January, 2013 PROGRESS IN PHYSICS Volume 1

The Elastodynamics of the Spacetime Continuum
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We derive the elastodynamics of the spacetime continuum by applying continuum me-
chanical results to strained spacetime. Based on this model, a stress-strain relation is
derived for the spacetime continuum. From the kinematic relations and the equilibrium
dynamic equation of the spacetime continuum, we derive a series of wave equations: the
displacement, dilatational, rotational and strain wave equations. Hence energy propa-
gates in the spacetime continuum as wave-like deformations which can be decomposed
into dilatations and distortions. Dilatations involve an invariant change in volume of
the spacetime continuum which is the source of the associated rest-mass energy density
of the deformation, while distortions correspond to a change of shape of the space-
time continuum without a change in volume and are thus massless. The deformations
propagate in the continuum by longitudinal and transverse wave displacements. This is
somewhat reminiscent of wave-particle duality, with the transverse mode correspond-
ing to the wave aspects and the longitudinal mode corresponding to the particle aspects.
A continuity equation for deformations of the spacetime continuum is derived, where
the gradient of the massive volume dilatation acts as a source term. The nature of the
spacetime continuum volume force and the inhomogeneous wave equations need further
investigation.

1 Introduction An infinitesimal element of the unstrained continuum is

Strained spacetime has been explored recently by Millette E?nﬁ racterized by a four-vectaf', wherey = 0,1,2,3. The

. . L e coordinate is® = ct.
from a continuum mechanical and general relativistic per- : . .
. . : : A deformationof the spacetime continuum corresponds
spective, and by Tartagliet al in the cosmological context, . S
: . : . to a state of th&sTCin which its infinitesimal elements are
as an extension of the spacetime Lagrangian, to obtain a

eralized Einstein equation [2, 3] g(ﬁrs]blaced from their unstrained position. Under deformation,
a o the infinitesimal element is displaced to a new positio#i +

moQZnstzﬁstntr?sEt]ént:oer raepsrﬂ:'?i(:] g::zisseii IL%”; tzsezrr;]eer I wherew is the displacement of the infinitesimal element
P 4Pk its unstrained positior-.

tinuum. The presence of strains as a result of applied stresse he spacetime continuum is approximated by a deforma-

is an expected continuum mechanical result. The strainslSF- linear elastic medium that obeys Hooke's law. For a gen-
sult in a deformation of the continuum which can be modelﬁfge

: . . al anisotropic continuum in four dimensions [4, see pp. 50—
as a change in the underlying geometry of the continuum. P [ PP
geometry of the spacetime continuum of General Relativity™’ EwoB,  _ Twv (1)
resulting from the energy-momentum stress tensor can thus ) ) w7

- . v
be seen as a representation of the deformation of the spA¢aeresas is the stre:;n. tensoT*”" is the energy-momentum
. . . . Va
time continuum resulting from the strains generated by tR&€SS tensor, ari”*” is the elastic moduli tensor. .
energy-momentum stress tensor. The spacetime continuum is further assumed to be isotro-
In this paper, we examine in greater details the elasto ic and homogeneous. This assumption is in agreement with

namics of the spacetime continuum as a framework for d8& conservation laws of energy-momentum and angular mo-
scribing strained spacetime. mentum as expressed by Noether’s theorem [5, see pp. 23—

30]. For an isotropic medium, the elastic moduli tensor sim-
plifies to [4]:

uvef _ v _af a VB B va
2.1 Model of the Elastodynamics of the Spacetime Con- B = 20(g™9™) + 1olg™ g™ + 9%9™) (2)
tinuum wherely andyg are the Larg elastic constants of the space-

. . . . time continuum. wq is the shear modulus (the resistance of
The spacetime continuurBTQ is modelled as a four-dimen- ) ) : . .
P 19 the continuum talistortiong and g is expressed in terms of

ional diferentiable manifold endowed with a metyig,. | : . ;
slona d ere tiable manifold endowed wit a etyg. It o, the bulk modulus (the resistance of the continuundito
is a continuum that can undergo deformations and supqa{t

the propagation of such deformations. A continuum that |satlons according to
deformed is strained. Ao = ko — pto/2 3

2 Elastodynamics of the Spacetime Continuum
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in a four-dimensional continuum. Ailatation corresponds Decomposition into Distortions and Dilatations
to a change of volume of the spacetime continuum without a _ _
change of shape while distortion corresponds to a change ~As also shown in [1], when the strain teng#t and the

of shape of the spacetime continuum without a change in vBergy-momentum stress tensét” are decomposed into a
ume. deviation tensor (thdistortion) and a scalar (thdilatation),

the strain-stress relation then becomes separated into dilata-
2.2 Stress-Strain Relation of the Spacetime Continuum tion and distortion relations:

Substituting Eq.(2) into Eq.(1), we obtain the stress-strain re- dilatation :t = 2(ug + 24g)€ = 4ko€ = ko€
lation for an isotropic and homogeneous spacetime contin- (11)
uum distortion :t* = 2uge"”
200" + Apge = TH 4
h where
where X & =" +eg"” (12)
e=¢&", (5)
. . . , with
is the trace of the strain tensor obtained by contraction. The ¢ = h _ et (13)
volume dilatations is defined as the change in volume per Y L Y 1 Y
original volume [6, see pp.149-152] and is an invariant of e= g% =¢ (14)
the strain tensor. o 4 4
It is interesting to note that the structure of Eq.(4) is singd similarly o
ilar to that of the field equations of General Relativity, viz. T =t +tg" (15)
1 with
R — > MR = —KTH* (6) t, =TH, —t", (16)
1 (07
whereK = 87G/c* andG is the gravitational constant. This t= ZT a: (17)

strengthens our conjecture that the geometry of the spacetimeryg gjstortion-dilatation decomposition is evident in the
continuum can be seen as a representation of the deformafjgengence of the dilatation relation on the bulk modugus

of the spacetime continuum resulting from the strains gengfy of the distortion relation on the shear modulgisThe di-

ated by the energy-momentum stress tensor. latation relation of Eq.(11) corresponds to rest-mass energy,
while the distortion relation is traceless and thus massless,
and corresponds to shear transverse waves. We also noted

As shown in [1], the contraction of Eq.(4) yields the reldD [1] that this decomposition of spacetime continuum defor-
mations into a massive dilatation and a massless transverse

Rest-Mass Energy Relation

tion
2o +200)e = T =T @) vvlive distortion is somewhat reminiscent of wave-particle du-
ality.
whereT?, corresponds to the invariant rest-mass energy den-
sity 3 Kinematic Relations
T% =T = pc? (8) The strains*” can be expressed in terms of the displacement

wherep is the rest-mass density. The relation between the ifi-through the kinematic relation [6, see pp. 149-152]:
variant volume dilatatios and the invariant rest-mass energy 1
density is thus given by g = E(u‘”v + U+ utu,”) (18)

2(uo + 220)e = pC* (9) where the semicolon (;) denotes covariarietentiation. For
small displacements, this expression can be linearized to give

or, in terms of the bulk modulug), the symmetric tensor

2

dioe = pC”. (10) o %(u’” U = ), (19)

As we noted in [1], this equation demonstrates that rest-
mass energy density arises from the volume dilatation of tA& use the small displacement approximation in this analysis.
spacetime continuum. The rest-mass energy is equivalent toAn antisymmetric tensap*” can also be defined from the
the energy required to dilate the volume of the spacetime c@#placementt'. This tensor is called the rotation tensor and
tinuum, and is a measure of the energy stored in the spaceti#féefined as [6]:
continuum as volume dilatation. The volume dilatation is an 1 . .
invariant, as is the rest-mass energy density. W= S U - ) = b, (20)
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Where needed, displacements in expressions derived fiomerchanging the order of flierentiation in the first term and
Eq.(19) will be written asy; while displacements in expresusing Eq.(22) to expressin terms ofu, this equation simpli-
sions derived from Eq.(20) will be written as. Using difer- fies to
ent symbolic subscripts for these displacements provides a re- oW, + (o + AU, = —X” (28)
minder that symmetric displacements are along the directioH. .

. - : ) o which can also be written as
of motion (longitudinal), while antisymmetric displacements
are perpendicular to the direction of motion (transverse). LoV + (o + Ao)s” = =X (29)
In general, we have [6]
This is thedisplacement wave equation
SettingX” equal to zero, we obtain the macroscopic dis-

where the tensar” is a combination of symmetric and antiPlacement wave equation
symmetric tensors. Lowering indexand contracting, we get

W = e + o (21)

the volume dilatation of the spacetime continuum VA = J%OAOS;V- (30)
Wy =&y =uly=¢ (22) 43 Ccontinuity Equation
where the relation Taking the divergence of Eq.(21), we obtain
Wy =ut, =0 (23) U, =+ "y (31)
has been used. Interchanging the order of partialftérentiation in the first

. . term, and using Eq.(22) to exprasi terms ofe, this equa-

4 Dynamic Equation tion simplifiestgt]) 2 P |

4.1 Equilibrium Condition '

Under equilibrium conditions, the dynamics of the spacetime Mty =g (32)

continuum is described by the equation [4, see pp. 88_89]Hence the divergence of the strain and rotation tensors equals
T = X" (24) the gradient of the massive volume dilatation, which acts as a

source term. This is the continuity equation for deformations

where X” is the volume (or body) force. As Wald [7, se®f the spacetime continuum.

p. 286] points out, in General Relativity the local energy den- .

sity of matter as measured by a given observer is well-defingd, Wave Equations

and the relation 5.1 Dilatational (Longitudinal) Wave Equation

=0 (25) Taking the divergence of Eq.(28) and interchanging the order
can be taken as expressing local conservation of the enefypartial diferentiation in the first term, we obtain
momentum of matter. However, it does not in general lead to
a global conservation law. The valX& = 0 is thus taken to (20 + W)U, = =X, (33)

represent the macroscopic local case, while Eq.(24) provides ) . . .
a more general expression. Using Eq.(22) to expressin terms ofg, this equation sim-

i

At the microscopic level, energy is conserved within gHifies to .
limits of the Heisenberg Uncertainty Principle. The volume (2uo + A0)e”, = =X, (34)
force may thus be very small, but not exactly zero. It agay
makes sense to retain the volume force in the equation, and (2uo + A0)VZe = -X.,. (35)

use Eq.(24) in the general case, while Eq.(25) can be used at

the macroscopic local level, obtained by setting the volume SettingX” equal to zero, we obtain the macroscopic lon-
force X” equal to zero. gitudinal wave equation

2
4.2 Displacement Wave Equation (2u0 + A0)V7e = 0. (36)

Substituting forT*” from Eq.(4), Eq.(24) becomes The volume dilatatiorr satisfies a wave equation known as
) vy the dilatational wave equation [6, see p.260]. The solutions
24108y + Aog ey = =X (26) of the homogeneous equation are dilatational waves which

and, using Eq.(19), are longitudinal waves, propagating along the direction of
motion. Dilatations thus propagate in the spacetime contin-

Ho(U™, + U™, + 208 = =X (27) uum as longitudinal waves.
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5.2 Rotational (Transverse) Wave Equation 6 Discussion and Conclusion
Differentiating Eq.(28) with respect 1§, we obtain In this paper, we have proposed a framework for the analy-
- » v sis of strained spacetime based on the elastodynamics of the
MU, + (o + AU, = =X (37) spacetime continuunS'CED. In this model, the emphasis

is on the displacements of the spacetime continuum infinites-
imal elements from their unstrained configuration as a result
of the strains applied on th&TCby the energy-momentum
Jo(UPH & — U Yy = (X - X), (38) stress tensor, rather than on the geometry ofSM€due to

the energy-momentum stress tensor.

Interchanging the order of partial fttrentiations and using ~ We postulate that this description based on the deforma-
the definition of the rotation tensay”® of Eq.(20), the fol- tion of the continuum is a description complementary to that

Interchanging the dummy indicegnda, and subtracting the
resulting equation from Eq.(37), we obtain the relation

lowing wave equation is obtained: of General Relativity which is concerned with modeling the
resulting geometry of the spacetime continuum. Interestingly,
oV = =X (39) the structure of the resulting stress-strain relation is similar to

that of the field equations of General Relativity. This streng-
whereX# is the antisymmetrical component of the gradiemttens our conjecture that the geometry of the spacetime con-

of the volume force defined as tinuum can be seen as a representation of the deformation of
1 the spacetime continuum resulting from the strains generated
X] = E(XW — X", (40) by the energy-momentum stress tensor. The equivalency of

the strain description and of the geometrical description still
SettingX” equal to zero, we obtain the macroscopic trangmains to be demonstrated.
verse wave equation The equilibrium dynamic equation of the spacetime con-
tinuum is described by*”,, = —X". In General Relativity,
V2w = 0. (41) the relationT*,, = 0 is taken as expressing local conserva-

) o e ) tion of the energy-momentum of matter. The vakie= 0
The rotation tensow/” satisfies a wave equation known ag 1hs taken to represent the macroscopic local case, while

the rotational wave equation [6, see p.260]. The solutiofsihe general case, the volume forke is retained in the

of the homogeneous equation are rotational waves which 8fiation. This dynamic equation leads to a series of wave
transvgrse waves, propagating perpendicular to the direc@a?;ations as derived in this paper: the displacemey di-

of motion. Massless waves thus propagate in the spacetigi§tional ¢), rotational (**) and strain£*) wave equations.

continuum as transverse waves. Hence energy is seen to propagate in the spacetime con-
tinuum as deformations of th8TCthat satisfy wave equa-
tions of propagation. Deformations can be decomposed into
A corresponding symmetric wave equation can also be @atations and distortionsDilatations involve an invariant
rived for the straire”. Starting from Eq.(37), interchangingchange in volume of the spacetime continuum which is the
the dummy indices anda, adding the resulting equation tasource of the associated rest-mass energy density of the de-
Eq.(37), and interchanging the order of partidfetientiation, formation. Distortions correspond to a change of shape of
the following wave equation is obtained: the spacetime continuum without a change in volume and
are thus massless. Dilatations correspond to longitudinal dis-
(42) placements and distortions correspond to transverse displace-
gflents of the spacetime continuum.
Hence, every excitation of the spacetime continuum can
be decomposed into a transverse and a longitudinal mode of
) }(XW XY, (43) p_ropagatior). We have noted that thi_s decomposition into a
2 dilatation with rest-mass energy density and a massless trans-
. . . verse wave distortion, is somewhat reminiscent of wave-parti-
SettlngXV equall to zero, we obtain the macroscopic SYle duality, with the transverse mode corresponding to the
metric wave equation wave aspects and the longitudinal mode corresponding to the
particle aspects.
(44) A continuity equation for deformations of the spacetime
continuum is derived; we find that the divergence of the strain
This strain wave equation is similar to the displacement waard rotation tensors equals the gradient of the massive volume
equation Eq.(30). dilatation, which acts as a source term.

5.3 Strain (Symmetric) Wave Equation

yoVZS‘W + (/,lo + /lo)&wV = —X(IJ;V)

whereX®") is the symmetrical component of the gradient
the volume force defined as

_Ho+ Ao s
Ho

V2€uv —
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The nature of the spacetime continuum volume force re-

mains to be investigated. In addition, the displacement, di-
latational, rotational and strain inhomogeneous wave equa-
tions need further investigation.
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