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In the framework of the Geometric Collective Model (GCM), quantum phase transition
between spherical and deformed shapes of doubly even nuclei are investigated. The
validity of the model is examined for the case of lanthanide chain$Mdnd actinide
chains THU. The parameters of the model were obtained by performing a computer
simulated search program in order to obtain minimum root mean square deviations be-
tween the calculated and the experimental excitation energies. Calculated potential en-
ergy surfaces (PES’s) describing all deformatidieets of each nucleus are extracted.
Our systematic studies on lanthanide and actinide chains have revealed a shape transi-
tion from spherical vibrator to axially deformed rotor when moving from the lighter to
the heavier isotopes.

1 Introduction for parameters corresponding to a point close to, but outside,
The nuclear shape transitions were studied within the rihe shape phase transition region of the IBM. Since the IBM
clear interacting boson model (IBM) [1-3]. The IBM-1 dewas formulated from the beginning in terms of creation and
scribes a system of a fixed number N of spin zero and t&onihilation boson operators, its geometric interpretation in
bosons (s and d bosons) subject to one- and two-body interms of shape variables is usually done by introducing a bo-
actions. The IBM-1 reveals a transparent algebraic structsmn condensate with two shape paramegeasndy through
with U(6) as the dynamical group. Varying six free paranthe intrinsic state formalism (coherent state) [21]. The pa-
eters of the model, one can reach three standard dynanaaieterg is related to the axial deformation of the system,
symmetries U(5), SU(3) and O(6) and two additional onagile y measures the deviation from axial symmetry. The
SU(3) and O(6) [2]. It turns out that these dynamical symequilibrium shape of the system is obtained by minimizing
metries provide an appropriate framework for the descriptithe intrinsic state. It is well know that the dynamical sym-
of low-energy collective motions of real nuclei with certaimetry associated with U(5) corresponds to a spherical shape
shape symmetries: The U(5) limit corresponds to spheriga: 0, the dynamical symmetry SU(3) is associated with an
nuclei, the SU(3) and SU(BJimits to axially symmetric nu- axially deformed shapé # 0 andy = 0,7/3 and the dynam-
clei with quadruple deformation (prolate and oblate shapésl symmetry O(6) is related tojyaunstable deformed shape
and the O(6) and O(6)imits to quadruply deformed nucleig # 0 andy-independent.

that are unstable against the axial symmetry breaking. ThisisA very flexible and powerful approach to describe nu-
represented in the so called Casten triangle [2,4] with vertiasar collective excitations which is an extension of the Bohr-
corresponding to the standard dynamical symmetries and Khettelson vibrational Hamiltonian [22] is the GCM essen-
other points to various transitional cases. Phase transititinly based on the quadruple degrees of freedom [23,24]. The
between these shapes were studied, and it is known thatgteblem of nuclear collective motion is formulated by Bohr
phase transition from U(5) to O(6) is second order, while aaypd Mottelson from the beginning in terms of the intrinsic pa-
other transition within the Casten triangle from a spherical tameterss, y and the three Euler angels that characterize

a deformed shape is first order [5-15]. the orientation of a deformed nucleus.

Alternative descriptions of nuclei at the critical point of The GCM is a macroscopic nuclear structure model in the
phase transitions from spherical vibrator to defornyesbft sense that it considers the nucleus as a charged liquid drop
E(5) [16], and from spherical vibrator to deformed axiallwith a definite surface, rather than a many-body system of
symmetric rotor X(5) [17], were proposed. These analytionstituent particles.
solutions are obtained by introducing a square well potential Neodymium isotopes are the members of the chain of nu-
in the Bohr Hamiltonian and yield parameter free predictiontei which represent an ideal case for studying the influence
for both energies and electromagnetic transition probabilitie$.the shape transition from spherical to deformed nuclei.
Empirical examples were suggested for both the proposéterefore, in the chart of nuclei there is a very important lan-
symmetries [18]. It was found [19, 20] that the X(5) predidhanide N@Sm transition region which exhibit a rapid struc-
tions cannot be exactly reproduced by any point in the two pgaral change from spherical to well deformed when moving
rameter space of the IBM, whereas best agreement is obtaifmedh the lighter to the heavier isotopes. Although this tran-

Khalaf A.M. and Ismail A.M. The Nuclear Shape Phase Transitions Studied Within the Geometric Collective Model 51



Volume 2 PROGRESS IN PHYSICS April, 2013

sitional region has been studied extensively in the framewakpressed in terms of the intrinsic variabfeandy, is
of the IBM, the discussion of phase transitions has not always

been treated in a proper way. V(8.y) = Cz-f°—Csrub \/%ﬁa cos(3) +
In the present paper, we have analyzed systematically the 104 2 .3
transitional region and phase transition in lanthanide and ac- +Ca5 8 - Cs v 175 COS(3) + 4
tinide chains of isotopes in the framework of GCM. For each +Cg 31556 cog(3y) + D¢ ﬁ@ﬁi
isotope chain a fitting procedure is performed to get the model
parameters. We have generated the PES to classify phase = Vs(B) + Vro(B, ) + Vna(B. )-

transitions and to decide if a nucleus is close to criticality.
In these chains, nuclei evolve from spherical to deform
shapes.

ughly speaking th€,, C; and Dg terms describe the-
independent features of the PES. They form the contribution
Vs(B). TheC3; andCs terms are responsible for the prolate-
2  The GCM Hamiltonian and the PES'’s oblate energy dierences in the PES and are represented by

The Hamiltonian of the GCM [23] represents a concrete r\épf’(ﬁ’ 7). The G term is symmetric about th’f = 7/6
alization of the general Bohr Hamiltonian [22] describing tHEIS and therefore can be US?d for the g_eneratlon of non ax-
guadruple oscillations of the nuclear surface. The coIIecti\% shapeVna(, 7.')' 'I_'he ;e!ectlon c.)f the e|gh.t parameters of
Hamiltonian restricted to quadruple deformations can be wiit- GCM Hamiltonian is impractical and ficult, because
ten in the notation of Rajah for tensor products of irreducib‘ilée a\{allab le obsgrvr?\tlon data are usually ndﬁept o .
tensor operators. The's are the well known collective CO_establlsh the quallta_\tlve nature of the GCM potential. It is
ordinates, which are defined by the usual expansion of {ngrefore, often desirable to use a more tractable form of the

nuclear radius in terms of spherical harmonics. Fhs the model. In practice simplification for the GCM is to use a

covariant tensor of the canonically conjugate momenta, ngimum of three parameters to describe all limits of nuclear
start by writing the GCM Hamiltonian as: structure: vibrator, rotor angl-soft nuclei and transition re-

gions in between. Then the potential energy up to the fourth

H=T+V @ power ofg is simplified to be:
~ 1 2 2 3 1 4
The kinetic energyl” up to second order is given by [2]. V(B.y) = Cz%ﬁ ~Cay/gehcos@) +Cagf” (B
.1 P whereg € [0, o] andy € [0, 2r/3].
T olrxd®+ (7 x a]® x 2] @)
2

3 Critical Point Symmetries

whereB; is the common mass parameter dhds an enhar- The equilibrium shape associated with the GCM Hamiltonian
monic kinetic term which for Simplicity, we set to zero herQ;an be obtained by determining the minimum of the energy
A transformation to the intrinsic body fixed system leads &rface with respect to the geometric variatgesndy, i.e.

a formal separation of the rotational and vibrational variabl@gere the first derivative vanish.

expressed by the Euler angles and the shape paramieteds  Since the paramet&; controls the steepness of the po-

y respectively. The potential enerlyyis given by tential, and therefore, the dynamical fluctuationg,iit stron-
0 gly affects the energies of excited intrinsic states. The param-
V = Cyaxa]® +C3[[a x a]® xa] + eterC; = 0 gives ay-flat potential and an increase 6%

introduces ay-dependence in the potential with a minimum
aty = 0. ChangingCs will indeed induce a-unstable to the
+Csla x ]© [[a x a]® x a](o) + 3) symmetric rotor transition; it is best to simultaneously vary
C, andC4 as well.
+Cs [[a x a]@ x a](o) [[w x a]® x a](o) + The shape transition from vibrator to rotors is achieved
by starting from the vibrator limit, lowerin@, from positive
to negative value, increasir@, to large positive value, with
gradually increasin@; (lowering C, from positive to nega-
The six stifness parametef3,, Cs, Cs, Cs, Cg andDg occur- tive value, introducing a large positivg and a positiveCs).
ring in the collective potential energy are constants for each ) _ ) )
nucleus. They are treated as adjustable parameters whichNumerical Results Applied to Lanthanide and Actin-
have to be determined from the best fit to the experimental ide chains
data, level energies, B(E2) transition strengths aiitie first nucleus to be identified as exhibiting transition from
quadruple moments. They depend however on the proton aptlerical to axially deformed shapes wa&sSm [18], fol-
neutron numbers due to shell structure. The potential enefgwed by°°Nd [24]. Further work ort®2Sm [25] and"*°Nd

+Cyla x a]Oa x o] O+

+Dgla x @] Oa x @] Oa x a]©.

52 Khalaf A.M. and Ismail A.M. The Nuclear Shape Phase Transitions Studied Within the Geometric Collective Model



April, 2013 PROGRESS IN PHYSICS Volume 2

[25, 26] reinforced this conclusion. In our calculation we willegion. Relatively flat PES occur for theN86 nuclei*45Nd
examine and systematically study the lanthanitfe'>*Nd and'#®Sm. A first order shape phase transition with change in
and146-156sm isotopes and actinid@*234Th and?3%-238y number of neutrons when moving from the lighter to heavier
isotopes because of the richness of available experimeigatopesj.e U(5) - SU(3) transitional region are observed.

data indicating a transition of nuclear shapes from spherical

to deformed form. The optimized model parameters fores 143Nd , 146Nd
Table 1: The GCM parameters by (MeV) as derived in fitting proc g ! \/ g !
dure used in the calculation. z . Z .
= P
Nucleus C, Cs Cy 1 1
T4Nd | 12.46084 | 1.06407 | —26.29034 rooos ; o5 1 tomsogo0s
16Nd | 7.98904 | 8.46249 | -5.34827 - 150
148N | ~10.84450| 41.41216 | 105.62500 Nd : Nd
150Nd | -56.19267| 83.37305 | 248.96600 g o o
152Nd | -73.70551| 104.57310| 319.48270 = =
154Nd | —84.13947| 118.02790| 362.71460 =, g,
12 12
1465m | 14.49576 | 1.27688 | —30.52593 105 0 05 1 1 05 0 05 1
148Sm | 8.89235 | 9.87290 | -5.28215 P P
1505m | —23.19850| 47.32818 | 121.87500 *##Nd o (Nd
152Sm | —63.80397| 93.79468 | 281.39990 -0 -0
1545m | —82.44842| 116.19230| 356.21830 z, z,
156Sm | —93.05583| 129.83070| 400.10950 g . &,
224Th | 055766 | 4.96951 |  6.10300 Ces 0 o 1 T as o ae
226Th | -0.11521 | 6.38937 9.70762 ® B
228Th | —0.83906 | 7.98671 13.68875 _ _ )
230TH | —1.63871 | 9.76153 18.10188 Flg.ﬁl;c PEﬁ calcurllatedtthh _Ct-}_CMf asa furr:ctl_onlctnf the Isrlapde ?aramd-
eterg fors ape phase transition from sphnherical to prolate aetorme:
232Th | -2.59264 | 11.71384 | 23.12250 for Neodymium isotope chait* 154N,
2223 _;ggggg fi77611358?’4 ;2;?32; _ The present results fore-156Sm is in good agreement
234 _3'77666 13.84363 28'92012 with N|Isson—Strutlnsky (_BCS)—caIchanns [26]. However,
236 ‘4'90299 16.15090 34.85125 the eX|st_ence of a bump in the PES is related _to the success of
238 _6.23928 18.63565 41'51437 the confinegs-soft (BCS) rotor model, employing an infinite
o : : square well potential displaced from zero, as well as to the

relevance of Davidson potentials [27, 28]. It also is related

nucleus was adjusted by fitting procedure using a computhe significant five-dimensional centrifugdfet [28, 29].
simulated search program in order to describe the gradiiie actinide??®-234Th and?**238 are all well-deformed ro-
change in the structure as neutron number varied and totess with energy ratide(4;)/E(2;) close to (33).

produce the properties of the selected reliable state of positive

Conclusion

parity excitation (2, 47,67, 87,05, 23,47,27,3],and 4) and
the two neutron separation energies of all isotopes in each i8osimple approach of the GCM is discussed which repro-
topic chain. The resulting parameters are listed explicitly duces the basic features of the three limits of the nuclear
Table 1. For the isotopic chains investigated here, the collstructure: spherical vibrator, axially symmetric rotor gnd

tive properties are illustrated by representing the calculatut rotor, as well as the three phase shape transition regions
PES describing all deformatiorffects of the nucleus. We in-linking them. The Hamiltonian is expressed as a series ex-
vestigated the change of nuclear structure within these chgassion in terms of surface deformation coordinates and a
as illustrated in Figures 1-4. The PES'’s versus the deforncanjugate momentum. We considered only the lowest kinetic
tion parameteg for lanthanide and actinide isotopic chains agnergy terms, so that the eigen problem for our Hamiltonian
nuclei evolving from spherical to axially symmetric well dereduces to Schrodinger equation in five dimensional spaces.
formed nuclei. We remark that for all mentioned nuclei, th&ll calculations are performed for reference value of the com-
PES is not flat, exhibiting a deeper minimum in the prolateon mass parameter, only a maximum of three parameters of
(8 > 0) region and a shallower minimum in the oblgge{0) the truncated form of GCM potential instead of the six are
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Fig. 2: PES calculated with GCM as a function of the shape paraRig. 4: PES calculated with GCM as a function of the shape param-
eterg for shape phase transition from spherical to prolate deformeigrg for shape phase transition from spherical to prolate deformed
for Samarium isotope chafi®156sm.
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for Uranium isotope chaiff®238y,

used. The parameter values for the description of a particu-
lar nucleus have been found through automated fitting of the
nuclear energy levels.

The systematics of shape transitions versus neutron num-
ber is studied by the GCM. The capabilities of the model and
the illustrative way of representing the collective properties
by potential energy surfaces are demonstrated. For neutron
number N= 90, the nucleus has a substantial static deforma-
tion, but for N= 80 the nucleus is soft or transitional and
cannot be described as deformed.
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