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The paper proposes a simplified theoretical approach to infer some essential concepts
on the fundamental interactions between charged particles and their relative strengths
at comparable energies by exploiting the quantum uncertainty only. The worth of the
present approach relies on the way of obtaining the results, rather than on the results
themselves: concepts today acknowledged as fingerprints of the electroweak and strong
interactions appear indeed rooted in the same theoretical frame including also the basic
principles of special and general relativity along with the gravity force.

1 Introduction

The state of a classical particle is specified by its coordinates
and momentum; the dynamical variablesx, px, y, py, z, pz, as-
sumed known at any time, define the 6-dimensional space
usually called “phase space”. Knowing the state of a parti-
cle means determining these six quantities that describe its
motion and energy. Since the state of a classical system is
identified by the distribution of corresponding points in the
phase space, any finite volumeVps = (δxδyδz)(δpxδpyδpz)
should seemingly contain an infinite number of states. Be-
cause of the uncertainty principle, however, these six quanti-
ties are not simultaneously known; the impossibility of defin-
ing the corresponding points in the phase space compels in-
stead introducing a lower limit to the volume of phase space
physically significant. Since such an elementary volume has
sizeVo

ps = (dxdydz)(dpxdpydpz) = ~3, any finite volumeVps

enclosing measurable combinations of coordinates and con-
jugate momenta consists of a finite numberVps/Vo

ps of el-
ementary volumes. The quantum uncertainty was inferred
by W. Heisenberg as a consequence of the operator formal-
ism of wave mechanics, on which relies the quantum theory:
the wave functionψ = ψ(x, t) replaces the lack of definable
quantum values ofx concurrently associable to the conju-
gate px. However most physicists believe unsatisfactory a
theory based on the wave functionψ without direct physical
meaning [1]; indeedψψ∗ only has the statistical meaning of
probability density and contains the maximum information
obtainable about a physical system. The wave function char-
acterizes a pure state, represented by a single ”ket” vector
to which corresponds a well defined eigenvalue, whereas in
general a particle is found in a mixture of states; so the re-
sult of a measurement on a quantum state represents a prob-
ability distribution of finding the particle in a given volume
of phase space. The density matrix is the mathematical tool
to describe mixed quantum states by means of a distribution
function of coordinates and momenta. Owing to the statis-
tical character of the knowledge we can afford in the quan-
tum world, the Wigner functionW(x, p) [2] aims to repre-
sent a quantum state in terms of a joint probability distri-
bution involving both coordinates and momenta, in formal
analogy with the classical statistics; the former is therefore

a correction to the latter. The quantumx and p distributions
are appropriately described by the respective marginal dis-
tributions ∫

+∞
−∞ W(x, p)dp and ∫

+∞
−∞ W(x, p)dx under the nor-

malization condition∫
+∞
−∞ ∫

+∞
−∞ W(x, p)dpdx= 1, whereas the

expectation value for any operator function is weighed by
W(x, p) as ∫

+∞
−∞ ∫

+∞
−∞ W(x, p) f (x, p)dpdx. Other relevant fea-

tures ofW(x, p), well known [3], are omitted here for brevity.
Also the Wigner function, however, although providing sig-
nificant information about the quantum states, presents con-
ceptual difficulties: it is not a real probability distribution in
the classical sense, it is a quasi-probability that can even take
negative values; moreover it can represent the average value
of an observable but not, in general, also its higher power
moments.

To bypass both these difficulties inevitably inherent the
wave formalism, the present theoretical model implements an
approach conceptually different: it exploits directly the sta-
tistical formulation of quantum uncertainty, which therefore
becomes itself a fundamental assumption of the model and
reads in one space dimension

ΔxΔpx = n~ = ΔtΔε. (1,1)

This set of 2n equation disregards since the beginning the
local dynamical variables of the particles forming the quan-
tum system and simply counts its numbern of allowed states.
Are therefore required the following positions

xi → Δxi , t → Δt, i = 1..3. (1,2)

No hypotheses are made about the uncertainty ranges,
which are by definition unknown, unknowable and arbitrary.
In quantum mechanics the square complex wave function of
space and time variables contains the maximum information
about a quantum system, which has therefore probabilistic
character. The present model intends instead starting from a
minimal information about any quantum system, still based
on the failure of the physical concept of points definable in
the quantum phase space but trusting on the idea that a min-
imum information is consistent with the maximum general-
ity: despite the knowledge of one dynamical variable only is
in principle allowed even in the quantum world, the present
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model disregards “a priori” the local values of both conjugate
dynamical variables. This means renouncing even to the con-
cept of probability density provided by the wave function of a
particle, while also disregarding the related concept of wave
packet to describe its propagation; in the present model it is
only possible to say that if the particle moves during a time
rangeΔt throughout its uncertainty rangeΔx, then its average
velocity component isvx = Δx/Δt regardless of any local fea-
ture of its actual delocalization motion. So eqs (1,1) require
by definitionΔε = vxΔpx. In fact the positions (1,2) ignore
both local dynamical variables, not as a sort of approximation
to simplify some calculation but conceptually and since the
early formulation of any quantum problem; accordingly, the
delocalization of a quantum particle in its uncertainty range
is conceived in its most agnostic form, i.e. waiving any kind
of information about its position and motion. Thus, regarded
in this way, eqs (1,1) exclude the concept itself of probability
density and contextually also the definition of Wigner func-
tion linking the Schrodinger equation to the marginal distri-
butions in the phase space; both equations are bypassed along
with the concept of wave equation itself. Eqs (1,1) merely list
the eigenvalues of pure states, indeed they are a set of equa-
tions corresponding to the respective values ofn; so they also
skip the probability with which in a mixed state each eigen-
value could be measured. Despite waiving themselves the
concept of probability density through the positions (1,2), eqs
(1,1) enable however also this kind of probabilistic informa-
tion; it is essential indeed to mention that the wave formalism
is obtainable as a corollary of eqs (1,1) [4], which means that
all considerations previously introduced are in fact comprised
also in the present theoretical model: one infers first from eqs
(1,1) the operator formalism and then proceeds as usual. In
this way the wave formalism, with its conceptual weakness,
loses its rank of fundamental root of our knowledge about
the quantum world, becoming indeed a mere by-product of
eqs (1,1); yet, even so it still represents an added value to the
physical information by introducing the concept of probabil-
ity density that partially overcomes the total agnosticism of
eqs (1,1).

What however about the chance of formulating any phys-
ical problem exploiting directly the eqs (1,1) only? Is legiti-
mate the belief that the equations enclosing conceptually the
wave formalism as a corollary also enclose the inherent phys-
ical information. The question that arises at this point con-
cerns just the real chance of obtaining physical information
once abandoning the typical ideas and mathematical tools of
wave mechanics: is really redundant the concept of proba-
bility density? Several papers have demonstrated the effec-
tiveness of this alternative approach, e.g. [5,6]; moreover,
without the need of hypotheses onn and on the uncertainty
ranges defined by eqs (1,1), the paper [7] has shown the pos-
sibility of extending the mere quantum horizon of these equa-
tions, initially concerned, also to the special and general rel-
ativity. The positions (1,2) compel focusing the attention on

the uncertainty ranges and related numbers of states, i.e. on
the phase space, rather than on the specific coordinates of
the particles concerned by the particular physical problem.
In fact, the local dynamical variables are conceptually dis-
regarded since the beginning in the present model. Put for
instanceΔx = x − xo: if either boundary coordinate, sayxo,
is defined by the origin of the coordinate systemR, then it
determines the position ofΔx in R; the other boundary coor-
dinatex determines its size. The crucial point is that bothxo

andx are arbitrary, unknown and unknowable by fundamen-
tal assumption; the reference systemR is therefore ”a priori”
arbitrary, unspecified and unspecifiable as well, whence the
equivalence of all reference systems whenever implementing
the positions (1,2) to describe the quantum world. Otherwise
stated, eqs (1,1) do not specify any particular reference sys-
tem because analogous considerations hold for all uncertainty
ranges they introduce. Moreovern is itself arbitrary as well; it
merely symbolizes a sequence of numbers of allowed states,
not some specific value in particular. Let therefore eqs (1,1)
be defined in anyRand rewrite them asΔx′Δp′x = n′ = Δε′Δt′

in any R′: it is self-evident that actually these equations are
indistinguishable becausen andn′ do so as well. Whatever
a specific value ofn might be inR, any change ton′ e.g.
because of the Lorentz transformations of the ranges is phys-
ically irrelevant: it means replacing an arbitrary integer in
the former set with another integer of the latter set. In ef-
fect, two examples of calculation reported below highlight
that modifying the range sizes from primed to unprimed val-
ues does not affect any result, in agreement with their pos-
tulated arbitrariness: no range size is expected to appear in
the quantum eigenvalues. Hence the eqs (1,1) have general
character, regardless of any particular reference system to be
appropriately specified; this holds also ifRandR′ are inertial
and non-inertial, since no hypothesis has been assumed about
them [7]. On the one hand this entails obtaining the indis-
tinguishability of identical particles as a corollary, regardless
of which particle in a set could be that actually delocalized
in a given uncertainty range; indeed no particle is specifically
concerned “a priori”. On the other hand it also entails that
the properties of motion of the particle, and thus the marginal
distributions of its dynamical variables, are disregarded by as-
sumption and skipped by consequence when formulating any
physical problem. To better understand the following of the
paper, these remarks are now exemplified examining shortly
the non-relativistic quantum angular momentumM , on the
one side to highlight how to exploit the positions (1,2) and on
the other side to show why the minimal information accessi-
ble through eqs (1,1) is in fact just that available through the
usual operator formalism of wave mechanics.

Consider the classical componentMw = r × p ∙ w of M
along an arbitrary direction defined by the unit vectorw, be-
ing r the radial distance of any particle from the origin of
an arbitrary reference system and its momentum. The po-
sitions (1,2) compelr → Δr and p → Δp and enable the
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numberl of states to be calculated only considering the total
rangesΔr andΔp of distances and momenta physically al-
lowed to the particle, about which no hypothesis is necessary;
let us show that the random local valuesr andp themselves
have instead no physical interest. SoMw = (Δr × Δp) ∙ w =

(w × Δr ) ∙ Δp, i.e. Mw = ΔW ∙ Δp, whereΔW = w × Δr .
If and ΔW are orthogonal, thenMw = 0; else, rewriting
ΔW ∙ Δp as(Δp ∙ ΔW/ΔW)ΔW with ΔW = |ΔW|, the com-
ponent±ΔpW = Δp ∙ ΔW/ΔW of Δp alongΔW yields Mw =

±ΔWΔpW.

Thus, according to eqs (1,1),Mw = ±l~, beingl the usual
notation for the number of states of the angular momentum.
As expected,Mw is a multi-valued function because of the
uncertainties initially postulated forr and p. One compo-
nent ofM only, e.g. along thez-axis, is knowable; repeating
the same approach for they and x components would triv-
ially mean changingw. Just this conclusion suggests that
the average values< M2

x >, < M2
y > and< M2

z > should
be equal; so the quantity of physical interest to describe the
properties of quantum angular momentum isl, as a function
of which M2 is indeed inferred as well. The components av-
eraged over the possible states summing (l~)2 from−L to+L,
whereL is an arbitrary maximum value ofl, yield < M2

i >=∑li=L
li=−L (~l)2/(2L+1) and thusM2 =

∑3
i=1 < M2

i >= L(L+1)~2.

The physical definition of angular momentum is enough
to find quantum results completely analogous to that of the
wave mechanics even disregarding any local detail about the
angular motion. This result has been reminded here as it in-
troduces several significant considerations useful in the fol-
lowing: (i) eqs (1,1) and the positions (1,2) plug the classical
physics into the quantum world; (ii) no hypothesis is neces-
sary about the motion of the particle nor about its wave/matter
nature to infer the quantum result; (iii) trivial algebraic ma-
nipulations replace the solution of the pertinent wave equa-
tion; (iv) the result inferred through eqs (1,1) only is consis-
tent with that of the wave mechanics; (v) the local distance
between the particles concerned in the angular motion does
not play any role in determiningl; (vi) the number of allowed
states plays actually the role of angular quantum number of
the operator formalism of wave mechanics; (vii) the amount
of information accessible for the angular momentum is not
complete like that of the classical physics, but identical to
that of the wave formalism; (viii) eqs (1,1) rule out “a priori”
any chance of hidden variables hypothetically encodable in
the wave function, i.e. local values of any kind that could in
principle enhance our knowledge aboutMw andM2 to obtain
a more complete description of the angular quantum system;
(ix) the eigenvalues, i.e. the physical observables, are actu-
ally properties of the phase space rather than properties of
specific particles, whence the indistinguishability of identical
particles here inferred as a corollary of eqs (1,1); (x) the num-
bers of states are here simply counted; (xi) the positions (1,2)
are consistent with the concept of classical coordinate in the

limit caseΔx → 0, which means that the random local vari-
ablexo ≤ x ≤ x1 tends to a classical local value uniquely and
exactly defined; (xii) the total arbitrariness of the boundary
values of the ranges is necessary to ensure that any local value
is allowed for the corresponding classical variables; (xiii) the
range sizes do not play any role in determining the eigenval-
ues of angular momentum, their conceptual reality, i.e. the
total uncertainty about both conjugate dynamical variables of
a quantum particle, is the unique hypothesis of the present
model. The same holds of course for any other uncertainty
range.

These ideas have been extended and checked in the papers
[5,6] also for more complex quantum systems like hydrogen-
like and many electron atoms/ions and diatomic molecules;
also these papers allowed concluding that eqs (1,1) efficiently
replace the standard approach of wave mechanics, without
requiring the concept of probability density and thus without
need of calculating marginal distributions in the phase space
through the Wigner functions. In these papers the interac-
tion is described via the Coulomb potential energy between
charged particles; in other words, one assumes already known
the Coulomb law to calculate for instance the energy levels of
hydrogenlike atoms. This point is easily highlighted consid-
ering for simplicity the non-relativistic hydrogenlike energy
levels; also this topic, already introduced in [5], is reported
here for completeness.

Assuming the originO of an arbitrary reference system
R on the nucleus, the classical energy isε = p2/2m− Ze2/r
beingm the electron mass. Sincep2 = p2

r + M2/r2, the po-
sitions (1,2)pr → Δpr and r → Δr yield ε = Δp2

r /2m +

M2/2mΔr2 − Ze2/Δr. Two numbers of states, i.e. two quan-
tum numbers, are expected because of the radial and angu-
lar uncertainties. Eqs (1,1) and the previous result yieldε =

n2~2/2mΔr2 + l(l + 1)~2/2mΔr2 − Ze2/Δr that readsε = εo +

l(l + 1)~2/2mΔr2 − Eo/n2 with Eo = Z2e4m/2~2 andεo =

(n~/Δr − Ze2m/n~)2/2m. Minimize ε puttingεo = 0, which
yields Δr = n2~2/Ze2m and ε = [l(l + 1)/n2 − 1]Eo/n2;
so l ≤ n − 1 in order to getε < 0, i.e. a bound state.
Putting thusn = no + l + 1 one finds the electron energy
levelsεel = −Eo/(no + l + 1)2 and the rotational energyεrot =

l(l+1)Eo/n4 of the atom as a whole aroundO. Hold also here
all considerations introduced for the angular momentum, in
particular it appears that the range sizes do not play any role
in determining the energy levels. The physical meaning of
Δr, related to the early Bohr radius, appears noting that

εel = −
Eo

n2
= −

Ze2

2Δr
, Δr =

n2~2

Ze2m
, Eo =

Z2e4m
2~2

, (1,3)

i.e. εel is due to charges of opposite sign delocalized within
a diametric distance 2Δr apart. As previously stated, nucleus
and electron share a unique uncertainty radial range: in gen-
eral, the greaterm, the closer its delocalization extent around
the nucleus. Also note thatn and l are still properties of the
phase space, but now they describe the whole quantum sys-

58 Sebastiano Tosto. Quantum Uncertainty and Fundamental Interactions



April, 2013 PROGRESS IN PHYSICS Volume 2

tem ”nucleus+ electron” rather than the nucleus and the elec-
tron separately. Since the first eq (1,3) does not depend ex-
plicitly on the kind of particles forming the concerned hydro-
genlike atom,m or the reduced mass are actually hidden into
Δr; it is possible to linkεel to the known conditionnλ = 2πΔr,
according which an integer number of steady electron wave-
lengths is defined along a circumference of radiusΔr. For
such electron waves one finds

εel = −
πZe2

nλ
= −

α

n
Zpλc

2
, pλ =

h
λ
, α =

e2

~c
. (1,4)

Note that introducingα to express the quantum energy
levels compels defining the De Broglie momentum. Even in
this form εel is still related to the reduced mass of the sys-
tem, which can be introduced via the momentumpλ; thus eq
(1,4) holds in general for any system of charges. Moreover,
the factorZ/2 apart, appears interesting that the energy levels
of the systemεel are linked to the kinetic energypλc of the
running electron wave circulating along the circumference of
radiusΔr via the coefficientα/n. On the one hand, this result
emphasizes the electromagnetic character of the interaction
between electron and nucleus; on the other hand, the key role
of the quantum uncertainty in determining the allowed energy
levels of eqs (1,3) also evidences the kind of interaction itself.
The more general question that arises at this point is therefore:
do eqs (1,1) provide themselves any hint also about the phys-
ical essence of the fundamental interactions? The standard
model [8-11] provides a satisfactory description of the funda-
mental forces of nature. So the present paper does not aim
to replicate the electro-weak model or the chromodynamics,
which indeed would be useless and unexciting; nevertheless
seems useful to propose a simplified approach aimed to show
(i) that the fundamental interactions are inferable from eqs
(1,1) only and (ii) that exists a unique conceptual root com-
mon to all fundamental interactions. This task is in effect
particularly valuable because the present model has already
accounted for the gravity force [7] and for the basic princi-
ples of special and general relativity.

The purpose of the paper is to examine the ability of eqs
(1,1) to describe also other kinds of possible interactions and
their relative strengths at comparable energies; it will be also
shown that further information is obtained about the vector
bosons associated with the respective kinds of interactions.
Therefore the worth of the present paper rests mostly on the
chance of finding concepts today known as fingerprints of the
electroweak and strong interactions in the frame of a unique
logical scheme based on the quantum uncertainty and includ-
ing the relativity. The paper [7] has somewhat concerned
the electromagnetic interactions, while also showing that all
concepts of quantum wave formalism are indeed obtained
through the present approach. Here we concern in particular
the weak and strong interactions between nuclear and sub-
nuclear particles. The next sections will describe the possible
features of these interactions.

2 Physical background of the interactions

Let us show that the concept of interaction relies in the frame
of the present model entirely on eqs (1,1). Consider first an
isolated particle of massm and momentum componentp∞x
free to move in an ideal infinite range. When confined in a
time-space uncertainty rangeΔx, however, its energy changes
by an amountΔε given by

Δp2
x/2m= (n~)2/2mΔx2, Δpx = pcon f

x − p∞x ;

i.e. Δpx is by definition the range including any change of
local momentum componentpx occurring when the free par-
ticle turns from a non-confined to a confined state withinΔx.

Since no process occurs instantaneously in nature, letΔt
be the confinement time range corresponding toΔpx: to the
confinement process corresponds thus the arising of a force
field whose componentΔFx = Δpx/Δt = Fcon f

x − F∞x is re-
lated toΔε, being clearlyΔFx = Δε/Δx = Δp2

x/2mΔx3. By
definitionΔFx includes any randomF∞x ≤ Fx ≤ Fcon f

x : in
the present model the local dynamical variables are replaced
by corresponding ranges of values, so the classical forceFx

at the local coordinatex is replaced by a range of possible
forces active withinΔx. Actually the resultΔpx/Δt = Δε/Δx
could have been inferred directly from eqs (1,1) without need
of any remark; yet these considerations highlight that a force
field in a space time uncertainty range is the only information
available on the particle once accepting the eqs (1,1) as the
unique assumption of the model.

Clearly, once concerning one particle only, energy and
force component cannot be related to any form of interaction;
rather both have mere quantum origin. Also,Δε andΔFx

tend obviously to zero forΔx → ∞; hence if p∞x changes
to pcon f

x concurrently with the arising of a force component
acting on the particle, thenp∞x must be constant by defini-
tion as it represents the momentum of the particle before its
confinement driven perturbation. This again appears from the
standpoint of eqs (1,1):Δx → ∞ requiresΔpx → 0 for any
finite number of states regardless ofΔt. Since an uncertainty
range infinitely small tends to a unique classical value of its
corresponding quantum random variable and since this holds
regardless ofΔt, then the limit value must be a constant: so
p∞x = constcorresponds by necessity toF∞x = 0.

Despite the present model allows reasoning onΔFx only,
a first corollary is the inertia principle that holds for a lonely
particle in an infinite space time delocalization range. Other
interesting consequences follow for any finiteΔx = x2 − x1:
the notation emphasizes that instead of considering the parti-
cle initially in an infinite unconfined range, we are now inter-
ested to describe its behavior in a confined state, e.g. in the
presence of two infinite potential wallsΔx apart. Clearly this
means introducing the correspondingΔpx = pcon f

2 − pcon f
1 :

again the eqs (1,1) compel writingΔε/Δx = Δp2
x/2mΔx3

when p∞x has turned into a localpcon f
1 ≤ px ≤ pcon f

2 , which
entails once moreΔFx = Δpx/Δt within Δx. These ideas are
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now extended to the interaction forces. Rewrite first the force
field componentΔε/Δx = Δp2

x/2mΔx3 of a particle confined
within Δx as follows

ΔFx =
~2

2
n
m

n
V
, V = Δx3. (2,1)

Even the one-dimensional case defines the delocalization
volumeV because, beingΔx, Δy andΔz arbitrary, any value
allowed toΔxΔyΔz is also allowed toΔx3. Is crucial the fact
that the range of each force component is proportional ton/m,
number of allowed states per unit mass, timesn/V, num-
ber of allowed states per unit delocalization volume. Con-
sider now two free particlesa andb in their own uncertainty
rangesΔxa andΔxb; hold separately for them the relation-
shipsΔεa = (na~)2/2maΔx2

xa andΔεb = (nb~)2/2mbΔx2
xb.

These particles are non-interacting, as theirna andnb are as-
sumed independent each other likeΔxa andΔxb themselves;
nothing in these equations accounts for the most typical and
obvious consequence of any kind of interaction, i.e. some
relationship between their allowed states or between their de-
localization ranges. Two free particles do not share by defi-
nition any kind of link, any possible coincidence of allowed
states would be accidental and transient only. Consider now
their possible interaction; a reasonable chance of linking their
allowed states is to assume, for instance, that the particles
share the same uncertainty range. IfΔx is unique for both par-
ticles, then their allowed states must be somehow linked be-
cause of eqs (1,1); in other words, even being stillna , nb, the
random values of local momentum componentspxa and pxb

are subjected to the constrainna/Δpxa = nb/Δpxb = Δx/~.
Note for instance thatΔr of eq (1,3) includes by definition all
possible distances between electron and nucleus, which im-
plicitly means that both particles share the same uncertainty
range where the interaction occurs; son andl characterizing
the electron energy levels of the hydrogenlike system result
from the change of the early quantum numbers, e.g.nf ree and
l f ree = 0, owned by each particle independently of the other
before interaction. In this respect two relevant points are: (i)
the interaction driven changeδn of the numbern of states and
(ii) the physical meaning of the relatedδ[(n/m)(n/V)].

As concerns the point (i), considerΔεΔt = n~ in an arbi-
trary reference systemR and letn be allowed to change from
any initial valuen1 to any successive valuen2 during a fixed
time rangeΔt; whatevern1 andn2 might be, this is admissi-
ble becauseΔt is arbitrary. The notation emphasizes that a
given value ofδn = n2 − n1 is obtainable regardless of the
initial value n1 becausen2 is arbitrary; soδn = 1,2, .. any-
way, regardless of the specific value ofn1. Calculate next the
changeδΔε of Δε as a function ofδn duringΔt, which reads
now (Δεn2 − Δεn1)/Δεn1 = δn/n1 with obvious meaning of
symbols. Note that in general the series expansion of log(Δε)
around log(Δεn1) reads

log
(
Δεn2

)
= log

(
Δεn1

)
+
Δεn2 − Δεn1

Δεn1

−
1
2

(
Δεn2 − Δεn1

Δεn1

)2

+ ∙∙

so that

log

(
Δεn1+δn

Δεn1

)

=
δn
n1
−

1
2

(
δn
n1

)2

+
1
3

(
δn
n1

)3

− ∙∙

Δεn1 =
n1~

Δt
, δn = 1,2, . . . (2,2)

This equation describes the size change of the energy
rangeΔεn1 as long as the number of allowed states increases
with respect to the initial valuen1: soΔεn1+δn with δn = 1
describes the first increment of energy range size with respect
to Δεn1, thenδn = 2 the next size increment and so on; in
short, eq (2,2) describes how are modified the random local
valuesεn1+δn included inΔεn1+δn at δn progressively increas-
ing. InsteadΔεn1 plays here the role of a fixed reference range
with respect to which is calculatedΔεn1+δn. For reasons that
will be clear in the next section 5, it is mostly interesting to
examine the particular case ofn1 such that

Δεn2 − Δεn1 << Δεn1, δn/n1 << 1. (2,3)

Let us truncate thus the series expansion (2,2) at the first
order of approximation under the assumption (2,3) and sim-
plify the notation puttingi = δn; one finds (i=1,2,...)

n1 log

(
Λi

Λ

)

= i, Λi = Δεn1+δn, Λ = Δεn1. (2,4)

Despite the generality of eqs (2,2), is particularly signifi-
cant for the purposes of the present paper the case of a quan-
tum system consisting of an arbitrary number of particles,
each one delocalized in its own uncertainty range: if these
latter are non-interacting, then let the energy of the system
be included within the rangeΔεn1 and ben1 its total number
of states; if instead all particles are delocalized in the same
space-time range, then their interaction changes the energy
range of the system toΔεn1+δn characterized of course by a
new number of statesn2 = n1 + δn.

As concerns the point (ii), we expect according to eq (2,1)
that fromΔεa andΔεb of the two free particles follow because
of the interaction the changesδΔεa = (~2/2)δ(n2

a/maΔx2
a)

andδΔεb = (~2/2)δ(n2
b/mbΔx2

b). The expressions of the cor-
responding changes of the initial confinement force compo-
nentsΔFxa = Δεa/Δxa andΔFxb = Δεb/Δxb from the non-
interacting to the interacting state read thus

δΔFxa = (~2/2)δ [(na/ma)(na/Va)]

δΔFxb = (~2/2)δ [(nb/mb)(nb/Vb)] .

These equations agree with the previous idea, i.e. the
forces are related to changes of the allowed numbers of states
per unit mass and delocalization volumes of the particlesa
andb: in effect the interaction between two particles consists
of forces acting on both of them and requires that the respec-
tive numbers of states are affected as well. More precisely
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δ [(n/m)(n/V)] means that are modified during the interac-
tion not only the states allowed to the particles themselves,
but also that of the delocalization space surrounding them.
Clearly the former are consequences of the latter. In other
words, the fact thatδ(n/m) requires explicitly also the con-
currentδ(n/V) compels thinking: (i) that a particle interacts
with another particle because it generates a field that propa-
gates outwards through the space volumeV and (ii) that just
in doing so this field changes the number of states allowed to
the other particle; i.e. the changes of number of states of each
particle are somehow correlated, as previously stated. Since
no event occurs instantaneously in nature,δ(n/V) requires an
appropriate time range to be realized, i.e. the propagation
rate is finite in agreement with the existence of an upper limit
obliged by eqs (1,1) [7]; in this way the interaction exchanges
information about physical features and strength of the re-
lated force between particles. The most natural way to ac-
knowledge this way of regarding two interacting particles is
to admit that they exchange intermediate virtual particles that
propagate, whenceδ(n/V), and carry the necessary informa-
tion that affects in turn the real particles themselves, whence
δ(n/m); indeedn defining n/V is the same as that defining
n/m, i.e. the changeδ(n/m) of states allowed to the particle is
actually just thatδ(n/V) of the space around it. Strictly speak-
ing, however, one should say more appropriately space-time,
and not simply space: indeedΔx definingV in eq (2,1) is ac-
tually Δx = Δx(Δt) because of eqs (1,1) themselves. So the
finite time range required forδ(n/m) to occur is nothing else
but the finite time range required to propagateδ(n/V) and to
come back, i.e. to allow exchanging the interaction carriers.
Interaction force and propagation of force carriers through
V are therefore according to eq (2,1) two basic aspects of
the interaction. In principle these carriers could be massive
or massless, in which case one expects (~2c2)δ [(n/ε)(n/V)],
but they must have anyway boson character in order that the
aforesaid forces affect the allowed states of the interaction
partners while minimizing their exchange energy. It has been
already demonstrated in [7] that as a consequence of eqs (1,1)
integer or half-integer spin particles have a different link to
the respective numbers of allowed states: an arbitrary number
of the former can be found in a given quantum state, instead
one particle only of the latter kind can be found in a given
quantum state. Consider a multi-body interaction, where an
arbitrary number of force carriers is to be expected: fermion
carriers would require a corresponding number of quantum
states with energy progressively increasing, whereas a unique
ground state allows any number of boson carriers; as it will
be shown below, the former case would be incompatible with
a unique amount of energy to be transferred between all in-
teracting particles and thus with at a minimum transfer en-
ergy. The corpuscles that mediate the fundamental forces of
nature are indeed well known in literature as vector bosons,
which also suggests the existence of a pertinent boson energy
field. An interesting consequence of eq (2,1) comes from the

chance of rewriting it as (m/n~)ΔFx = (~/2)(n/V). Note that
at left hand side appears the ratio~/mhaving physical dimen-
sions of diffusion coefficient; write thereforeΔFx = D∗n~/2V
with D∗ = n~/m. Moreover the fact that the physical dimen-
sions ofF/D∗ aremass/(length× time) suggests the position

ΔFx

D∗
=
~

2
n
V

=
duω
dω

, D∗ =
n~
m
, (2,5)

having at the moment mere formal meaning: ifω represents
a frequency anduω an energy density, the physical dimen-
sions of both sides areenergy × time/volume. So ΔFx =

D∗duω/dω agrees with the idea that the force field is due
to a diffusion-like flux of particles. This appears properly
handlingduω/dω: indeed it is possible to writeduω/dω =

ωVdC/dxonce more via dimensional requirement, being C=

m/V or C = ε/c2V the concentration of massive or massless
carriers. HenceΔFx = ωVD∗dC/dx i.e. ΔFx = −ωVJx; the
minus sign means of course an incoming flux of messenger
particles if Jx > 0, yet both signs possible fordC reveal a
complex fluctuation driven space distribution of interaction
carriers randomly moving forwards and backwards between
the real particles. This result is easily understood: in a volume
V where are delocalized interacting particles, boson carriers
with density C are exchanged at frequencyω according to a
Fick-like law that generates the force fieldΔFx; the flowJx of
vector bosons crosses an ideal plane perpendicular to the flow
moving at rateωΔx consistently with an energyΔFxΔx/V
per unit volume. The diffusion coefficient of the bosons is
quantized. In [12] has been demonstrated the quantum na-
ture of the diffusion process and also the link between particle
flow and concentration gradient driven Fick’s law, as a conse-
quence of which the statistical nature of the entropy also fol-
lows; this latter result is further inferred in the next section 7
in an independent way, see eqs (7,7). Eq (2,5) is immediately
verifiable considering the cubic volumeV = Δx3 of space
of eq (2,1) filled with photons. LetΔx = λ be the longest
wavelength allowed inV to a steady electromagnetic wave
with nodes at the opposite surfaces of the cube, whose side
is thereforeλ/2; thusV = (λ/2)3, whereasuω = (~ω/2)/V
is the corresponding zero point energy density of the oscil-
lating electromagnetic field. So, withλ = c/ν one finds
duω = 4n(ν/c)3~dω; since by definition~dω = hdν, and thus
duω = (2π)−1duν, this result readsduν = (8π(ν/c)3hdν)n.
In section 7 it will be shown that the number of statesn
allowed to the photons trapped within the cube is given by
(exp(hν/kT) − 1)−1, whence the well known result

duν
dν

=
8πhν3

c3
n, n =

1
exp(hν/kT) − 1

. (2,6)

It is interesting the fact that the black body law comes
immediately from the same idea that shows the existence of
messenger bosons mediating the interaction between parti-
cles. ClearlyΔx3 represents the black body volume.
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Recall now that, in agreement with the arbitrariness of
n, the ranges of eqs (1,1) can be regarded as arbitrary func-
tions of time throughΔt; read for instanceΔx = x − xo with
x = x(Δt) andxo = xo(Δt), being in generalx(Δt) andxo(Δt)
different time functions. Of course no hypothesis is neces-
sary about these functions, which are undefined and undefin-
able. Hence the size ofΔx is in general an arbitrary function
of time itself, whereas the concept of derivative relies in the
frame of eqs (1,1) only as mere ratio of uncertainty ranges.
This idea generalizes the previous definition of force field
ΔFx = Fcon f

x − F∞x . For instanceΔpx/Δt takes the physical
meaning of force field componentΔε/Δx generated within
Δx by the change rate of allpx compatible withΔpx during
Δt, whatever the physical reason affectingpx might be. More-
over, being the range sizes arbitrary, these ratios can even take
the local physical meaning elucidated by the familiar nota-
tionsΔε→ dε, Δt → dt andΔpx → dpx. In other words, the
local concept of derivative is here a particular case of that of
ratio of arbitrarily sized uncertainty ranges. There is no con-
tradiction betweenΔε/Δt anddε/dt, which have both mere
conceptual meaning and in fact are both indeterminable: the
former because of the arbitrariness of the range boundaries,
the latter because the local variablespx and t around which
shrink the respective ranges are arbitrary as well. The consis-
tency of this position with the concept of covariancy has been
concerned in [7]; in this paper and in [4] has been also shown
that just the evanescent concept of distance required by the
agnostic positions (1,2) in fact determines the non-locality
of the quantum world. Exploit now eqs (1,1) to calculate
in any reference systemR an arbitrary size changedΔpx of
Δpx = px − pox as a function of that,dΔt, of the time un-
certainty rangeΔt, assuming thatn remains constant during
dΔt; hence duringdΔt the size ofΔx necessarily changes by
an amountdΔx as well. Of course this reasoning can be re-
versed: a force field arises within the space-time rangeΔx
because of its deformationdΔx that in turn, because of eqs
(1,1), requires the momentum rangeΔpx deformation as well
[7]. Is evident the link of these ideas with the foundations
of relativity. Differentiating eqs (1,1) and dividing bydΔt,
one findsdΔpx/dΔt = −(nx~/Δx2)(dΔx/dΔt). Of course, in
R′ one would obtaindΔp′x/dΔt′ = −(n′x~/Δx′2)(dΔx′/dΔt′);
yet any consideration carried out about the unprimed equation
can be identically carried out on the primed equation. In the
present model there is no local value defined inR that changes
into a new value inR′, while any uncertainty range undefined
in R remains undefined inR′ too; so considering primed and
unprimed range sizes means actually renaming a unique un-
defined range. The same holds of course for the ratios of any
two ranges. If in particularΔt = t− to is defined with constant
to, since actually even this latter could be itself a function of
t without changing anything so far introduced, then one finds
in anyR

dΔpx

dt
= −

nx~

Δx2
v′x = Fx − Fox, (2,7)

Fx = ṗx, Fox = ṗox, v′x =
dΔx
dΔt

.

Having replaced any local distancex with the uncertainty
rangeΔx including it, the local forceFx is replaced by a cor-
responding rangeΔFx including local values of force. The
notationnx emphasizes that the arbitrary numbern of states
refers here to thex components ofΔp, v′, F andFo; of course
are likewise definableny andnz too. Moreover note thatv′x is
conceptually different fromvx introduced in section 1: despite
both have formally physical dimensions of velocity, the latter
only is the actual average velocity of any real particle travel-
ing through its delocalization rangeΔx duringΔt, the former
is the deformation extentdΔx of Δx during the time increment
dΔt. Sovx is self-defined without need of further considera-
tions, the physical meaning ofv′x is instead strictly related to
that of Fx concurrently inferred. This distinction is inherent
the character of the present theoretical model that, as previ-
ously remarked, concerns the uncertainty ranges of the phase
space where any particle could be found rather than the par-
ticle itself; however the examples of the angular momentum
and hydrogenlike energy levels have shown that working on
the uncertainty ranges that define a physical property allows
to gain information on the related behavior of the particle and
on the given law itself. Eqs (2,7), reported here for clarity,
have been early introduced in [7] and therein exploited to in-
fer as a corollary in the particular case of constantpox (i) the
equivalence principle of general relativity, (ii) the coincidence
of gravitational and inertial mass and then (iii) the Newton
gravity law as a particular case; actually this law results to
be the first order approximation of a more general equation
allowing to calculate some interesting results of general rela-
tivity, for instance the perihelion precession of planets.

Also in the present model, therefore, the deformation of
the space time quantum delocalization range entails the aris-
ing of a force as a corollary of eqs (1,1). In this paper we
propose a further way of handling eq (2,7): in agreement with
the purpose of this paper, i.e. to infer various forms of interac-
tion between particles from a common principle, it is enough
to rewrite eqs (2,7) in different ways and examine the respec-
tive consequences. The fine structure constantα enables~ to
be eliminated from eqs (2,7), which read in c.g.s. units for
simplicity

Fx − Fox = ±
e′e
Δx2

, e′ = ±
nxv
′
x

αc
e. (2,8)

Here ΔFx = Fx − Fox is the force field between two
chargese ande′ interacting through their linear charge den-
sitiese/Δx ande′/Δx: i.e. even the electric interaction force
relies on a physical basis similar to that of the gravity force.
The double sign accounts for both chances thatΔx expands
or shrinks at deformation rate±v′x, which is a decisive param-
eter to express the respective states of charge. Ifv′x = 0 then
e′ = 0, i.e. it corresponds to a chargeless particle; of course
the related electric force is null, i.e.Fx = Fox accounts for
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other forces possibly acting on the particle, for instance the
gravity; this case, concerned in [7] to emphasize the link be-
tween quantum theory and relativity, is skipped here. More-
over holds an obvious boundary condition onnx, i.e. a value
of nx must necessarily exist such thate′ = ±e. Ben′ this value
such that by definitionn′v′x = αc; beingn′x arbitrary integer
and v′x arbitrary as well, this position is certainly possible.
Then

e′ = ±(nx/n
′)e. (2,9)

Here the double sign agrees with the chances allowed for
e depending on the expansion or contraction ofΔx. It is rea-
sonable to assume thatn′ = 3; considering also the deforma-
tion rates±v′y and±v′z of Δy andΔz defined likewise tov′x,
the number of states is actually counted asn′ = nx + ny + nz

with ground valuesnx = ny = nz = 1, while being 1≤ nxi ≤
n′ depending on the number of respective force components
Fxi − Foxi actively contributing ton′. Consider first thex-
component, eq (2,7), only. Ifnx = n′ = 3, thene′(3) = ±e cor-
responds to electron and proton charges;Fx−Fox of eq (2,8) is
the related Coulomb force component. The casenx = 2 yields
e′(2) = ±(2/3)e, whereasnx = 1 yieldse′(1) = ±(1/3)e; accord-
ingly Fx − Fox must have a characteristic physical meaning
that will be concerned in section 5. The same result would
be obtained considering they or zcomponents corresponding
to eq (2,7). Hence fractional charges are in principle to be
expected in nature. It is easy guess how many particles with
fractional charges, the well known quarks, are to be expected.
Consider the four chances corresponding to the double signs
of e′(1) ande′(2) and the three deformation ratesv′x, v

′
y andv′z; the

previous discussion has exemplified the link ofe′ with v′x only,
yet an analogous reasoning holds of course also forv′y and
v′z. Instead three different situations are in general compatible
with e′(1) ande′(2) when (i)v′x , 0 only, (ii) v′x , 0 andv′y , 0
only, (iii) v′x , 0 andv′y , 0 along withv′z , 0 too. Since
nx, ny, nz are independent and arbitrary, one could replace the
second eq (2,8) for instance with±nxv

′
x/αc±nyv′y/αc, obtain-

ing thus±(nx±ny)/n′ as done to infer eq (2,9); then one could
combinenx andny in order to obtain again ratios having the
same values±1/3 and±2/3 previously found, but involving
now bothv′x and v′y instead ofv′x only. Analogous consid-
erations hold for the case (iii) that involves alsov′z. In (i) the
vectorF−Fo is oriented along one of the axes, here thex-axis,
in (ii) it lies on one coordinate plane, here thex−y plane; the
components ofF − Fo arbitrarily oriented correspond in gen-
eral to (iii), whereas a null vector is instead related tov′ = 0
i.e. e′ = 0. Anyway, whatever the linear combination ofv′x,
v′y andv′z might be, it is reasonable to think that these ways of
inferringe′(1) ande′(2) are physically different from that involv-
ing v′x only; otherwise stated, to the various ways of finding a
given kind of charge correspond different particles. With the
aforesaid 3 chances for each sign ofe′(1) ande′(2) we expect
therefore a variety of 12 particles in total. Since this number
is reasonably expected to include particles and antiparticles,

a sensible conclusion is that we should have 6 quarks and 6
antiquarks: for instance, to the (nx − ny)e/n′ quark charge
corresponds the (ny − nx)e/n′ antiquark charge. Now the first
problem is how to sort the charge signs between particles and
antiparticles; in principle one could think the former as the
ones havinge′(1) = +e/3 ande′(2) = +2e/3, the latter as the
ones with both negative signs. In this way, however, consid-
ering all values of charges compatible withn from 1 ton′, one
should conclude that in nature the mere charge signs discrim-
inate particles and antiparticles. Since this is not the case, it is
more sensible to expect thate′(1) = −e/3 ande′(2) = +2e/3, for
instance, identify quarks whereas the inverted signs identify
the corresponding antiquarks: likewise exist as a particular
case particles with either integer charge whose antiparticles
have either opposite charge.

Moreover if two charge states−e/3 and+2e/3 are con-
sistent with six particles physically distinguishable, then each
quark requires three chances of a new property, which is in-
deed well known and usually called color charge: each quark
can exist in three quantum states, i.e. it can take three dif-
ferent color states. Being the quarks characterized by sev-
eral quantum numbers, this way of justifying their number
does not mean a specific color uniquely assigned to each one
of them; rather it means introducing a number of internal
freedom degrees of color that make two fractional charges
consistent with six distinguishable particles. Anyway, since
also anti-quarks exist for which hold the same considerations,
three anti-colors must exist too.

Eventually, let us calculate how many kinds of bosons are
necessary to describe the interactions between quarks via bo-
son exchanges able to modify their initial color states. Con-
sider for instance a charmed meson identically symbolized as
{cc̄} or {c̄c} and assume that each boson mediating the quark
interaction is specifically entrusted with changing one couple
color-anticolor only: let for instance the exchange of one bo-
son turnr into r̄ and vice-versa. The mesons{cc̄} and{c̄c}, for-
mally obtained by quark-antiquark and antiquark-quark ex-
changes, are clearly identical and indistinguishable. Imagine
therefore of turning all colors ofc, whatever they might be,
into the corresponding anticolors of ˉc, whose anticolors are at
once turned into the respective colors. How many exchanges
of color states into the respective anticolor states are consis-
tent with the identity ofcc̄ andc̄c? Given two objects,c and
c̄, each one of which can be found in three quantum states, the
three colors, the trivial answer is 23; eight exchanges are not
only enough to turn all color states ofc into the respective an-
ticolor states, which means by definition obtaining ˉc from c,
but also purposely necessary, as each single exchange gener-
ates a new quantum configuration of states physically distin-
guishable from that previously existing. Since a total of eight
color-anticolor exchanges are required to account for as many
different configurations, eight is also the number of differ-
ent bosons required to make the aforesaid couple of identical
mesons effectively indistinguishable. These different chances
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of interaction, each one characterized by its own specific en-
ergy, should be someway correlated to and described by the
existence of as many such particles representing the possible
exchanges, i.e. just eight vector bosons. Also these particles
are well known and usually called gluons. Is this reasoning
extensible also to three-quark particles like neutron or pro-
ton? The quark-gluon plasma of these latter is necessarily
more complex than that of the mesons, so the question arises
whether the 8 gluons previously introduced are enough to de-
scribe also such three quark systems. Consider the protonuud
and the antiproton ˉuūd̄. The conversionuu→ ūū has been al-
ready described. As concernsd→ d̄, still holds an analogous
reasoning: a specific kind of gluon undertakes to change one
color into the anticolor, another kind of gluon does the same
with another color and so on. However the kind of gluon ex-
changes that turns red into antired of the quarku cannot differ
from that acting similarly on the quarkd: it would mean that
each gluon ”recognizes” its own quark on which to act, i.e.
we should admit that differentδ(n/m) require differentδ(n/V)
depending on the respectivem. But nothing in the previous
eq (2,1) allows this conclusion, rather it seems true exactly
the contrary becauseΔx definingV has nothing to do with
m therein delocalized: indeed, as above stated, the indistin-
guishability of identical particles is just due to the possibility
that any particle could be found in a given range. So it is more
reasonable to think that each kind of gluon exchange affects a
specific color, not the color of specific quark only; otherwise
stated, the total number of gluons in a nucleon is greater than
that in a meson without necessarily compelling a new kind
of gluons, i.e. any gluon in the tree-quark system turns one
specific color regardless of whether that color is of a quarkd
or u. This way of thinking allows that the gluons transmit the
interaction between different quarks modifying theirδ(n/m),
i.e. their color quantum states, regardless ofm. So, when
counting the number of different gluons that allow the three-
quark particle/ antiparticle exchanges the result is the same as
that previously computed.

These short remarks are enough for the purposes of the
present paper; further considerations on other properties like
strangeness, isospin and so on, whose conservation rules are
necessary for instance to describe the decay of complex par-
ticles consisting of two or three quarks, are well known and
thus omitted here for brevity. The remainder of the paper aims
to describe the fundamental interactions by implementing the
ideas hitherto exposed.

3 The quantum interactions

Divide all sides of eqs (1,1) bye2Δx and recall that in general
Δpx = (vx/c2)Δε. An intuitive hint to this equation, already
concerned in [7] and important also for the present purposes,
is quickly reported here for completeness. Let in an arbi-
trary reference systemR a photon travel at speedc through
an arbitrary delocalization rangeΔx(c), so that eqs (1,1) read

Δx(c)Δp(c)
x = n(c)~ = Δt(c)Δε(c); the superscripts emphasize

that the ranges are sized in order to fulfill this delocaliza-
tion condition during an appropriate time rangeΔt(c). Then
cΔp(c)

x = Δε(c). To find how scale the sizes of the momentum
and energy ranges with respect toΔp(c)

x andΔε(c) in the case
of a massive particle traveling at slower ratevx < c through
Δx(c), write Δx(c)Δp(v)

x = n(v)~ = Δt(c)Δε(v). Since neither
vx nor c appear explicitly in this equation, it is also possible
to write n(v)~ = Δt(c)Δε(c) = Δt(v)Δε(v); this is indeed true if
Δt(c) andΔε(c) scale likeΔt(v) = (c/vx)Δt(c), as it is reason-
able, andΔε(v) = (vx/c)Δε(c). Replacing these positions in the
former equation yieldsΔx(c)Δp(v)

x = Δt(c)(vx/c)Δε(c) whence
cΔp(v)

x = (vx/c)Δε(c). Actually the superscripts can be omit-
ted because they do not identify particular range sizes; both
Δp(v)

x andΔε(c) are indeed arbitrary likevx itself. The su-
perscripts are also irrelevant as concerns the functional rela-
tionship between the local values of the respective variables,
which readspx = (vx/c2)ε regardless of how the respective
uncertainty ranges are defined. Note thatpx andε, exactly de-
termined in classical physics and in relativity, are instead here
random values within the respective uncertainty ranges. Also
note that an identical reasoning inR′ solidal with the parti-
cle would yieldp′x = (v′x/c

2)ε′: this is therefore a quantum
expression relativistically invariant. This kind of reasoning
has been carried out in [7] to show the connection between
quantum mechanics and relativity. Now instead consider for
the next discussion the following equations directly inferred
from eqs (1,1)

n~vx

Δx
= Δε, vx =

Δx
Δt
, vx ≤ c. (3,1)

The last position does not merely emphasize a feature in
principle expected for any velocity, it takes a special rele-
vance in the present context. BeingΔε andΔx arbitrary, one
could writeΔpx = Δεovox/c

2 too, with vox andΔεo still fulfill-
ing the givenΔpx. The total arbitrariness of the range sizes
plays a key role in the following reasoning based onvxΔε =

voxΔε
o: if vx = c, then necessarilyvox < c andΔεo > Δε. Ex-

amine step by step this point writing identically eq (3,1) as
follows

e2

Δx
=
α

n

vox
c
Δεo,

vxv
o
x

c2
=

Δε

Δεo
, Δε ≤ Δεo. (3,2)

The last position emphasizes that both chancesΔεo = Δε
andΔεo , Δε are equally possible. IfΔε = Δεo, thenvx = vox
compels concludingvx = vox = c only; so eqs (2,7) and (3,2)
yield e2/Δx = χΔε, beingχ = α/n a proportionality fac-
tor. This means correlating the potential energye2/Δx of two
electric charges toΔε, introduced throughΔpx and thus hav-
ing the meaning of kinetic energy range. On the one hand
Δεo , Δε requires differentvox andvx, thus both velocities or
at least either of them smaller thanc, whence the inequality;
on the other hand, relating the physical meaning of the ve-
locities hitherto introduced to that of the boson carriers that
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mediate the interaction force between particles:vox = c re-
quires massless bosons,vox < c massive bosons. Therefore the
arbitrariness ofΔε andΔεo justifies the conclusion that either
chance of range sizes prospects different results for eqs (3,2)
and (3,1), despite their common origin from eqs (1,1). Two
questions arise at this point: (i) whether these equations de-
scribe two different interactions or two different appearances
of a unique interaction, (ii) whether or not it is possible to
infer from both equations a relationship likee2/Δx = χΔε
despite their formal difference. The answers rely on the fact
that in eq (3,2) appears explicitly the Coulomb chargee inher-
ent the definition ofα, in eq (3,1) it does not necessarily hold;
nothing compels assuming that even the energyn~vx/Δx is by
necessity referable to a Coulomb energy.

If n~vx/Δx does, then the common origin of these equa-
tions from eqs (1,1) is a good reason to expect that the chances
of massive or massless vector bosons are merely two different
ways of manifesting a unique kind of interaction; rewriting
the inequality asΔεo = Δε + δε, with δε ≥ 0 of course arbi-
trary likeΔε andΔεo, both chances are in principle acceptable
depending on the amount of energy at which the interaction
occurs. In other wordsδε > 0 is an additional energy range
motivated by the arbitrariness ofΔε, which indeed admits in-
troducing alsoΔεo too, and justifying the presence of mas-
sive vector bosons. By consequence the chance of finding a
unique link likee2/Δx = χΔε between potential and kinetic
energies is to be reasonably expected; so, fixing an arbitrary
Δε allows assessing viaχ the relative strengths of both inter-
actions at comparable values ofΔε and respective character-
istic lengthsΔx. The physical consequences of this reasoning
are exposed in section 4.

If insteadn~vx/Δx is an energy not referable to that be-
tween integer charges, in fact nothing hinders thinking that it
is directly related to the aforesaid fractional charges; accord-
ing to eq (2,8),vx = Δx/Δt is physically different fromv′x =

dΔx/dΔt. Then eq (3,1) describes an interaction prospec-
tively different from that of eq (3,2); so the former equation
must be considered regardless of the latter to check what kind
of physical information follows from the considerations of
section 2. Also the consequences inferred from these equa-
tions are expectedly different; in particular the linkχ between
potential and kinetic energies should be reasonably different
in either case just mentioned. In other words,χ can be com-
pared for similare2/Δx andΔε to characterize the relative
strengths of the various kinds of interactions. The physical
consequences of this reasoning are exposed in section 5.

These are the key ideas to be further highlighted below.
The dual way of elaborating a unique principle, the statistical
formulation of quantum uncertainty, has an intrinsic physi-
cal meaning coherent with the purposes of the present paper,
i.e. to demonstrate that kinds of interaction apparently differ-
ent are in fact consequences of a unique principle. In other
words, eqs (3,2) and (3,1) are the starting point to distinguish
two cases, which will be discussed separately under the only

conceptual constraint of being mutually self-consistent. The
following sections 4 and 5 aim to outline the respective ways
to link the potential and kinetic energies.

4 The interaction according to eqs (3,1) and (3,2)

The following discussion concerns the ways to reduce the eqs
(3,1) and (3,2), regarded together, to the forme2/Δx = χΔε
in both casesδε = 0 andδε > 0. Consider firstδε = 0, which
requiresvox = vx = c and thus massless boson carriers. So the
unique result possible is

e2

Δx
= χemΔε, χem=

α

n
. (4,1)

Hereα/n emphasizes the electromagnetic interaction in anal-
ogy with eq (1,4).

The further chanceδε > 0 requiring the conditionvox < c
prospects instead the presence of massive boson carriers; thus
δε > 0, related to the formation of massive carriers, repre-
sents reasonably the energy gap with respect to the former
case of eq (4,1) involving massless carriers only. While heavy
vector bosons are the physical consequence of the concurring
inequalitiesvox < c andδε > 0, the arbitrariness ofvox prevents
the possibility of deciding a priori either chance forδε and
compels the conclusion that a unique kind of interaction is
actually compatible with both chances. It will be shown that
the interaction energy related to the possible size ofΔx dis-
criminates either chance. Despite both chances are incorpo-
rated into a unique conceptual frame, further considerations
are necessary in this case. Write the first eq (3,2) as follows

e2

Δx
=
α2

n2

Δεo

qo
, qo =

e2

n~vox
, vx < c. (4,2)

Since eqs (3,2) requireΔεo/qo = (c/vx)(n/α)Δε, the ob-
vious inequality

(n/α)2 > vx/c (4,3)

yieldsΔεo/qo > (α/n)Δε. Hence a valueqw > qo certainly
exists such that

Δεo/qw = (α/n)Δε. (4,4)

Replacing this result into the first eq (4,2), one finds

e2

Δxw
= χwΔε, χw =

(
α

n

)3
, Δxw =

qw
qo

Δx. (4,5)

The first equation is formally analogous to eq (4,1) a scale
factorqw/qo for Δx apart, whileα/n is replaced by the much
smaller quantity (α/n)3; hold however forχw considerations
analogous to that previously carried out forχem, i.e. it links
kinetics and potential energies. The explicit form of the in-
equality (4,3) reads (n~c)2 > e4(vx/c), so that (n~c/Δx)2 >
(e2/Δx)2(vx/c) and thus (cΔpx)2 > (e2/Δx)2(cΔε/voxΔε

o); as
cΔpx = Δεovox/c, i.e. cΔpx = (qwvoxα/nc)Δε according to eq
(4,4), the inequality (4,3) reads

(ζΔε)3 > (e2/Δx)2Δε, ζ =
qwvoxα

nc
= w

( n
α

)2
. (4,6)
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Hence an energyε0 > 0 certainly exists such that

ζ3Δε3 − (e2/Δx)2Δε − ε3
0 = 0. (4,7)

Regardingζ as a constant through an appropriate choice
of qw, not yet specified and here accordingly defined, let us
solve the eq (4,7) in order to introduce three real sizesΔε j ,
j = 1,2,3. Note that this does not mean assigning definite
values to the size ofΔε, which remains indeed arbitrary and
unknown like any uncertainty range because ofΔx; solving
eq (4,7) means examining the physical information consis-
tent with some particular range sizes that fulfil the inequality
(4,6). One finds

ε0 =



2
√

3
9




1/3

ζ−1/2 e2

Δx
, Δε1 =

2

ζ3/2
√

3

e2

Δx
, (4,8)

Δε2,3 = Δε2 = Δε3 = −
1

ζ3/2
√

3

e2

Δx
.

The former equation is the condition to make null the
imaginary parts of the rootsΔε2 andΔε3 that, as emphasized
by the last equation, result by consequence coincident. As ex-
pected, all quantities expressed here as a function ofΔx are in
fact arbitrary like this latter. The constantζ can be eliminated
from the equations; so

Δε1

ε0
=

2

ζ
√

3

(
9

2
√

3

)1/3

,
Δε1

ε3
0

=
3

(e2/Δx)2
, (4,9)

e2

Δx
= ε0

√

3
ε0

Δε1
.

It is interesting to rewrite eq (4,7) as (ζ3Δε2−(e2/Δx)2)Δε
= ε3

0, which yields

Δt = n~ζ3 (e2/Δx)
2

ε3
0




(
Δε

e2/Δx

)2

− ζ−3


 .

In this wayΔε3 splits into a multiplicative factorΔε, re-
lated toΔt through eqs (1,1), times a factor merging together
Δε2 and (e2/Δx)2. Let us specify in particularΔx asΔxw of
eq (4,5); owing to the last eq (4,9), one finds then

Δtw =
3n~ζ3

Δε1w




(
n3

α3

)2

− ζ−3


 , Δε1w =

2

ζ3/2
√

3

e2

Δxw
. (4,10)

DespiteΔx is unknown and arbitrary by definition, when
it is specified as the rangeΔxw purposely pertinent to eq (4,5)
the former equation takes the formΔt ∝ (n/α)6 plus a term
τ = 3n~/Δε1w. If Δε1w andn are large enough so thatτ <<
(n/α)6, thenΔtw and the factorχw linking e2/Δxw andΔε of
eq (4,5) fulfill the well known condition

Δtw ∝ χ
−2
w .

Note now that

Δε1 + Δε2 + Δε3 = 0 (4,11)

and that eq (4,7) is directly related tovox/c < 1 because it
comes from the inequalities (4,2) and (4,3). Moreover each
energy range by definition introduces its own random value
of energy; this suggests that are related to eq (4,5) three char-
acteristic energies, i.e. three corresponding massive particles,
whose energies are by definition included within the uncer-
tainty ranges of eqs (4,11).

Consider in general three energy rangesΔε j = ε′j − ε
′′
j ,

being j = 1..3, of course with bothε′j andε′′j arbitrary and
unknown; define then the energiesη j included within them
asη j = (ε′j + ε′′j )/2, i.e. as average values of the respective
boundary values. It is immediate to realize that the condi-
tion

∑
Δε j = 0 is compatible with

∑
η j , 0; indeed

∑
(ε′j −

ε′′j )/2 = 0 reads identically
∑

(ε′j + ε
′′
j )/2−

∑
ε′′j = 0, whence

in general
∑
η j =

∑
ε′′j , 0. Repeat this reasoning regarding

η j as the average values of the specific energy ranges of eq
(4,11). The fact thatηtot = η1 + η2 + η3 , 0 agrees with the
idea of interaction energy; indeed no constrain could be de-
finable for three independent free particles. On the one hand
the chance of replacing any quantum range with its average,
as done here forΔε j andη j , has a general valence because the
range sizes are arbitrary, undefined and undefinable like the
average value inferred from their boundaries. Since any value
allowed to the former is also allowed to the latter, consider-
ing η j instead ofΔε j does not exclude the point of view of
eqs (1,1): replacing an arbitrary value with another arbitrary
value corresponds to replacen with n′, which is however im-
material because both symbolize sets of integer values and not
specific values. On the other hand the ranges (4,11), regarded
all together, fulfill globally the energy conservation regard-
less of whetherΔε j , 0 orΔε j = 0; as just shown, however,
the same does not necessarily hold forηtot. To make also this
latter compliant with the eq (4,11), let us assume therefore
that ηtot has a finite lifetime of the order of~/ηtot. Let Δtw
be this lifetime. In agreement with eq (4,10), duringΔtw the
sum

∑
Δε j is still globally null likewise as before and after

their actual transient appearance; in this way the massive par-
ticles concerned by the respective energy ranges are jointly
involved as concurrent physical properties inherent eq (4,5)
and thus the present kind of interaction. The physics of the
weak interactions is well known. Here, as a significant check
of these ideas, we propose a simple energy balance to infer
the energiesη j and thusηtot exploiting just the requirement
that theη j must be regarded all together.

A possible interpretation of the equal sizes and negative
signs ofΔε2 andΔε3, despite in the present model the ranges
are always introduced positive by definition, is that their sum
with Δε1 equal to zero requires interacting particles; as ex-
plained in section 2, no relationship would be possible by
definition for free particles. Let two of them, sayη2 andη3,
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interact in order to release the energy necessary to form also
η1. The fact thatη2 = η3 because ofΔε2 = Δε3 means that
their interaction occurs regarding identically either of them in
the field of the other one; together, therefore, these particles
provide the energy necessary to allow the kind of interaction
here concerned. The simplest hypothesis is that the particles
η2 andη3 have charges of opposite signs whereasη1 is neu-
tral, thus fulfilling the global charge conservation before, dur-
ing and after their lifetime; if so, the energy gain of Coulomb
energy at an appropriate interaction distance justifies also the
neutral particleη1. In this way the model allows the existence
of three range sizes whose finite lifetimes agree with the finite
values of the respective heavy bosonsη j . This conclusion is
summarized as follows

ηtot = η1 + (η2 + η3), η2 = η3.

The second equation emphasizes that actuallyη2 andη3

form a Coulomb system of charges, whose energy transient
uniquely defined likewiseεel of eq (1,4) characterizes the
present kind of interaction. This idea suggests to estimateηtot

just computing the energy levels of the system of chargesη2

andη3 by analogy with that of a hydrogenlike atom. Exploit
for simplicity the previous non-relativistic equations (1,3) and
(1,4); owing to the generality of these equations, there is no
reason to exclude that analogous considerations hold at least
approximately also here putting of course the chargeZ = 1
and describing the system of charged bosonsη2 andη3 as due
to −εel = πe2/nλ. It is necessary to take into account how-
ever that now also the neutral particleη1 contributes toηtot,
in agreement with the idea of regarding the particles all to-
gether. Guess first according to eqs (4,8) that the mass ofη1

should have the same order of magnitude ofη2 andη3, so that
ηtot ≈ 3η2; the chance of identifyingηtot with −εel is consis-
tent with this idea simply putting

ηtot = πη2, η2 = η3 = e2/nλ, η1 = (π − 2)e2/nλ. (4,12)

In other words, eq (1,4) suggests that the expected co-
efficient ≈ 3 must be actually regarded asπ. Despite the
non-relativistic reasoning, these conclusions are correct be-
cause confirmed by the experience. The experimental masses
of the W± andZ0 vector bosons aremW± = 80.39 GeV and
mZ0 = 91.19 GeV respectively, for a total mass ofmtot =

251.97 GeV; in effect

mtot = 3.134mW± mZ0 = 1.134mW±

are compatible with the values expected forπ andπ−2. Triv-
ial considerations show that the reduced Compton lengths ˉλ
of the vector bosons consistent withe2/nλ areλ̄η1 = nλ/((π −
2)α) andλ̄η2 = λ̄η3 = nλ/α, having introduced explicitly the
massesmj = η j/c2. These results are confirmed consid-
ering the zero point energyΔp2

j /2mj of the vector bosons
η j , whereΔpj = p2 − p1 is the gap between its momen-
tum p2 after confinement within a given delocalization range

Δxw and its initial momentump1 in an ideal unconfined state;
hence the corresponding energy gap after confinement within
Δxw resulting from thex, y andz components isΔp2

j /2mj =

3(n2~2/2mjΔx2
w). Assume now that the confinement energy

Δp2
j /2mj is just the energyη j = mjc2 itself that determines

the space-time scale of this kind of interaction, i.e.

η j =
3
2

c2Δp2
j

η j
; (4,13)

thenΔxw = (3/2)1/2n~c/η j , i.e. forη2 andη3

Δxw = (3/2)1/2n2λ(~c/e2). (4,14)

For n = 1 thereforeΔxw coincides with ˉλη2 = λ̄η3 a trivial
numerical factor

√
3/2 apart; an identical conclusion holds

of course forη1 too, the numerical factor (π − 2)
√

3/2 apart.
This confirms the assumed link between delocalization ex-
tent and energy of the force carriers, which allows identifying
ηtot = −εel in agreement with eq (1,3).

Put firstn = 1 in eqs (4,12). The value ofλ corresponding
to the energies of the particlesη2 andη3 isλ = 1.79×10−20 m,
so that ˉλη2 = λ̄η3 = 2.45× 10−18 m and ˉλη1 = 2.15× 10−18 m;
the characteristic rangeΔxw of interaction is thus of the order
of 10−18 m. Since the classical proton radiusr p = e2/mpc2 is
about 0.8768 fm according to recent measurements [13], the
above energies concern a sub-nuclear scale interaction; vice-
versa, one could estimate the correct scale of energy of the
vector bosons requiring an interaction that occurs at the sub-
nuclear extent at which one calculatesχw = α3 = 3.9× 10−7.

So far we have consideredn = 1. What however about
n > 1? First of all,Δxw becomesn times larger than the afore-
said Compton lengths ofη j ; this deviation means a longer
range allowed to the interaction. Moreover, according to eqs
(4,12)ηtot → 0 for n → ∞; at this limit the aforesaid space
scale of interaction is inconsistent with the corresponding en-
ergies of massive boson carriers, which therefore should ex-
pectedly require an appropriate threshold energy to be acti-
vated. Forn → ∞ is thus allowed the less energy expen-
sive and longer range interaction withδε = 0 only, in agree-
ment with the initial idea thatδε , 0 is related to the boson
masses. This conclusion is intuitively clear, but what about
the energy threshold? According to the eqs (4,12) the ener-
giesη1, η2 andη3 downscale withn, whereas according to
eq (4,14)Δxw upscales withn2; so the lower threshold for
the existence of massive bosons, i.e. for the validity of these
equations themselves, concernsn of η(n)

tot = −εel(Z = 1,n) =

(π/n)e2/λ: it is required that the interaction distance of the
hydrogenlike system of charges enable the energy to create
vector bosons. The inequalityη(n)

tot > e2/λ, which holds for
n ≤ 3, ensures that, whatever the massesη(n)

2 andη(n)
3 might

be, the energy gain due to their Coulomb interaction accounts
not only for the energye2/λ of the system of charged parti-
cles themselves but also for the surplus required by the neu-
tral particleη(n)

1 . Clearly the threshold corresponds to the
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valueη(3)
tot = (π/3)e2/λ, i.e. about 81 GeV; the correspond-

ing Compton lengths of the bosons are ˉλ(3)
η2

= λ̄(3)
η3

= 3λ/α and
λ̄(3)
η1

= 3λ/((π − 2)α). In fact even forn = 3 these lengths
are of the order of 10−17 m, i.e. still consistent with a sub-
nuclear range. At energy below this threshold, i.e.n ≥ 4,
eq (4,1) only describes the interaction. Of course the most
favorable condition for this interaction to occur is that with
n = 1, which ensures the maximum binding energy given by
eq (4,12) and corresponds to the shortest interaction distance
and maximum values of the three boson masses in fact ex-
perimentally detected. The model admits however even the
possible existence of lighter bosons. In conclusion, the dif-
ferent energy scales characterize the features of eqs (4,1) or
(4,5) because of different values ofn; both equations describe
however the same kind of interaction.

5 The interaction according to eq (3,1)

The starting point of this section is the eq (3,1) that reads

n~vx

Δx
= χsΔε, χs = 1. (5,1)

The lack of coefficient at right hand side of eq (3,1) is ten-
tatively interpreted here as the presence of coefficientχs = 1.
Beingvx andn arbitrary, it is certainly possible to introduce a
proportionality constantξ defined asn~vx = ξe2; so eq (3,1)
reads (ξe2/Δx)/Δε = 1. Usually a proportionality constant
linking two quantities that fulfill a given condition or a given
physical law is of the order of the unity, unless some specific
reason compels an appropriate hypothesis about its actual or-
der of magnitude. Since here evenΔx andΔε are arbitrary,
however, it is difficult to guess a valid reason to compelξ very
different from the unity. So, in terms of order of magnitude,
the positionξ ≈ 1 seems reasonable although not thoroughly
demonstrated, whence the tentative conclusion quoted in eq
(5,1). On the other hand, once having reduced this equation
to the form (e2/Δx)/Δε = χs, one can compareχs = ξ−1 ≈ 1
with χem≈ α andχw ≈ α3 defined by the equations (4,1) and
(4,5) formally similar, of course under the assumption that the
ranges at left hand sides defining these values are comparable
as well. Even without a specific reason to exclude the plain
ideaχs ≈ 1, a better assessment of this conclusion appears
however necessary: the lack ofe2 at left hand side, replaced
by n~vx, allows handling eq (5,1) in order to introduce the in-
teraction between the fractional charges concerned in section
2; but this chance, suggested by eqs (2,8) and (2,9) that any-
way do no exclude themselvesξ ≈ 1, is justified only revising
the terme2/Δx.

Consider again the eq (2,7)Fx = −a′/Δx2 + Fox with
a′ = n~v′x in the simplest case where botha′ andṗox = Fox are
constants. Actually these constants could likely be first order
approximations only of series developments whose higher or-
der terms are neglected; yet, even this approximate meaning
of the eq (2,7) is enough for the present discussion. Assum-
ing Fox < 0 likewise as the first addend in order to describe

an attractive force,Fx is compatible with a potential energy
Ui of the i-th quark having the form

Ui = −
a
Δx

+ bΔx+ U0 (5,2)

beingU0, a andb appropriate integration constants; the lat-
ter is clearly related toFox. ConsideringΔUi = Ui − U0

one recognizes a well know formula, the so called “asymp-
totic freedom”, describing the interaction between quarks; of
course in the present model where any local distancex ran-
domly included by its quantum uncertainty range is replaced
by a range of distancesΔx, the local value of potential energy
Ui turns into a rangeΔUi of allowed values. Let us examine
the eq (5,2) in two particular cases where (i)a/Δx ≈ bΔx and
(ii) a/Δx ≈ U0; the arbitrary size ofΔx justifies in principle
both chances. The former case holds whenΔx(i) ≈

√
a/b and

yields U(i)
i ≈ U0; according to the chance (ii)Δx(ii) ≈ a/U0

yields insteadU(ii)
i ≈ bΔx(ii) = ba/U0. This means that a

delocalization extent of the system quark+ gluons around
Δx(i) the potential energy is approximately of the order ofU0,
around a rangeΔx(ii) the potential energy increases linearly
with Δx. Definea andb in agreement with eqs (2,8) and (2,9)
in order that eq (5,2) takes a reasonable form. Puta propor-
tional to the electric chargec2

i = (±(ni/n′)e)2, i.e. a = aoc2
i

via the proportionality constantao; also, let analogously beb
proportional to the color quantum numberCj , i.e. b = boC2

j
with j = 1 ∙ ∙3. The subscripts symbolize thei-th quark in
the j-th color quantum state; in this wayb = 0 for a color-
less Coulomb particle withni = n′, in which case the eq (5,2)
turns, according to eq (2,9), into the classical potential en-
ergy−e2/Δx′ + U0 of two Coulomb charges attracting each
other. This reasoning suggests that the color quantum number
should have the formCj = f j1(n′ − ni)2 + f j2(n′ − ni)4 + ∙∙,
where f j1 and f j2 are appropriate coefficients of series expan-
sion fulfilling the actual value ofCj whatever it might be; it is
interesting the fact that the electric charge depends onni/n′,
the color charge onn′ − ni . As concernsΔx′ = Δx/ao, note
that multiplying the size ofΔx by any factor yields a new
range still arbitrary and thus still compliant with eqs (1,1);
for the same reasons introduced in the previous section, i.e.
because any size possible forΔx is allowed toΔx′ as well,
the notationΔx′ means in fact nothing else but renamingΔx.
In summary, the Coulomb potential appears to be a particu-
lar case of eq (5,2), whose local features are described by the
aforesaid chances; the expressions ofU(i)

i andU(ii)
i are

Δx(i) =

√
a
b
, U(i)

i = U0,

a = laεa

(ci

e

)2
, b =

εb

lb
C2

j ,

Δx(ii) =
a

U0
,

U(ii)
i =

ab
U0

=
εaεb

U0

la
lb

(
ciCj

e

)2

= bΔx(ii) .

(5,3)
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The constant energiesεa andεb together with the constant
lengthsla andlb describe the physical dimensions ofa andb
without need of proportionality factors. Note thatlb → ∞,
compelsΔx(i) → ∞ andb→ 0; as the color is introduced by
b, this agrees with a constant Coulomb potentialU(i)

i = U0

of a colorless particle. By definition thereforelaεa = e2 for
ni/n′ = 1, whereas it is expected to take a different value for
ni/n′ < 1: the new value oflaεa/e2 whene2 is replaced by
(ni/n′)e2 is known in the literature asαs ≈ 1. In summary,
eqs (5,3) yield

U(i)
i = U0, U(ii)

i = U′0

(ci

e

)2
, U′0 =

αsεbe2C2
j

lbU0
. (5,4)

Appears here once more the importance of the delocal-
ization rangeΔx: in eq (4,14)Δxw controlled either appear-
ance of the electroweak interaction, in eqs (5,3) two different
range sizesΔx ≈ Δx(i) or Δx ≈ Δx(ii) emphasize either fea-
ture ofUi : in (ii) it depends upon the fractional charge, in (i)
it does not because−a/Δx is balanced bybΔx despite both
terms describe attractive force.

Let us concern now eq (5,2) in a more general way. The
features ofUi as a function ofΔx are related toδ[(n/m)(n/V)]
becauseΔx definesV, eq (2,1), and also because the eq (5,2)
comes directly fromΔFx of eq (2,7). What is distinctive here
with respect to the gravitational or Coulomb interaction is the
mere fact of having putFox , 0; so the consequent form of
Ui with b , 0 describes a peculiar kind of attractive force that
increases withΔx. Another remarkable point is thatΔFx is
not necessarily that between different quarks only, because
eq (2,7) concerns a mere effect of confinement that holds
even for an isolated quark; rather it seems more appropriate
to think that the interaction between different quarks strictly
replicates an intrinsic feature of the potential energy due to
the confinement effect even of a single particle, which also
involves its messenger bosons. In fact, in the present model
Δx is by definition the delocalization range of one particle;
the arising of any form of interaction is due to the presence
of a further particle that possibly shares the same delocaliza-
tion range. In general the number of states within a system of
interacting particles is related to their energy, to their masses
and to the whole space volume in which they are delocalized:
eq (2,2) shows indeed that ifn1 is the number of states of the
system with its particles supposed non-interacting, thenδn is
the change consequent to their interaction, whileΔεn1+δn is
the concurrent energy change from the initialΔεn1. Accord-
ing to the considerations of section 2, in the present caseV
is the time space delocalization volume of one quark and its
interaction messengers, the gluons. If a further quark could
share thisV, then the quarks interact. If the delocalization
volumeV is filled with gluons of both quarks mediating their
interaction, then the changeδ(n/V) stimulates a question: are
the particles that mediate the interaction interacting them-
selves? Clearly, from the standpoint of eqs (2,7) and (5,2)

this question holds even for one quark only withinV. A pos-
itive answer would explain whyΔFx increases when pulling
apart the interacting quarks, e.g. of a nucleon or meson, or
even a lonely quark and its gluon system; in the latter case
a greater delocalization range describes indeed the chance of
mowing away the gluons from their own quark, which how-
ever increases the energy of the system. To emphasize how
the positionFox , 0 answers the question, suppose that the
quark-gluon and gluon-gluon interactions does not allow dis-
tinguishing the interaction between a quark and ”its own”
gluons from that of these latter with another identical quark;
this would mean distinguishing identical particles, which is
however forbidden by eqs (1,1) [7]. If the gluons are not
mere interaction messengers but rather self-interacting mes-
sengers, then eq (5,2) describes the asymptotic freedom sim-
ply as a feature of one quark and its own system of gluons, i.e.
even without necessarily requiring a further quark; otherwise
stated, a net splitting of gluons from a quark interferes even
with their propensity to follow another quark. The concept of
asymptotic freedom is linked to the energy constrain that ex-
plains why do not exist bare quarks without gluons and bare
gluons without quarks. Calculate the change ofUi as a func-
tion of Δx asΔUi = (∂Ui/∂Δx)Δx at the first order; the force
field ΔFx = −∂Ui/∂Δx acting on quark and its gluon system
delocalized inΔx can be calculated in particular at the delo-
calization extentsΔx(i) or Δx(ii) . Replacing here the previous
results, one findsΔF(i)

x = −2b andΔF(ii)
x = −b(1+ U0/U(ii) ).

It will be shown in the next section thatU′0 ≈ 2U0 ≈
1 MeV; so, beingUi a monotonic function ofΔx, results
Δx(ii) <∼Δx(i) becauseU(ii)

i
<∼U(i)

i according to eq (5,4). IfΔx(ii)

is of the order of the proton radius, i.e. 10−15 m, then accord-
ing to eq (5,3)b results of the order of 1 GeV/fm, as it is well
known. Then, inside a proton the force field at (i) is about
twice than that at (ii); of coursebΔx further increases for
Δx > Δx(i) , i.e. outside the actual radius of the proton. This
means that extending delocalization range of the quark/gluon
system fromΔx(ii) to Δx(i) and then to anyΔx > Δx(i) , i.e.
allowing quark and gluons to have more space to move apart
each other, corresponds to a greater energy; this is not sur-
prising once having found thatU(ii)

i is already in the region
of linear increase ofUi as a function ofΔx. The dependence
of Ui onΔx is trivially self-evident; the reasoning aboutΔx(ii)

andΔx(i) allows to quantify this evidence with specific refer-
ence to the sub-nuclear length scale.

The behavior ofUi and the concept of asymptotic free-
dom equation are straightforward consequences of eq (2,7)
and thus of eqs (1,1); this feature of the strong interaction is
indeed characterized by the concept of uncertainty, which in
particular prevents specifying the actual size ofΔx. From the
present standpoint only, therefore, no kind of correlation ap-
pears in principle between quark generations and chances (i)
and (ii) inherent the eq (5,2). Yet, it seems intuitive that either
chance forΔx and thus either behavior of potential energy
should be selectively related to the energies characteristic of
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the three generations of quarks. This supposition will be con-
firmed in the next section, at the moment one must only admit
that both chances are allowed to occur.

Now let us revert to the opening question of this section,
i.e. how to regard the energy termn~vx/Δx andχs of eq (5,1).
The conceptual analogy ofχs with χemandχw of eqs (4,1) and
(4,5) was in principle legitimated by the arbitrariness ofvx in
defining (e2/Δx)/Δε = χs with χs expectedly of the order of
the unity. Exploit now eq (2,2), for simplicity regarded again
at the first order only

n1 =
δn

δ log(Δη′)
, δ log(Δη′) = log(Δεn1+δn) − log(Δεn1),

introducing two further energy uncertainty rangesΔεo and
Δε whose sizes are by definition intermediate between that of
Δεn1 and that ofΔεn1+δn, i.e. Δεn1 ≤ Δεo < Δε ≤ Δεn1+δn.
Hence eq (2,2) rewritten as a function of these new ranges
takes the form

γn1 =
ζδn

δ log(Δη)
, γ = γ(Δη), ζ = ζ(Δη),

δ log(Δη) = log(Δε) − log(Δεo).
(5,5)

Now Δεo plays the role of fixed reference energy range,
likewise as the earlyΔεn1 did. The correction coefficientsγ
andζ account for the fact thatn1 andδn = n2 − n1 were early
defined forΔεo ≡ Δεn1 andΔε ≡ Δεn1+δn, being therefore
γ = 1 andζ = 1; having changed the ranges at right hand
sides, clearlyγ andζ must be replaced here byγn1 andζδn
with γ , 1 andζ , 1, whence their definitions of functions of
Δε once having fixedΔεo. So the previous eq (2,2) becomes
a particular case of the present result (5,5), which reads now

β(Δη) =
δg

δ log(Δη)
, β(Δη) = γn1,

δg = ζn2 − ζn1 = δ(ζn). (5,6)

The third equation is interesting as it defines the new
rangeδg. Let the functionζ be someway proportional toΔη,
i.e. letζ decrease withΔη; also, consider the particular case
whereΔη is so small that the notationδg can replaced by the
familiar differential symboldg whatever the actualδn might
be. Being the range sizes arbitrary, this position aboutδg
is not a hypothesis; it focuses the attention on a particular
chance ofΔη that must be taken into account simply because
it is allowed and thus to be actually expected. Since a smaller
and smaller uncertainty range identifies better and better a lo-
cal value of the random variable included by its boundaries,
δ log(Δη) tends tod log(η); hence the former equation (5,6)
tends to the known beta functionβ(η) = dg/d log(η) defin-
ing the coupling constantg at the energy scale defined byη.
This particular limit case helps thus to understand the phys-
ical meaning of the ratio in the first eq (5,6), merely written
as a function of ranges instead of local values. It is clear the

interest to take nowΔη comparable withΔε of eq (4,1) and
(4,5) in order to infer fromβ(Δη) the functiong(Δη) ≡ χs to
be compared with the respectiveχem andχw. The next task
is to calculate the first eq (5,6) in order to confirm thatχs is
of the order of the unity. To this purpose let us expandβ in
series of powers ofδg, i.e. β = βo+β1δg+β2δg

2+ ∙∙: the coef-
ficientβo must be equal to zero because of eqs (5,6), whereas
β1 = 0 as well to fulfill the reasonable condition∂β/∂(δg) = 0
of minimumβ for δg = 0. Henceβ = β2δg

2, neglecting the
higher order terms, requiresδg = (β2δ log(Δη))−1; this ap-
pears replacing 1/(δ log(Δη)) in eq (5,6), which indeed turns
into β(Δη) = β2(δg)2. According to the fourth eq (5,5),δg =

β2/(log(Δε/Δεo)) is reducible to the well known form

δg =
ξ

ζ log(Δη2/Δε2
o)
,

2ζ
ξ

= β2, Δεo ≈ 0.2 GeV. (5,7)

The order of magnitude ofΔεo is easily justified recall-
ing the eq (2,5) of section 2 and the conclusions thereafter
inferred:Δεo implies that toΔt ≈ ~/Δεo corresponds the path
δx ≈ ~c/Δεo of gluons moving at the light speed to carry the
interaction between quarks. The given value ofΔεo is there-
fore consistent with the order of magnitudeδx ≈ 10−15 m
previously quoted for the strong interaction. The result (5,7)
and the value ofΔεo are well known outcomes of quantum
chromodynamics; further considerations, in particular about
the constantsξ andζ, are omitted for brevity. This paper aims
indeed to show the consistency of the present model based
uniquely on eqs (1,1) with the standard features of the strong
interactions, not to repeat known concepts.

6 The quark and lepton masses

This section consists of two parts, the first of which concerns
the ability of eq (2,4) to describe the ideal masses of iso-
lated quarks. Correlating these masses to the energy ranges
Λi ≡ Δεn1+δn is in principle sensible first of all regarding the
various quarks as a unique class of particles: there would be
no reason to expect that different kinds of particles of dissim-
ilar nature are all described by a unique law simply chang-
ing a unique distinctive index, here represented byi ≡ δn.
Moreover must hold for the energies of the various quarks
a common sort of functional dependence uponδn like that
of Δεn1+δn. Eventually, this dependence must still hold even
replacing these ranges with the respective average energies
< εn1+δn > calculated as described in section 4. This last re-
quirement suggests correlating the quark masses with these
averages in agreement with the eq (2,4), tanks to the fact that
both< εn1+δn > andΔεn1+δn are consistent with their ownδn.
Indeed an incremental indexδn representing the quark ener-
gies is defined replacing in eq (2,2) log(Δεn2) and log(Δεn1)
with log(< εn1 >) and log(< εn2 >); a procedure completely
analogous yields an equation of the average quantities fully
corresponding to eq (2,4). The second point has been ex-
plained: the self-interaction of quarks justifies in principleδn
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simply admitting that the various quarks are characterized by
different self-interaction strengths and thus by distinctively
different values ofδn. So the critical step is the first one,
i.e. whether or notΔFx of eq (2,5) really governs the self-
interactions of all quarks in order that all of them are related
to a unique law (2,4) ofδn. This means in practice: (i) re-
garding one quark delocalized in its own uncertainty range;
(ii) thinking that various quarks are characterized by different
δ(n/m) because of their own kind of self-interaction; (iii) as-
suming that in fact the eq (2,4) accounts for the different num-
bers of states that characterize uniquely the various quarks. If
the functional dependence described by the eq (2,4) is con-
sistent with the three points just mentioned, thenΛi describes
the ideal masses of the quarks as a function ofi; also, the
point (ii) shows that the energies of this class of particles are
really related to their number of allowed states through the
self-interaction between quark and gluons.

The estimated massesQi of the quarks quoted in literature
[14] are reported here:

Qu = 1.7↔ 3.3 MeV
Qd = 4.1↔ 5.8 MeV
Qs = 80↔ 130 MeV
Qc = 1.18↔ 1.34 GeV
Qb = 4.13↔ 4.85 GeV
Qt = 170.7↔ 173.3 GeV

(6,1)

The mass interval of the ”b” quark actually merges two in-
tervals, that reported for theMS ”mass-independent subtrac-
tion scheme” and that of the ”1S mass” scheme [14]; the re-
spective mass intervals are 4.19+0.18

−0.06 GeV and 4.67+0.18
−0.06 GeV

[15].
It is known that these literature data represent estimates

instead of experimental values, as actually isolate quarks do
not exist; because of their confinement, the masses are indi-
rectly inferred from scattering experiments. In fact the masses
depend on their different combinations in various hadrons
and mesons. So the values quoted above must be regarded
with carefulness when compared with the results of theoreti-
cal calculations. Nevertheless the intervals of values (6,1) do
not overlap, which suggests that their order of magnitude is
somehow related to and thus at least indicative of the ideal
masses of isolated quarks; by consequence it seems also sen-
sible to expect that the sought values of quark masses should
fall within these intervals. In lack of further information,
therefore, exploit the intervals (6,1) to calculate the average
valuesQi :

Qu
(2/3) = 2.50 MeV

Qd
(−1/3) = 4.95 MeV

Qs
(−1/3) = 105 MeV

Qc
(2/3) = 1.26 GeV

Qb
(−1/3) = 4.49 GeV

Qt
(2/3) = 172 GeV

(6,2)

The superscripts indicate the charges of the respective

quarks. These averages have neither specific physical mean-
ing nor come from some particular assumption, they merely
represent preliminary starting points defined within realistic
intervals; thus their worth is that of reasonable inputs to carry
out calculations. The validity of the results inferred in this
way relies mostly on their self-consistency; the only initial in-
formation is that any sensible output calculated starting from
the values (6,2) should expectedly fall within the intervals
(6,1). Regard therefore the available data as mere reference
values to clarify with the help of eq (2,4) what doQi vs i
might actually mean in the present context. According to the
reasoning carried out in the previous section let us try prelim-
inarily to correlateQi with Λi puttingΛi/Λ = ((Qi/Ui)/q)1/b,
whereq is a proportionality constant andb a coefficient to be
determined by successive calculations; this coefficient fulfills
the chance that if< Δεn2 >≈< Δεn1 >, i.e. < εn2 >≈< εn1 >,
then the corresponding ratio (Qi/Uiq)1/b with increasingb
anyway matches the limit behavior ofΛi/ΛwhateverqandUi

might be. InitiallyUi is justified as mere dimensional factor
to be determined; the next results will show that actually it re-
sults to be just the potential energy of eq (5,2). Let us sort now
the variousQi by increasing value to check if really the esti-
mated quark masses fulfill the logarithmic dependence of eq
(2,4) upon the incremental number of statesi, which therefore
takes from now on values from 1 to 6. In this way each mass is
progressively related to its own increasingi. This expectation
is indeed reasonable becausei ≡ δn definesΛi ≡< εn1+δn >
with respect to a ground reference state number, to which cor-
responds the reference energy rangeΛ ≡< εn1 >. Being by
definitionΛi ≡ Λ for δn = 0, one also expects that holds for
the eq (2,4) the boundary condition

Q0/U0 ≡ q i = 0 (6,3)

whateverb might be; this fact justifies the proposed notation.
When handling sets of data, regression calculations are in
general needed; the outcomes of these calculations are usu-
ally expressed as power series development of an appropriate
parameter. Implementing the linear eq (2,4) with the values
(6,2) as a function ofi, means therefore calculating the best fit
coefficientsa andb of the form log(Qi/Ui) = a+ ib; clearlyn1

has been included in the regression coefficients. This is easily
done regardingΛi andΛ of eq (2,4) as follows

log(Qi/Ui) = a+ bi, a = log(q), 1 ≤ i ≤ 6. (6,4)

The factorq linking Ui to the reference energyΛ is deter-
mined by the boundary condition (6,3); this holds of course
even in the presence of higher order terms. The plain first or-
der approximation decided fori agrees with the intent of the
present paper: to describe the quarks through an approach as
simple as possible and compatible with the minimum amount
of input data needed for an unambiguous assessment of re-
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sults. So, owing to eqs (5,3) and (5,4), one expects

a+ bi =





log(Qi/U0)

log
(
Qi/U′0(ci/e)2

)
U′0 =

αsεbe2C2
j

lbU0

(6,5)

Now theΔx-dependent behavior ofUi can be checked:
if these equations ofUi and the positionΛi/Λ ∝ (Qi/Ui)1/b

are correct, then both chances (5,3) should somehow appear
when exploiting the logarithmic law. A series of plots shows
this point step by step starting from the raw data (6,2).

The variousQi are preliminarily plotted vsi taking allUi

equal to a constant; this first result is reported in fig 1. The
boxes represent the input data, the letters between{} iden-
tify the quarks, the dot lines describe tentatively their possi-
ble connection; the best fit dashed line has a mere indicative
meaning of preliminary reference trend. The various points
are not completely random, rather they roughly follow an
identifiable increase withi. It appears that couples of the var-
ious Qi lie along three lines reasonably parallel each other;
so, according to eq (6,4), these lines should be characterized
by a unique best fit coefficientb and differ by the coefficient
a only. Yet, since each line must be handled in order to fulfill
the condition (6,3), the differenta are irrelevant: indeed the
three regression lines log(Qi) = ak + bi, with k = 1..3, must
be actually plotted as log(Qi/qk) = bi putting ak = log(qk).
In effect the fig 2 shows that once having forced the three
dotted connections to cross the origin, all quark masses are
perfectly aligned along a unique best fit line, whose regres-
sion coefficients are:ak = 4.7, 5.1, 5.4; the respective values
of b range between 0.967 and 0.985, i.e. it is reasonably un-
changed. Clearly are here concerned the masses of isolated
quarks, since the raw data (6,2) have been plotted one by one
independently each other. The relevant conclusion is that of
having confirmed the validity of eq (2,4) and (2,1):Δx has
physical meaning of delocalization range of a unique quark.
Considering that the masses spread over 5 orders of magni-
tude, the result is certainly interesting. If one would calculate
the masses of quarks through this plot, however, four con-
stants must be known: threeak andb: too many, to consider
physically meaningful this way of exploiting eq (2,4). The
worth of fig 2 is merely heuristic. It must be noted, however,
that significant information aboutb can be obtained through
very simple considerations. In the linear regression (6,4), the
best fit coefficientb weights the increase of log(Qi) as a func-
tion of the incremental number of statesi. Consider in partic-
ular the highest massQ6 of the top quark, corresponding to
i = 6: the greaterb, the greater the calculated value ofQ6.
Sob is expected to be proportional toQ6. Moreover for the
same reasonb controls also the masses of lighter quarks for
i < 6; the link ofQ6 with the masses of all quarks, inherent the
plot of fig 2, suggests that the proportionality constant should
reasonably have form and physical dimensions somehow re-
lated to all quark masses. Put thereforeb = (

∑6
i=1 Qi)−1Q6,

Fig. 1: Plot of log(Qi/q) vs i; q is a best fit constant. The boxes
represent the theoretical quark mass estimates (6,2), the dot lines
are tentative connections between couples of quarks, the dashed line
represents a preliminary best fit trend of all masses.

Fig. 2: Plot of log(Qi/qk) vs i; three values ofqk calculated via the
boundary condition (6,3) enable a unique trend line of the quark
masses with a unique constantU0.

in which caseQ6 is normalized with respect to the total en-
ergy of all possible states allowed betweenΔεn1 andΔεn1+δn.
Hence the estimates (6,2) yield

Q6
∑6

i=1 Qi

= 0.967.

In effect, the value ofb calculated in this way is very close
to that determined in (6,6) via best fit regression.

Yet even three input data to calculate the quarks masses
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Fig. 3: Plot of log(Qie2/c2
i q
′) vs i.

Fig. 4: Plot of log(Q∗i /q
′) vs i with Q∗i = Qi/x2

i : herexi = constfor
the quarks{c} and{s} andxi = ci/e for the other quarks.

are still too many; certainly there is something else not yet
evidenced by the plot of fig 2. Moreover this result, while
showing that the idea of concerning the masses of isolated
quarks is basically correct, does not highlight anything about
the potential energiesUi of eqs (6,5), at the most it could ac-
count for U0 only. Since the idea of consideringQi/qk is
theoretically too naive, let us regard the variousQi all to-
gether. If so however, despite the previous warnings, the plot
of fig 1 is unsatisfactory; owing to the logarithmic ordinate
scale, the deviations of the variousQi from the best fit line
are markedly large. Seems however decipherable an unam-
biguous configuration of these points; this plot prospects the
chance of better results. An improved connection between

Fig. 5: Plot of log(Q∗i /q
′
k) vs i; xi are defined in fig 4,q′k, with k =

1,2, are calculated in order to fulfil the condition (6,3).

quark masses andi must have exclusively physical valence:
here the problem does not concern a random dispersion of ex-
perimental measurement errors, but the relationship between
masses of isolated quarks and bound quarks on the basis of
data extrapolated from the experience; the challenge is to ex-
tract the former from the latter trusting to their initial order of
magnitude only. The fig 3 reports a new plot where the ratios
(Qi/U0)/q are replaced by the respectiveQie2/q′c2

i , beingci

the electric charges of the various quarks;e is clearly intro-
duced for dimensional reasons. The chanceQie/qci is not
mentioned because found of scarce interest after preliminary
checks. From a numerical point of view, therefore, the plain
Qi are now corrected by fractional charge factors (−1/3)2 and
(2/3)2. In this way the logarithmic terms are handled exactly
as before, which allows the comparison with the former plot:
the figure 3 reports again a new best fit line. Now the linear
trend of log(Qie2/q′c2

i ) as a function ofi is significantly better
than that of fig 1; the{s} and{c} quarks only, both second gen-
eration quarks, deviate appreciably from the best fit line; their
calculated values consistent with the linear best fit trend are
respectively 51 MeV and 1.9 GeV, well outside the literature
intervals (6,1). Considering that the orders of magnitude cal-
culated are however globally correct, two chances are in prin-
ciple admissible: either the literature estimates of the masses
of these quarks must be replaced by the values calculated here
or some further physical reason, not yet taken into account,
enables to modify just these values and align them with the
others. The former option is in principle acceptable accord-
ing to the previous warnings on the literature quark masses,
but would conflict with the plot of fig 1: both masses of these
quarks were correctly aligned on a similar best fit line before
introducing the correction due to their electric charges. So the
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latter option seems more stimulating.
Replace thereforeQie2/q′c2

i of the quarks{c} and{s} only
with Qi/const. This idea works well definingconstappro-
priately, i.e. in order to fitQi of these two quarks to the
main best fit line of the other quarks. The fig 4 reports the
same data of fig 3, yet replacinge2/c2

i of the quarks{s} and
{c} only with a unique value not dependent onci ; now Q∗i /q

′

with Q∗i = Qi/x2
i includes both chances throughxi . The ideal

line joining these quark masses is reasonably parallel to the
four quark best fit line, i.e. the plot of these two quarks dif-
fers trivially from that of the other quarks by the value of the
constanta only. As before, in fact this means admitting two
values ofa: one for the main best fit line, another one for the
second generation quark best fit line; of course both values
must make the best fit lines compliant with the condition (6,3)
via a uniqueb. The result is shown in fig 5: despite replac-
ing ci/ewith a unique constant is certainly an approximation,
nevertheless all quark masses are reasonably represented by
a unique eq (2,4). In conclusion, the path from fig 1 to fig 5
was aimed to verify that effectively the logarithmic law (2,4)
is expressed via the ratioQi/Ui vs the incremental numberi
of states. The plot of the quark massesQi is described by the
following equation

log

(
Q∗i
Q0

)

= bi Q∗i =
Qi

x2
i

b = 0.9723

xi = ci/e Q0 = 0.556 MeV 1st,3rd gen.
xi = 0.3644 Q0 = 1.118 MeV 2nd generation

(6,6)

So b is very similar to that of fig 2. The double value
of U0 corresponds to the two regression constantsa allowing
to merge the best fit lines of fig 4 according to the condition
(6,3);Q∗i plays the role of an ”effective mass” of quarks. The
reliability of the results inferred from the plots is assessed
recalculating via eqs (6,6) the quark masses and comparing
them to the starting values (6,2); one finds 2.32, 5.44, 1.22×
102, 1.14× 103, 4.50× 103, 1.69× 105 MeV that agree rea-
sonably with the literature intervals (6,1). As mentioned at
the beginning of this section, this is the basic requirement
to be fulfilled. To assess this result also note however that
the values (6,2) do not have the rank of experimental data,
to be necessarily matched as exactly as possible; as stated
before, they have a mere indicative meaning of reference val-
ues. Hence the conclusion is that the eqs (6,6) yield a sensible
result, while having also the merit of verifying the positions
(6,5) strictly related to eqs (5,3). But the most interesting re-
mark concernsUi , which depends explicitly on the chargesci

in the first and third generation of quarks only; in the second
generation it does not, which brings to mind the respective
limit cases introduced in eqs (5,3) and further emphasized in
eqs (6,5). The generations of quarks are indeed described by
log(Qi/Ui) = bi with Ui defined by the following equations

U(ii)
i = 0.556(ci/e)2 MeV 1st,3rd generation,

U(i)
i = 0.148 MeV 2nd generation.

The superscripts are assigned to the generations of quarks
by comparison with eqs (5,4) and (6,5); soU0 = 0.148 MeV
andU′0 = 0.556 MeV.

Some further remarks on this result are also useful. The
first concerns the plots of figs 2 and 5: despite the former has
been obtained from log(Qi/qk) and the latter from log(Qi/Ui)
that involves the potential energy, both plots look like and fit
surprisingly well the logarithmic law (2,4) despite the quark
masses spread over 5 orders of magnitude. These plots are
not trivial duplicates: it is interesting the fact thatQi/Ui takes
both formsQi(e/ci)2 andQi/const, while are determinedU0

and U′0. On the one hand is remarkable the fact of having
identified the mass range as the reason that discriminates the
chances (i) and (ii) of eqs (6,5): indeed the mass range of the
second generation of quarks is well defined with respect to
that of the first and third generations. On the other hand, the
fact that both chances are merged in the same plot is itself
a further fingerprint of the quantum uncertainty, early intro-
duced because of the mere arbitrariness ofΔx. The third re-
mark confirms the fact thatΔx is not necessarily the distance
between two quarks, it can also be the delocalization range of
one quark only; the fact that the plot of fig 5 overlaps very
well that of fig 2 shows that even isolated quarks must be
regarded as self-interacting and that the interaction potential
energy between quarks, the well known eq (5,2) is a replica
of the self-interaction potential energy. This conclusion, also
supported by the fact that the plot of fig 5 is better than that
of fig 1 by introducingQi/c2

i and notQi/ci , explains why
eq (5,2) describing the interaction between different quarks
holds also for isolated quarks. The fourth remark concerns
the values of the constantsU0 andU′0 reported in eqs (6,6),
which describe the asymptotic freedom introduced in the pre-
vious section.

Note eventually that the considerations hitherto carried
out have assumed already known the quark masses; also, in
eqs (6,6) appear several constants to be known ”a priori” to
carry out the calculations. Moreover, the literature estimates
(6,1) appear now as values well configured in the frame of
eq (2,4) but not directly supported by experimental measure-
ments. In this respect, a sound proof of their meaning would
be to calculate them contextually to other well known and
well determined particle mass. The merit of this first part of
the section is to have checked the eqs (5,2) and (5,3) via the
logarithmic law of eq (2,4). Yet it is also possible to extend
further this idea considering together both lepton and quark
masses. Indeed a simple question arises at this point: does
the eq (6,4) hold also for the leptons? The fact that quarks
and leptons are both fundamental bricks of matter suggests
the idea that the eq (6,4) could hold for both classes of parti-
cles. Moreover note an interesting coincidence: the number
of leptons is 6, like that of the quarks. Is this a mere accident
or is there some correlation between each quark and each lep-
ton? The next part of the section will show that considering
together both kinds of particles allows obtaining all of their
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masses as a consequence of a unique principle.
The literature data on the massesLi of the 6 leptons are

summarized here:

e→ 0.51 MeV, μ→ 105.66 MeV,
τ→ 1776.84 MeV, νe→ < 2.2 eV,
νμ → < 170 KeV, ντ → < 15.5 MeV.

(6,7)

The difficulty of comparing calculated and experimental
masses concerns now the neutrinos, because of their very
scarce interaction with matter and because the neutrino fla-
vor eigenstates are not the same as the mass eigenstates due
to the neutrino oscillations [17]. However, being the masses
of electron, muon and tau well known, the strategy to carry
out the next calculations is: (i) to assume preliminarily the
eq (6,4) for the masses of the leptons; (ii) to fit the masses
of the neutrinos to the profile required by the logarithmic law
via an appropriate correction factor downscaling their upper
limit values (6,7); (iii) to look for a unique best fit calculation
including both leptons and quarks; (iv) to infer some conclu-
sion about the physical meaning of such a result.

Since the most important task of this section is to find a
correlation between the lepton and quark masses previously
determined and to confirm the validity of the previous results,
the approach proposed here does not concern directly eq (2,4)
rewritten in the form (6,4) log(Li) = a′+b′i involving the lep-
ton masses only; rather we start looking since the beginning
for a connection betweenLi andQi . Let us show first of all
that such a link actually exists, i.e. that are physically sensi-
ble logarithmic laws having the forms log

(
Q∗i

)
± log(Li) with

Q∗i defined in eqs (6,6). From log(Q∗i ) = aQ + bi + ci2 + ∙∙
and log(Li) = aL + b′i + c′i2 + ∙∙, with aQ = log(Q0) and
aL = log(L0) regression constants, one finds first log(Q∗i ) ±
log(Li) = aQ ± aL+ (b± b′)i+ (c±c′)i2+ ∙∙; the higher powers
of i have been skipped for brevity, whereas the dimensional
factorsQ0 and L0 are included in the constantsaQ and aL

as in eq (6,4). The fig 6 evidences that the idea of plotting
log(Q∗i )+ log(Li) and log(Q∗i )− log(Li) vs i is sensible: in fact
both curves are reasonably definable through appropriate best
fit coefficients. To obtain these plots, the neutrino masses,
quoted in literature through the respective upper limits only,
have been downscaled to the following values

νe = 1.802 eV, νμ = 3481.6 eV, ντ = 1.549× 107 eV. (6,8)

Moreover the variousLi have been sorted by increasing
mass like the respectiveQ∗i . This sorting criterion establishes
a one-to one correspondence between leptons and quarks that
reads

leptons νe νμ e ντ μ τ
l l l l l l

quarks u d s c b t
(6,9)

Before commenting this correspondence and confirming
the validity of eq (2,4) also for the leptons, let us repeat here

Fig. 6: Plot of log(Q∗i /Q0) ± log(Li/L0) vs i; Q0 andL0 are dimen-
sional best fit constants.Q0 is defined in eqs (6,6).

preliminarily the reasoning previously carried out for the
quarks. Calculate (

∑6
i=1 Li)−1L6 exploiting the values (6,7)

and (6,8); one finds

L6
∑6

i=1 Li

= 0.935




Q6
∑6

i=1 Qi




2

= 0.936

which shows that the lepton equation is related to that of the
quarks. To explain this result assume that the normalized val-
ues ofL6 andQ6 are correlated, i.e.L6/

∑
j L j = b′Q6/

∑
jQj ,

beingb′ a constant; imposing thenb′ = b, in order that also
L6/

∑
j L j be proportional tob of eq (6,5) for the same afore-

said reasons, one finds the given result. These considerations
put a constrain on the best fit coefficients ofQi andLi vs i.
The fig 6 suggests the reasonable chance of introducing a fur-
ther arbitrary constantbo that defines the more general linear
combinations log

(
Q∗i

)
± bo log(Li) = a′′Q ± boa′′L + b′′± i + ∙∙.

Hence, multiplying side by side these equations and collect-
ing the constants at right hand side, it must be also true that

(
log(Q∗i )

)2 − b2
o
(
log(Li)

)2
= a′′Q

2 − b2
oa′′L

2
+ ∙∙

skipping even the first power ofi. In effect the advantage
of having introduced the arbitrary coefficientbo is that it can
be defined in order to make even the first order term negli-
gible with respect to the constant term, whence the notation
reported here; so, neglecting all powers ofi, the right hand
side reduces to a constant. The last equation reads thus

(
log(Q∗i )

)2
= a+

(
log(Li)

)2b, a = a′′Q
2 − b2

oa′′L
2, b = b2

o.

Now implement again the input data listed in (6,7), (6,8)
and (6,2) to check if this last equation correlates sensibly the
sets of leptons and quark masses via two constantsa andb
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only; these constants are clearly best fit coefficients that de-
scribe the correspondence (6,9). If the zero order approxi-
mation just introduced is correct, then trivial regression cal-
culations should yield a sensible statistical correlation of all
masses. The best fit coefficients consistent with the zero order
approximation of the last equation are

a = 45.49178521, b = 1.039628847. (6,10)

So the best fit equation is

log
(
Qb f

i /x
2
i

)
= ±

√
a+ b

(
log(Li)

)2;

the notation stresses thatQ∗i of eqs (6,6) are replaced by val-
uesQb f

i of Qi determined by the regression, while the various
xi are of course still that defined in eq (6,6). This result is
readily checked calculating

Qb f
i = x2

i × 10±
√

a+b(log(Li ))2

(6,11)

via the respective lepton massesLi listed in (6,7), (6,8) and
comparing withQi reported in (6,1). Note that, because of
the exponentials, the decimal places of the regression coeffi-
cients are important to reproduce the results of the following
calculations. All of the values calculated with the positive
sign in eq (6,11)

Qb f
u = 2.50× 106 eV Qb f

d = 4.97× 106 eV
Qb f

s = 1.08× 108 eV Qb f
c = 1.22× 108 eV

Qb f
b = 4.45× 109 eV Qb f

t = 1.75× 1011 eV
(6,12)

fit surprisingly well the values (6,2) and, mostly important,
fall within the estimated intervals (6,1); it is worth noticing
that the agreement is much better than that obtained through
eqs (6,6). A further remark in this respect is the following.
When carrying out the regression calculations with random
input data, have been traced the percent deviations of the re-
sulting values of quark and lepton masses with respect to the
respective input values; the best self-consistency was found
with the true data; the conclusion is that the regression is not
mere calculation procedure, but rather a real physical rep-
resentation of the masses. This also supports the idea that
the average values (6,2) of the estimated intervals (6,1) could
have an actual physical meaning. Yet are also allowed the
following results calculated with the minus sign

qb f
u = 7.91× 10−8 eV qb f

d = 2.48× 10−9 eV
qb f

s = 1.64× 10−10 eV qb f
c = 1.45× 10−11 eV

qb f
b = 2.77× 10−12 eV qb f

t = 1.13× 10−12 eV
(6,13)

The former set of energies has a literature check through
the estimates (6,1), the latter set does not; yet there is no rea-
son to exclude the values (6,13), whose physical meaning will
appear shortly. In the latter case the subscripts have a formal

physical meaning only, merely reminiscent of the respective
quark masses (6,12); nevertheless, it is possible to show the
key role of these further energies for the physics of quarks
and leptons.

Any statistical regression concerns by definition whole
sets of values; here eq (6,11) correlates all masses of leptons
and that of all quarks reported in (6,2) and (6,7), (6,8) ac-
cording to their representation (6,9). The best fit coefficients
(6,10) are therefore the fingerprint ofall masses. Various sim-
ulations have been indeed carried out (i) altering deliberately
some selected input values of either set of masses, (ii) alter-
ing either whole set of masses and (iii) altering both whole
sets of masses by means of arbitrary multiplicative factors
to find out how the corresponding results are affected; the
results, compared with that of eq (6,11) obtained from true
values, confirm of course that anyway the new regression co-
efficients differ from (6,10). The obvious conclusion is that,
for some specific reason, just the quoted coefficients (6,10)
identify uniquely the fundamental masses of our universe:a
is related to their measure units, as previously explained,b
controls instead the link between quarks and lepton masses at
increasing values ofi. Actually one coefficient only is enough
to identify all masses; the other is merely associated to it, be-
ing concurrently calculated. Otherwise stated, one could as-
sume as a fundamental assumption one of these coefficients
only, the other one results consequently determined by the
unique set of quark and lepton masses consistent with the for-
mer one. Is clear the importance of understanding the spe-
cific physical meaning of the particular couple of coefficients
(6,10) able to account for the fundamental masses of our uni-
verse as a function ofonepredetermined input. Besides the
numerical calculation of these masses, however, it seems rea-
sonable to expect that some physical idea is still hidden in eq
(6,11).

To investigate this point consider the following equation

qo
i = x2

i × 10±
√

a+(log(Li ))2

(6,14)

inferred from (6,11) leaving unchangeda while replacing in-
steadb with the unity. This equation results formally from
(
log(qo

i )
)2

=
(
log(Li)

)2
+ a, which is interesting becauseqo

i
andLi can be interchanged simply changing the sign ofa but
not its absolute value. Of course the variousqo

i so defined are
no longer quark masses; being still related to the respective
true lepton massesLi , however, alsoqo

i are somehow related
to Qi .

It is very significant to regard eqs (6,14) thinkingQi corre-
lated toLi , which in turn are correlated toqo

i via one additive
constanta only.

So far the experimental masses of quarks and leptons have
been introduced as a matter of fact, thus finding that a unique
equation, (6,11), accounts for all of them simply postulating
a well defined and unique couple of regression constants. Eq
(6,14) adds to this standpoint a new perspective: the existence
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of a field whose quanta are related to theqo
i , as a function of

which are first calculatedLi via eq (6,14) and thenQi via eq
(6,11). The number of input data confirms that highlighted
before, i.e. the quoted value ofa only; the masses of both
quarks and leptons appear then as consequences of a unique
kind of particles, just theqo

i , since the only possible regres-
sion of Li with Qi consistent with the givena is that with
the concurrent valueb. This explains whyqo

i have been de-
fined keepinga and changingb only; even without appearing
explicitly appearing in eq (6,14), we know that the latter is
required to be just that consistent with the former.

Note now that also eq (6,14) allows two sets of of values,
qo+

i andqo−
i , defined by either possible sign of the exponen-

tial; it is easy to realize that, likewise as the values (6,12) and
(6,13), also now from a numerical point of viewqo+

i >> qo−
i .

This appears regarding allqo
i together: the resulting total en-

ergies corresponding to the positive and negative signs are∑6
i=1 qo+

i = 1.29× 1011 eV and
∑6

i=1 qo−
i = 8.189× 10−8 eV.

Define therefore the linear combinationqo+
i − qo−

i and sum
together alli-th terms; one obtains again a total energy

εH = 129 GeV.

Regardless of the numerical values, however, the physical
meaning of each termqo+

i − qo−
i is profoundly different from

that of the termsqo+
i andqo−

i regarded separately: the masses
mi , chargesci , spinssi , colorsCi and so on of these virtual
particles, expectedly the same forqo+

i andqo−
i whatever they

might be as a consequence of eq (6,14), subtract each other
and thus do no longer appear inqo+

i −qo−
i . This point is easily

highlighted and explained. Actually the eq (6,14) establishes
the numerical values of the new energiesqo+

i andqo−
i , not their

specific forms about which nothing has been hypothesized or
is known. The most natural way to regard these quantities,
in full line with the basic ideas of the present model, is to re-
late the variousqo

i to appropriate energy uncertainty ranges as
done in eq (2,4); this means assuming for instance

qo+
i = ε+i (mi , ci , si ,Ci , ..) − ε+i (0,0,0,0, ..)

qo−
i = ε−i (mi , ci , si ,Ci , ..) − ε−i (0,0,0,0, ..)

with
ε−i (mi , ci , si ,Ci , ..) ≈ ε

−
i (0,0,0,0, ..)

as well. As repeatedly stressed, both boundaries of any uncer-
tainty ranges are arbitrary. Here we are interested to consider
in particular ranges fulfilling the following condition about
the upper boundaries:

ε+i (mi , ci , si ,Ci , ..) = ε−i (mi , ci , si ,Ci , ..).

These positions agree withqo+
i >> qo−

i and also yield

qo+
i − qo−

i = ε−i (0,0,0,0, ..) − ε+i (0,0,0,0, ..)

that definesqo+
i − qo−

i as the energy uncertainty range of a
massless, spinless, chargeless, colorless,.. virtual particle,

having in particular boson character. So, when summing up
all these terms one finds a total boson energy having the value
just quoted. This peculiar energy that accounts for the lepton
and quark masses corresponds to acompositeparticle con-
sisting of the sum of 6 termsqo+

i − qo−
i rather than to a truly

elementary particle. This conclusion is supported by the fact
that the lifetimeΔtH of such a particle should reasonably re-
sult from that of its longest life constituent term withi = 1,
i.e. ΔtH = ~/(qo+

1 − qo−
1 ); one calculates in this way via eq

(6,14)

qo+
1 − qo−

1 = 2.50 MeV, ΔtH = 2.63× 10−22 s.

These last results are reasonable and fully agree with the out-
comes of recent experimental measurements.

7 The quantum statistical distributions

This section investigates further consequences of eq (2,2).
This part of the paper is thus significant because just this
equation leads to eq (2,4), which has been heavily involved
to infer the asymptotic freedom equation (5,7) of quarks and
the masses of quarks and leptons; confirming once more eq
(2,2) means therefore to correlate these results to another fun-
damental topic of quantum physics concerned in the present
section, i.e. the statistical distributions of quantum particles.
Eqs (1,1) link the energy rangeΔε including the possible en-
ergies of a quantum system to its numbern of allowed states:
the change of energy range sizeδΔε = (~/Δt)δn during a
given time rageΔt has been concerned in section 2 to cal-
culate the related changeδn = n2 − n1 of n, thus obtaining
eq (2,4). In that casen1 was regarded as a fixed quantity,
i.e. as a reference number of states as a function of which
to defineδn. Now we generalize these ideas: bothn1 andn2

are allowed to change in a quantum system characterized by
an initial number of statesno. If so ~/Δt can be identically
rewritten as~/Δt = Δεn1/n1 or ~/Δt = Δεn2/n2, because both
right hand sides are equivalent reference states in definingδn.
So, being both chances alike as well, it is reasonable to expect
that~/Δt ∝ Kt/(n1n2) with Kt = Kt(Δt) proportionality fac-
tor having physical dimensions of an energy. This position is
possible in principle becauseΔt is arbitrary; so, whatevern1

andn2 might be, certainly exists a time lengthΔt = Δt(n1,n2)
that fulfills the proposed correlation. From a formal point
of view, assume thatΔε/n of the system is described dur-
ing Δt by the linear combinationa1Δεn1/n1 + a2Δεn2/n2, be-
ing a1 anda2 appropriate time dependent coefficients; if so,
thenKt = a1n2Δεn1 +a2n1Δεn2 is defined just by the equation
δΔε/δn = ~/Δt = Kt/(n1n2). Since all quantities at right hand
side are arbitrary, for simplicity let us approach the problem
in the particular case whereKt is regarded as a constant in the
following. This chance is obviously also obtainable defining
appropriatelya1 or a2 or both duringΔt. The following dis-
cussion will show that even this particular case is far reaching
and deserves attention.
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Write n2 = no ± j andn1 = ± j, beingno a reference fixed
number of states andj a variable integer accounting for the
change ofn1 andn2; of course bothno and j are arbitrary and
independent each other, which yields indeedn2 − n1 = no or
n2−n1 = no±2δ j depending on the signs ofj. In this way it is
possible to describe a steady system with itsno initial states or
an evolving system where is allowed a new numbern′ , no of
states; since now bothn1 andn2 are allowed to change,δn =

±2δ j. Simplifying the notations, the equation inferred from
δΔε/δn = Kt/(n1n2) of interest for the following discussion
reads

δΔε j

δ j
=

2K
j(no ± j)

, δ j = 1, 2, .. (7,1)

whereK must be intended as the constant replacingKt pre-
viously introduced; it is allowed to take both signs, which is
avoids writing explicitly±δ j. The notationΔε j emphasizes
the variable number of states appearing at right hand side. To
proceed on, consider the case where bothj andno are large
enough to regard approximately the former as a continuous
variable, so thatδ j << j; so the left hand side can be handled,
for mere computational purposes only, asdΔε j/d j; henceΔε j

calculated solving the differential equation, results to be

Δε j = (K′εo/no) log(no/ j ± 1)+ const, 2K = −K′εo, (7,2)

beingconstthe integration constant;K′ is an arbitrary dimen-
sionless constant andεo an arbitrary constant energy. Con-
sider now two boundary conditions of eq (7,2) concerning
the respective limit cases (i)no << j and (ii) no >> j. From
a mathematical point of view, note that eq (7,2) is obtained
by integration of eq (7,1) with respect toj regardless ofno;
hence one could think the cases (i) and (ii) as due to fixed in-
tegration limits ond j for two different values ofno consistent
with either inequality, of course without modifying the result
of the integration and the subsequent considerations.

In the case (i) holdsno/ j + 1 only; puttingconst= 0 and
expanding in series the logarithmic term, the right hand side
of eq (7,2) reads

Δε j =
w jK′εo

j
,

w j = 1−
no

2 j
+

n2
o

3 j2
− . . . , 0 < w j < 1.

(7,3)

Let j be defined between two arbitrary numbers of states
j1 and j2 > j1; moreover define nowK′ in order that the
sum of all termsK′w j introduced in the last equation over all
values ofj fulfills the following condition

j1 ≤ j ≤ j2, π j = K′w j , K′
j2∑

j1

w j =

j2∑

j1

π j = 1;

then the result is

π j =
jΔε j

j2∑

j= j1
jΔε j

, εo =

j2∑

j= j1

jΔε j ,
no

j1
<< 1. (7,4)

The inequality ensures that is fulfilled the initial condition
of the case (i) concerned here, whereas the first eq (7,4) shows
the probabilistic character ofπ j resulting from the previous
positions.

Consider now the limit case (ii). Despite the second eq
(7,3) requires in principle a very large number of series terms
to expressno/ j >> 1, even tending to infinity, there is no rea-
son to exclude that the second equation (7,4) definingjΔε j

still holds: beingK′ arbitrary, it can be still defined in order
to fulfill the inequalityK′Σ j(1−no/2 j+n2

o/3 j2+ ..) < 1 what-
ever the rationo/ j might be. On the one hand this inequality
can be accepted in principle even though the series consists
of an infinite number of terms; in fact the series does not
need to be explicitly computed, which makes plausible also
the positionπ j = K′w j . On the other hand, however, in this
way the resultjΔε j = K′εow j is not explicitly inferred: the
left hand side of the last inequality is indeed undefined. Oth-
erwise stated, without the straightforward hint coming from
the case (i) the eqs (7,4) could have been hypothesized only
and then still introduced in the case (ii) as plausible inputs
but without explanation. Actually, the assessment of the limit
case (i) and the subsequent considerations onw jK′ are the
points really significant of the present reasoning: while ex-
tending the physical meaning ofπ j and jΔε j also to the case
(ii), they ensure the compatibility of the limit cases (i) and
(ii). Once again, the arbitrariness of the numbers of states
plays a key role to carry out the reasoning.

Looking back to eq (7,2) and multiplying byj both sides,
let us write

jΔε j = K′εo( j/no) log(no/ j ± 1) + const j. (7,5)

According to eqs (7,4)jΔε j/K′εo = w j ; so, neglecting 1 with
respect tono/ j in agreement with the present limit case (ii)
and summing all termsw j , eq (7,5) yields

W = −
j2∑

j= j1

(
j

no

)

log

(
j

no

)

− σ
const
K′εo

, σ =

j2∑

j= j1

j. (7,6)

It is useful now to rewrite eq (7,6) as a function of a new
variableξ j

W = −q
j2∑

j= j1

ξ j log(ξ j), const= −
K′εo

no
log(q), ξ j =

j
noq

,

whereq is a proportionality factor not dependent onj; it has
been defined according to the second equation to eliminate
the second constant addend of eq (7,6). The next step is
to define j, so far simply introduced as an arbitrary integer
without any hypothesis on its actual values, in order thatW
has specific physical meaning with reference to a thermody-
namic system characterized by a numbers of freedom de-
grees. To this purpose assume thatj can take selected values
ns only, with n arbitrary integer. This is certainly possible:
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nothing hinders calculating the eq (7,2) as a function ofno/ns

instead of anyj progressively increasing; in this way also
the eq (7,6) accordingly calculated takes a specific physical
meaning consistent with that of the ratiosns/no. Clearly this
does not mean trivially renamingj: now ns readsΔxΔp/~s,
whereΔx = Δx1 ∙ ∙Δxs andΔp = Δp1 ∙ ∙Δps. Since there-
fore ΔxΔp symbolizes a volume in as-dimensional phase
space,ΔxΔp/~s represents the number of states allowed in
this volume. It is known that this ratio introduces the statis-
tical formulation of the entropy [16]; so puttingconst/K′εo

proportional to a new quantityS0, one finds

S = −q
n2∑

n=n1

ξn log(ξn), S0 = −q log(Ω),

const
K′εo

=
1
ζ

S0

q
, Ω = qζ/no.

(7,7)

The notation of the first sum emphasizes that nowj takes
values corresponding to the possiblens. The constant of eq
(7,6) has been therefore related in the last equation toS0. The
second equation can be regarded as a particular case of the
former when the thermodynamic probabilitiesξ j are all equal;
while in eq (7,2)j was an arbitrary number progressively in-
creasing froj1 to j2, in eq (7,7) its relationship tons does not
exclude the chance of coincident values for equal volumes of
phase space. It is well known that the results so far exposed
introduce the statistical definition of entropy a trivial propor-
tionality factor apart. Note that this result has been obtained
in a very different context [12], i.e. to show the quantum
character of the Fick diffusion laws as a consequence of eqs
(1,1) only; despite the different topic, the theoretical frame is
however exactly the same as that hitherto concerned.

Let us return now to the early eq (7,2). Define as usual
the energy range asΔε j = ε′′ − ε′, so that the eq (7,2) reads
no(const+ ε′ − ε′′)/K = log(no/ j ± 1). Exploit once again
the fact that in general the boundary values of the uncertainty
ranges are arbitrary; hence, whatever the sign and values of
K andconstmight be, the left hand side can be rewritten as
(ε j − εo)/K, being of course bothε j andεo still arbitrary. So
the number of statesj of the eq (7,2) reads

j =
no

exp((ε j − εo)/K) ∓ 1
, Δε = ε j−εo = no(const+ε′−ε′′).

The second equation reports again the starting point from
which is inferred the former equation to emphasize that, de-
spite the arbitrariness of the boundary values that define the
size of the energy uncertainty range, the specific problem de-
termines the values of physical interest. For instance in eq
(2,6) has been inferred the Planck law identifyingΔε j with
hΔν j ; clearly the number of states therein appearing is to be
identified here withj, whereasno can be taken equal to 1 be-
cause the photons are bosons. Here the upper sign requires
signs ofK and ε j − εo such that (ε j − εo)/K > 0 because
the number of statesj must be obviously positive; instead the

lower sign allows in principle bothεo < ε j and εo > ε j , as
in effect it is well known. To understand these conclusions,
let us exploit the reasonable idea that the numberj of states
allowed for a quantum system is related to the numberN of
particles of the system. Recall another result previously ob-
tained exploiting eqs (1,1) [7]: half-integer spin particles can
occupy one quantum state only, whereas one quantum state
can be occupied by an arbitrary number of integer spin parti-
cles. In the former case thereforej is directly related toN, i.e.
j = N andno = 1, in the latter case instead in generalN >> j
without a specific link betweenj andN. Yet the arbitrariness
of no makesj suitable to represent anyN also in this case as
N =

∑
j = no

∑
(exp(Δε j/K) − 1)−1. In the classical case

whereΔε j >> K, this equation is the well known partition
function.

8 Discussion

After the early papers concerning non-relativistic quantum
physics [5,6], the perspective of the eqs (1,1) was extended to
the special and general relativity; the gravitational interaction
was indeed inferred as a corollary just in the present theoret-
ical frame. The problem of examining more in general also
other possible forms of quantum interaction appeared next as
a natural extension of these results. This paper aimed indeed
to infer some basic concepts on the fundamental interactions
possible in nature. Even without ambition of completeness
and exhaustiveness, the chance of finding some outstanding
features unambiguously typical of the electromagnetic, weak
and strong interactions has the heuristic value of confirming
the fundamental character of eqs (1,1): seems indeed signif-
icant that the weird peculiarities of the quantum world are
directly related not only to the physical properties of the ele-
mentary particles but also to that of their fundamental inter-
actions, which are described in a unique conceptual frame in-
cluding also the gravity and the Maxwell equations [7]. Now
also the gravitational coupling constant, so far not explicitly
concerned, is inferred within the proposed conceptual frame.
The starting point is again the eq (2,7) rewritten as follows

v′x = −
ΔFxΔx2

n~
, v′x =

dΔx
dΔt

, ΔFx = Fx − Fox. (8,1)

By means of this equation the paper [7] has emphasized
the quantum nature of the gravity force, approximately found
equal toΔFx = Gmamb/Δx2 for two particles of massma and
mb; also, the time dependence ofpx or pox of Δpx = px − pox

was alternatively introduced to infer the equivalence princi-
ple of relativity as a corollary. In the present paper, instead,
both boundary values of the momentum component range
have been concurrently regarded as time dependent to infer
the expected potential energy (5,2) of the strong interactions:
the reasoning is in principle identical, although merely car-
ried out in a more general way; the form of eq (5,2) comes
putting in eq (2,7) both ˙px , 0 and ṗox , 0, which is the
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generalization of the relativistic reasoning carried out in [7].
In fact the eq (2,7), straightforward consequence of eqs (1,1)
and thus valid in general, has been reported also in the present
paper to better understand these results through its underlying
reasoning: what changes is the way it can be exploited to de-
scribe specific physical problems, as it has been also empha-
sized about the physical meaning ofv′x. Now we are interested
to implement a particular case of eq (2,7), i.e. the Coulomb
law quoted in eq (2,8). The procedure followed below does
not need any additional hypothesis with respect to these con-
siderations: it is enough to specify appropriatelyΔFx in eq
(8,1).

Consider first the eq (2,8): in the particular casee′ = e it
yields the Coulomb lawFx−Fox = ΔFx = ±e2/Δx2. Replace
this expression into eq (8,1), which reads then

v′x = ±e2/n~. (8,2)

The± sign is a trivial feature of the velocity component
v′x along the arbitraryx-axis, it is in fact of scarce interest for
the purposes of the present discussion. More interesting is
the fact that puttingv′x = (α/n)c, as done to infer eq (2,9),
one obtains the identityα/n = e2/n~c. This result supports
the idea thatv′x/c of eq (8,2) effectively represents a coupling
constant: it readsα/n, just the electromagnetic coupling con-
stant found in eq (1,4).

Consider now the gravity forceΔFx = Gmamb/Δx2 and
replace this expression into eq (8,1): sov′x = Gmamb/n~.
Comparing this result with the case of the electric force prop-
agating between charged masses, one finds

αG = v′x/c = Gmamb/n~c. (8,3)

Is obvious the reason why the gravitational coupling con-
stant, recognizable at the right hand side, has been formally
obtained through elementary considerations identical to that
of eq (8,2): the unique eq (8,1) turns into either result sim-
ply depending on whether one replacesΔFx with e2/Δx2 or
Gmamb/Δx2. Eqs (8,2) and (8,3) suggest that the gravitational
and electromagnetic field propagate at the same ratec: as em-
phasized when discussing the physical meaning ofvx andv′x
in section 2, the latter is the deformation rate of the space-
time rangeΔx that determinesΔFx, whereas is insteadvx the
real propagation rate of the respective messenger particles in
the interaction space-time rangeΔx; in both casesΔx/Δt = c.

These results are not end points, they have heuristic char-
acter. Let us start from eq (8,3) considering for simplicity
ma = mb = m, so thatm = mP

√
nαG; i.e. anym is pro-

portional to the Planck mass, the proportionality factor being
just
√

nαG. Owing to the small values ofαG, one expects that
large values ofn are required to fit even small masses. Al-
thoughαG depends in general on the specific values of the
masses, it is interesting to examine its minimum value cor-
responding to the particular case where bothma andmb rep-
resent the lightest elementary particle, the electron neutrino.

As concerns the ratiomνe/mP note thatmνe is a real particle,
mP is a mere definition; so for the former only holds the idea
that any particle confined in an arbitrary uncertainty rangeΔx
is characterized in principle by a momentum component gap
Δpx = pcon f

x − p∞x with respect to an ideal unconfined state,
see eq (2,1). For the reasoning is irrelevant how an electron
neutrino could be confined in practice, becauseΔx is arbi-
trary; it could even be the full diameter of the whole universe.
It is instead significant in principle that, as already shown in
section 4 about the weak interaction boson vectors, it is pos-
sible to write for the electron neutrino a delocalization energy
Δενe = Δp2

x/2mνe valid for any real object; this reasoning has
been in effect exploited in eq (4,13). These considerations
aim to conclude that, whateverΔpx might be, the equation

mνe = Δp2
x/2Δενe Δενe = mνec

2 (8,4)

suggestsmνe proportional to a reciprocal energy rangeΔενe
that in turn should be proportional toc2. If this reasoning
is physically sensible, thenmνe/mP ∝ c−2 suggests by con-
sequencemνe/mP ∝ α2; since the fine structure constant is
proportional itself toc−1, this position simply means includ-
ing e2/~ into the proportionality constant. Write therefore

mνe/mP = α2/N

having called 1/N the proportionality constant. The ratio at
left hand side is immediately calculated with the help of the
first value (6,8), it results equal to 1.5 × 10−28; the factor
α2 ≈ 5.3× 10−5 calculatesN equal to 3.5× 1023, a value sur-
prisingly similar to well knownN = 6.02×1023 for the ratio at
right hand side. The agreement between these values is really
unexpected: while the positionmνe/mP ∝ α2 could be accept-
able at least in principle, is really difficult to understand what
the Avogadro number has to do with the present problem. A
reasonable idea is to regardα2/N, perhaps a mere numerical
accident, as a whole factor between ordinary mass units and
Planck mass units. To support this statement replace in eq
(8,4)Δενe with mνec2, regarded as the average of the bound-
ary values ofΔενe; for the following order of magnitude esti-
mate this replacement is acceptable. So, recalling thatΔp2

x =

(n~/Δx)2 and that actually to calculateΔενe one should con-
siderΔp2

x + Δp2
y + Δp2

z, eq (8,4) readsΔx = n~c
√

3/2/mνec2;
putting n = 1, one findsΔx = 1.3 × 10−7m. Replace now
Δενe with (N/α2)Δενe: the factor previously found to con-
vertmνeinto Planck mass units should now convert the energy
ενe from the ordinary units into Plank energy units. Indeed
Δx = n~c

√
3/2α2/Nmνec2 calculated again withn = 1 re-

sults equal to 1.1× 10−35m, which is reasonably comparable
with the Planck lengthlP = 1.6×10−35m. Actually this result
could be expected, because it is based on regarding the energy
Δενe = Δp2

x/2mνe asΔενe = Δp2
xc

2/2Δενe, as already done in
section 4; accordingly, this means identifyingΔενe calculated
from the confinement uncertainty equation with the massmνe
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of the particle itself via the factorc2. This idea was found rea-
sonable to calculate the characteristic length of the weak in-
teraction, eq (4,14), and appears adequate also here because it
shows that the conversion factor ofmνe into mP also converts
ενe into EP.

The main reason for having proposed this result is to stim-
ulate (i) further considerations on the link betweenα andα(νe)

G
and (ii) a greater attention toN when searching fundamental
relationships between the constants of nature. Another nu-
merical accident, which is worth noticing here because per-
haps of possible interest, concerns the key coefficients (6,10);
indeedπa/b = 137.469, which differs from 137.036 by about
0.3% only. It has been remarked the obvious fact that even
small deviations of any lepton or quark mass from the input
values (6,2) and (6,7), (6,8) affect the regression coefficients
(6,10). So, at least from a numerical point of view, it is sen-
sible to suppose that a very fine-tuning of some among these
input values could match exactly the fine structure constant.
This optimization is certainly justified: indeed the electron,
muon and tau masses only are experimentally known with a
degree of accuracy such to exclude any minimum revision;
instead, for the reasons previously remarked, there are am-
ple margins of small adjustment for the neutrino and isolate
quark masses implemented in the present calculations. On the
one hand, such an effort is physically sensible only guessing a
good physical reason to expect that the regression coefficients
should be actually related toα; on the other hand is evident
the interest to provide such an explanation, wholly physical
and not merely numerical, of the coefficients that determine
the fundamental masses of our universe.

Some further points are still to be better clarified; they
pose several questions, some of which are still unanswered.
One of them concerns the correspondence (6,9) between lep-
tons and quarks: is it really mere consequence of the increas-
ing order of their masses, thus a mere definition to exploit
eq (2,4), or is it actually due to something else still hidden
in the correspondence (6,9) and not yet evidenced? But per-
haps the most amazing point is that also the leptons fulfill the
eq (2,4) just thanks to this correspondence. In the case of
quarks, the dependence of their masses oni ≡ δn was ten-
tatively explained through the self-interaction of bare quarks
with their own clouds of gluons and the self-interaction be-
tween these latter: with reference to eq (2,1), a different in-
teraction strength is related both to a dissimilarn/m and to
a dissimilarn/V, thus explaining not only the differentm of
the various quarks but also the equations (5,3) and (6,5). Yet
thereafter also the leptons have been handled through the eq
(2,4) simply guessing an analogy of behavior for both kinds
of fundamental particles of our universe. But, strictly speak-
ing from a physical point of view, why should the lepton
masses depend onδn? On the one side the extension of the
eq (2,4) certainly works well, because the well known masses
of electron, muon and tau particles fit the proposed scheme;
the fact of having included these masses among the results

calculated through eq (6,10) supports also the values of the
masses not experimentally available. On the other side, how-
ever, in lack of a self-interaction mechanism characteristic
of the quarks only, the question arises: is justified a simi-
lar mechanism for the vacuum polarization around the real
charges with formation of virtual particle-antiparticle pairs?
Does the interaction between these couples of virtual parti-
cles/antiparticles surrogate the self-interaction of the quark-
gluon plasma? Work is in advanced progress on these points.
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