)

but also

∇ ∙ (αu1 + β
∂u1

∂n
) = ∇ ∙ g1 = ∇ ∙ g (11)

and

∇ ∙ (ξu2 − γ
∂u2

∂n
) = ∇ ∙ g2 = ∇ ∙ g (12)

if

β
∂u1

∂n
= −γ

∂u2

∂n
. (13)

2.2 Gauss Theorem

Like our above illustration of the Poisson equation, a misun-
derstanding of Gauss’ Theorem,

−
∫

∂Ω

∂u
∂n

= −
∫

Ω

∇2u =

∫

Ω

f (14)

could also cause confusion if

−
∫

∂Ω

β
∂u1

∂n
= −

∫

∂Ω

(

ξu2 − γ
∂u2

∂n

)

(15)

and

−
∫

Ω

∇2βu1 = −
∫

Ω

(

∇2ξu2 − ∇ ∙ γ
∂u2

∂n

)

. (16)

Equations 15 and 16 are easily understood graphically as tak-
ing the second derivatives of the plots in Fig. 4.

Fig. 4: Equivalent Areas From Gauss’ Theorem

3 Conclusion

Although we can assume that some functiong is causal to the
appearance of a vector, does the vector appear from nothing
or is it result of a change in what is already at that point? If
auexists, what does it physically represent? Calling any field
“attractive” or “repulsive” is nothing more than a metaphys-
ical convention, i.e. does the load function cause a change
in φ resulting in an attraction or a reduced repulsion, as in
Fig. 5? From this, we can conclude that although we may
possess measurements∇ u and∇2u, we cannot determine the
nature of the scalar field u simply from the Poisson equation
or Gauss’ Theorem.
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Fig. 5: Attraction or Reduced Repulsion?

4 Motivation: Cosmological Constant and General Rel-
ativity

Why is the previous figure important? Although there is a
great deal of literature concerningΛ, in order to start a new
perspective and to utilize the previous section, we re-examine
the first known published physical meaning of the constant.
In Einstein’s 1917 paperCosmological Considerations On
The General Theory of Relativity[2] the first equation Ein-
stein presents is the Poisson equation version of Newton’s
Law of Gravity

∇2φ = 4πκρ. (17)

Citing Newtonian concerns over the limiting value ofφ at
“spatial infinity” he proposes a modification of the equation
to

∇2φ − λφ = 4πκρ. (18)

This was from an early difficulty in that the derivation re-
quiredRμν = 0 when matter or energy was not present. Due
to cosmological observations though, and despite the rigor of
the derivation, this requirement was eventually relaxed [4, see
for relation toGμν = 0, p. 410] allowing the introduction of a
cosmological constant, even if it is not physically understood.

Setting the Poisson equation aside for the moment, it is
also known that one of the interpretations ofΛ or λ in Rie-
mannian geometry is as a four dimensional constant of inte-
gration, through what is referred to as Unimodular Gravity
[9]. This interpretation restricts allowable diffeomorphisms
to only those preserving the four volume, but to date this has
been treated as but a curious equivalent to General Relativity.

5 Introducing the Lorentz Tensor

Let us take a constant multiple of the metricgμν and refer to
it asΩ. We do not utilizeΛ or λ so as not to cause confu-
sion and to allow us to more easily retain a difference in our
understanding. Let us enforceRμν = 0 such that

Ωgμν = Gμν + Lμν (19)

whereGμν is the Einstein tensor andLμν is a tensor we pro-
pose to call the “Lorentz” tensor. We shall expand on our

reasoning for calling it this in subsequent papers. We can
readily see that

Gμν = Ωgμν − Lμν (20)

and that ifΩ = 0 then the Lorentz tensor is simply the nega-
tive of the Einstein tensor,

Gμν = −Lμν, (21)

and should have the same important properties, i.e.

Gμν;μ = −Lμν;μ. (22)

This of course results in

Rμν −
1
2
gμνR= Gμν = Ωgμν − Lμν. (23)

Note that for now cosmological models that rely on only a
multiple of the metric remaining with no matter present, such
as deSitter space, are not possible sinceRμν = 0.

Although there are physical arguments for equating the
Einstein tensor to the energy momentum tensor (Gμν = κTμν),
and thus into analogues for Newton’s Law of Gravity, we
note simply in this paper that Eq. 17 is ultimately arrived
at throughGμν. By the symmetry present in Eq. 23 and our
arguments concerning the Poisson equation and Gauss’ The-
orem, our future objective is to use our understanding of Fig.
6 to obtain a rigorous derivation of Fig. 7.

Fig. 6: Einstein Tensor to Poisson

Fig. 7: Alternate EFE to Reduced Repulsive Poisson

We do this also in order to ask, should matter subject to
the force represented by the vector present in Fig. 7 become
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zero after traveling a certain radius from a massive body, what
occurs at radii larger than this? It is our motivation to deter-
mine whether this is a plausible explanation for phenomena
attributed to positive accelerating expansion.
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