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We derive the elastodynamics of the spacetime continuum by applying continuum me-
chanical results to strained spacetime. Based on this model, a stress-strain relation is
derived for the spacetime continuum. From the kinematic relations and the equilibrium
dynamic equation of the spacetime continuum, we derive a series of wave equations: the
displacement, dilatational, rotational and strain wave equations. Hence energy propa-
gates in the spacetime continuum as wave-like deformations which can be decomposed
into dilatations and distortions. Dilatations involve an invariant change in volume of
the spacetime continuum which is the source of the associated rest-mass energy density
of the deformation, while distortions correspond to a change of shape of the space-
time continuum without a change in volume and are thus massless. The deformations
propagate in the continuum by longitudinal and transverse wave displacements. This is
somewhat reminiscent of wave-particle duality, with the transverse mode correspond-
ing to the wave aspects and the longitudinal mode corresponding to the particle aspects.
A continuity equation for deformations of the spacetime continuum is derived, where
the gradient of the massive volume dilatation acts as a source term. The nature of the
spacetime continuum volume force and the inhomogeneous wave equations need further
investigation.

1 Introduction

Strained spacetime has been explored recently by Millette [1]
from a continuum mechanical and general relativistic per-
spective, and by Tartagliaet al in the cosmological context,
as an extension of the spacetime Lagrangian, to obtain a gen-
eralized Einstein equation [2,3].

As shown in [1], the applied stresses from the energy-
momentum stress tensor result in strains in the spacetime con-
tinuum. The presence of strains as a result of applied stresses
is an expected continuum mechanical result. The strains re-
sult in a deformation of the continuum which can be modeled
as a change in the underlying geometry of the continuum. The
geometry of the spacetime continuum of General Relativity
resulting from the energy-momentum stress tensor can thus
be seen as a representation of the deformation of the space-
time continuum resulting from the strains generated by the
energy-momentum stress tensor.

In this paper, we examine in greater details the elastody-
namics of the spacetime continuum as a framework for de-
scribing strained spacetime.

2 Elastodynamics of the Spacetime Continuum

2.1 Model of the Elastodynamics of the Spacetime Con-
tinuum

The spacetime continuum (STC) is modelled as a four-dimen-
sional differentiable manifold endowed with a metricgμν. It
is a continuum that can undergo deformations and support
the propagation of such deformations. A continuum that is
deformed is strained.

An infinitesimal element of the unstrained continuum is
characterized by a four-vectorxμ, whereμ = 0,1,2,3. The
time coordinate isx0 ≡ ct.

A deformationof the spacetime continuum corresponds
to a state of theSTC in which its infinitesimal elements are
displaced from their unstrained position. Under deformation,
the infinitesimal elementxμ is displaced to a new positionxμ+
uμ, whereuμ is the displacement of the infinitesimal element
from its unstrained positionxμ.

The spacetime continuum is approximated by a deforma-
ble linear elastic medium that obeys Hooke’s law. For a gen-
eral anisotropic continuum in four dimensions [4, see pp. 50–
53],

Eμναβεαβ = Tμν (1)

whereεαβ is the strain tensor,Tμν is the energy-momentum
stress tensor, andEμναβ is the elastic moduli tensor.

The spacetime continuum is further assumed to be isotro-
pic and homogeneous. This assumption is in agreement with
the conservation laws of energy-momentum and angular mo-
mentum as expressed by Noether’s theorem [5, see pp. 23–
30]. For an isotropic medium, the elastic moduli tensor sim-
plifies to [4]:

Eμναβ = λ0(gμνgαβ) + μ0(gμαgνβ + gμβgνα) (2)

whereλ0 andμ0 are the Laḿe elastic constants of the space-
time continuum.μ0 is the shear modulus (the resistance of
the continuum todistortions) andλ0 is expressed in terms of
κ0, the bulk modulus (the resistance of the continuum todi-
latations) according to

λ0 = κ0 − μ0/2 (3)
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in a four-dimensional continuum. Adilatation corresponds
to a change of volume of the spacetime continuum without a
change of shape while adistortion corresponds to a change
of shape of the spacetime continuum without a change in vol-
ume.

2.2 Stress-Strain Relation of the Spacetime Continuum

Substituting Eq.(2) into Eq.(1), we obtain the stress-strain re-
lation for an isotropic and homogeneous spacetime contin-
uum

2μ0ε
μν + λ0g

μνε = Tμν (4)

where
ε = εαα (5)

is the trace of the strain tensor obtained by contraction. The
volume dilatationε is defined as the change in volume per
original volume [6, see pp. 149–152] and is an invariant of
the strain tensor.

It is interesting to note that the structure of Eq.(4) is sim-
ilar to that of the field equations of General Relativity, viz.

Rμν −
1
2
gμνR= −KTμν (6)

whereK = 8πG/c4 andG is the gravitational constant. This
strengthens our conjecture that the geometry of the spacetime
continuum can be seen as a representation of the deformation
of the spacetime continuum resulting from the strains gener-
ated by the energy-momentum stress tensor.

Rest-Mass Energy Relation

As shown in [1], the contraction of Eq.(4) yields the rela-
tion

2(μ0 + 2λ0)ε = Tαα ≡ T (7)

whereTαα corresponds to the invariant rest-mass energy den-
sity

Tαα = T = ρc2 (8)

whereρ is the rest-mass density. The relation between the in-
variant volume dilatationε and the invariant rest-mass energy
density is thus given by

2(μ0 + 2λ0)ε = ρc2 (9)

or, in terms of the bulk modulusκ0,

4κ0ε = ρc
2. (10)

As we noted in [1], this equation demonstrates that rest-
mass energy density arises from the volume dilatation of the
spacetime continuum. The rest-mass energy is equivalent to
the energy required to dilate the volume of the spacetime con-
tinuum, and is a measure of the energy stored in the spacetime
continuum as volume dilatation. The volume dilatation is an
invariant, as is the rest-mass energy density.

Decomposition into Distortions and Dilatations

As also shown in [1], when the strain tensorεμν and the
energy-momentum stress tensorTμν are decomposed into a
deviation tensor (thedistortion) and a scalar (thedilatation),
the strain-stress relation then becomes separated into dilata-
tion and distortion relations:

dilatation :t = 2(μ0 + 2λ0)e= 4κ0e= κ0ε

distortion :tμν = 2μ0eμν
(11)

where
εμν = eμν + egμν (12)

with
eμν = ε

μ
ν − eδμν (13)

e=
1
4
εαα =

1
4
ε (14)

and similarly
Tμν = tμν + tgμν (15)

with
tμν = Tμν − tδμν (16)

t =
1
4

Tαα. (17)

The distortion-dilatation decomposition is evident in the
dependence of the dilatation relation on the bulk modulusκ0
and of the distortion relation on the shear modulusμ0. The di-
latation relation of Eq.(11) corresponds to rest-mass energy,
while the distortion relation is traceless and thus massless,
and corresponds to shear transverse waves. We also noted
in [1] that this decomposition of spacetime continuum defor-
mations into a massive dilatation and a massless transverse
wave distortion is somewhat reminiscent of wave-particle du-
ality.

3 Kinematic Relations

The strainεμν can be expressed in terms of the displacement
uμ through the kinematic relation [6, see pp. 149–152]:

εμν =
1
2

(uμ;ν + uν;μ + uα;μuα
;ν) (18)

where the semicolon (;) denotes covariant differentiation. For
small displacements, this expression can be linearized to give
the symmetric tensor

εμν =
1
2

(uμ;ν + uν;μ) = u(μ;ν). (19)

We use the small displacement approximation in this analysis.
An antisymmetric tensorωμν can also be defined from the

displacementuμ. This tensor is called the rotation tensor and
is defined as [6]:

ωμν =
1
2

(uμ;ν − uν;μ) = u[μ;ν] . (20)

56 Pierre A Millette. The Elastodynamics of the Spacetime Continuum as a Framework for Strained Spacetime



January, 2013 PROGRESS IN PHYSICS Volume 1

Where needed, displacements in expressions derived from
Eq.(19) will be written asu‖ while displacements in expres-
sions derived from Eq.(20) will be written asu⊥. Using differ-
ent symbolic subscripts for these displacements provides a re-
minder that symmetric displacements are along the direction
of motion (longitudinal), while antisymmetric displacements
are perpendicular to the direction of motion (transverse).

In general, we have [6]

uμ;ν = εμν + ωμν (21)

where the tensoruμ;ν is a combination of symmetric and anti-
symmetric tensors. Lowering indexν and contracting, we get
the volume dilatation of the spacetime continuum

uμ;μ = ε
μ
μ = u‖

μ
;μ = ε (22)

where the relation

ωμμ = u⊥
μ

;μ = 0 (23)

has been used.

4 Dynamic Equation

4.1 Equilibrium Condition

Under equilibrium conditions, the dynamics of the spacetime
continuum is described by the equation [4, see pp. 88–89],

Tμν;μ = −Xν (24)

whereXν is the volume (or body) force. As Wald [7, see
p. 286] points out, in General Relativity the local energy den-
sity of matter as measured by a given observer is well-defined,
and the relation

Tμν;μ = 0 (25)

can be taken as expressing local conservation of the energy-
momentum of matter. However, it does not in general lead to
a global conservation law. The valueXν = 0 is thus taken to
represent the macroscopic local case, while Eq.(24) provides
a more general expression.

At the microscopic level, energy is conserved within the
limits of the Heisenberg Uncertainty Principle. The volume
force may thus be very small, but not exactly zero. It again
makes sense to retain the volume force in the equation, and
use Eq.(24) in the general case, while Eq.(25) can be used at
the macroscopic local level, obtained by setting the volume
forceXν equal to zero.

4.2 Displacement Wave Equation

Substituting forTμν from Eq.(4), Eq.(24) becomes

2μ0ε
μν

;μ + λ0g
μνε;μ = −Xν (26)

and, using Eq.(19),

μ0(uμ;νμ + uν;μμ) + λ0ε
;ν = −Xν. (27)

Interchanging the order of differentiation in the first term and
using Eq.(22) to expressε in terms ofu, this equation simpli-
fies to

μ0uν;μμ + (μ0 + λ0)uμ;μ
ν = −Xν (28)

which can also be written as

μ0∇
2uν + (μ0 + λ0)ε;ν = −Xν. (29)

This is thedisplacement wave equation.
SettingXν equal to zero, we obtain the macroscopic dis-

placement wave equation

∇2uν = −
μ0 + λ0

μ0
ε;ν. (30)

4.3 Continuity Equation

Taking the divergence of Eq.(21), we obtain

uμ;νμ = ε
μν

;μ + ω
μν

;μ. (31)

Interchanging the order of partial differentiation in the first
term, and using Eq.(22) to expressu in terms ofε, this equa-
tion simplifies to

εμν;μ + ω
μν

;μ = ε
;ν. (32)

Hence the divergence of the strain and rotation tensors equals
the gradient of the massive volume dilatation, which acts as a
source term. This is the continuity equation for deformations
of the spacetime continuum.

5 Wave Equations

5.1 Dilatational (Longitudinal) Wave Equation

Taking the divergence of Eq.(28) and interchanging the order
of partial differentiation in the first term, we obtain

(2μ0 + λ0)uμ;μ
ν
ν = −Xν;ν. (33)

Using Eq.(22) to expressu in terms ofε, this equation sim-
plifies to

(2μ0 + λ0)ε;νν = −Xν;ν (34)

or
(2μ0 + λ0)∇2ε = −Xν;ν. (35)

SettingXν equal to zero, we obtain the macroscopic lon-
gitudinal wave equation

(2μ0 + λ0)∇2ε = 0. (36)

The volume dilatationε satisfies a wave equation known as
the dilatational wave equation [6, see p. 260]. The solutions
of the homogeneous equation are dilatational waves which
are longitudinal waves, propagating along the direction of
motion. Dilatations thus propagate in the spacetime contin-
uum as longitudinal waves.
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5.2 Rotational (Transverse) Wave Equation

Differentiating Eq.(28) with respect toxα, we obtain

μ0uν;μμ
α + (μ0 + λ0)uμ;μ

να = −Xν;α. (37)

Interchanging the dummy indicesν andα, and subtracting the
resulting equation from Eq.(37), we obtain the relation

μ0(uν;μμ
α − uα;μμ

ν) = −(Xν;α − Xα;ν). (38)

Interchanging the order of partial differentiations and using
the definition of the rotation tensorωνα of Eq.(20), the fol-
lowing wave equation is obtained:

μ0∇
2ωμν = −X[μ;ν] (39)

whereX[μ;ν] is the antisymmetrical component of the gradient
of the volume force defined as

X[μ;ν] =
1
2

(Xμ;ν − Xν;μ). (40)

SettingXν equal to zero, we obtain the macroscopic trans-
verse wave equation

μ0∇
2ωμν = 0. (41)

The rotation tensorωμν satisfies a wave equation known as
the rotational wave equation [6, see p. 260]. The solutions
of the homogeneous equation are rotational waves which are
transverse waves, propagating perpendicular to the direction
of motion. Massless waves thus propagate in the spacetime
continuum as transverse waves.

5.3 Strain (Symmetric) Wave Equation

A corresponding symmetric wave equation can also be de-
rived for the strainεμν. Starting from Eq.(37), interchanging
the dummy indicesν andα, adding the resulting equation to
Eq.(37), and interchanging the order of partial differentiation,
the following wave equation is obtained:

μ0∇
2εμν + (μ0 + λ0)ε;μν = −X(μ;ν) (42)

whereX(μ;ν) is the symmetrical component of the gradient of
the volume force defined as

X(μ;ν) =
1
2

(Xμ;ν + Xν;μ). (43)

SettingXν equal to zero, we obtain the macroscopic sym-
metric wave equation

∇2εμν = −
μ0 + λ0

μ0
ε;μν. (44)

This strain wave equation is similar to the displacement wave
equation Eq.(30).

6 Discussion and Conclusion

In this paper, we have proposed a framework for the analy-
sis of strained spacetime based on the elastodynamics of the
spacetime continuum (STCED). In this model, the emphasis
is on the displacements of the spacetime continuum infinites-
imal elements from their unstrained configuration as a result
of the strains applied on theSTCby the energy-momentum
stress tensor, rather than on the geometry of theSTCdue to
the energy-momentum stress tensor.

We postulate that this description based on the deforma-
tion of the continuum is a description complementary to that
of General Relativity which is concerned with modeling the
resulting geometry of the spacetime continuum. Interestingly,
the structure of the resulting stress-strain relation is similar to
that of the field equations of General Relativity. This streng-
thens our conjecture that the geometry of the spacetime con-
tinuum can be seen as a representation of the deformation of
the spacetime continuum resulting from the strains generated
by the energy-momentum stress tensor. The equivalency of
the strain description and of the geometrical description still
remains to be demonstrated.

The equilibrium dynamic equation of the spacetime con-
tinuum is described byTμν;μ = −Xν. In General Relativity,
the relationTμν;μ = 0 is taken as expressing local conserva-
tion of the energy-momentum of matter. The valueXν = 0
is thus taken to represent the macroscopic local case, while
in the general case, the volume forceXν is retained in the
equation. This dynamic equation leads to a series of wave
equations as derived in this paper: the displacement (uν), di-
latational (ε), rotational (ωμν) and strain (εμν) wave equations.

Hence energy is seen to propagate in the spacetime con-
tinuum as deformations of theSTC that satisfy wave equa-
tions of propagation. Deformations can be decomposed into
dilatations and distortions.Dilatations involve an invariant
change in volume of the spacetime continuum which is the
source of the associated rest-mass energy density of the de-
formation. Distortions correspond to a change of shape of
the spacetime continuum without a change in volume and
are thus massless. Dilatations correspond to longitudinal dis-
placements and distortions correspond to transverse displace-
ments of the spacetime continuum.

Hence, every excitation of the spacetime continuum can
be decomposed into a transverse and a longitudinal mode of
propagation. We have noted that this decomposition into a
dilatation with rest-mass energy density and a massless trans-
verse wave distortion, is somewhat reminiscent of wave-parti-
cle duality, with the transverse mode corresponding to the
wave aspects and the longitudinal mode corresponding to the
particle aspects.

A continuity equation for deformations of the spacetime
continuum is derived; we find that the divergence of the strain
and rotation tensors equals the gradient of the massive volume
dilatation, which acts as a source term.
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The nature of the spacetime continuum volume force re-
mains to be investigated. In addition, the displacement, di-
latational, rotational and strain inhomogeneous wave equa-
tions need further investigation.
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4. Flügge W. Tensor Analysis and Continuum Mechanics. Springer-
Verlag, New York, 1972.

5. Kaku M. Quantum Field Theory; A Modern Introduction. Oxford Uni-
versity Press, Oxford, 1993.

6. Segel L.A. Mathematics Applied to Continuum Mechanics. Dover Pub-
lications, New York, 1987.

7. Wald R.M. General Relativity. The University of Chicago Press,
Chicago, 1984.

Pierre A Millette. The Elastodynamics of the Spacetime Continuum as a Framework for Strained Spacetime 59


