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The paper proposes a simplified theoretical approach to infer some essential concepts
on the fundamental interactions between charged particles and their relative strengths
at comparable energies by exploiting the quantum uncertainty only. The worth of the
present approach relies on the way of obtaining the results, rather than on the results
themselves: concepts today acknowledged as fingerprints of the electroweak and strong
interactions appear indeed rooted in the same theoretical frame including also the basic
principles of special and general relativity along with the gravity force.

1 Introduction a correction to the latter. The quantunand p distributions

are appropriately described by the respective marginal dis-

The state of a classical particle is specified by its Coordina{ﬁﬁutions [ W(x p)dp and [** W(x, p)dx under the nor-
and momentum; the dynamical variabley. y. p,. Z p., as- malizationfgonditi’onffo‘jf [ Wzox pd ’pdx= 1, whereas the

sumed known “at any time, :jeflne the 6-dimensional sp S&)ectation value for any operator function is weighed by
usually called “phase space”. Knowing the state of a pary; X p) as [* [**W(x, p)f(x, p)dpdx Other relevant fea-

cle means determining these six quantities that descrlbetllJ s ofW(x, p), well known [3], are omitted here for brevity.

motion and energy. Since the state of a classical SYSteM\S, the Wigner function, however, although providing sig-

identified by the dis_tri.bution of corresponding points in thr‘ﬁficant information about the quantum states, presents con-
phase space, any finite voluMgs = (6x5y52)(5Px0P,P2) ceptual dfficulties: it is not a real probability distribution in

should seemingly contain an infinite number of states. fie classical sense, it is a quasi-probability that can even take

cause of the _uncertalnty pr|nC|pIe,.how_ever, th_e?? SIx quarﬁtggative values; moreover it can represent the average value
ties are not simultaneously known; the impossibility ofdeflre!)-]c an observable but not, in general, also its higher power
ing the corresponding points in the phase space Compelsniﬂ)'ments ' '
stead introducing a lower limit to the volume of phase space '

physically significant. Since such an elementary volume k‘ﬁg To bypass both thesefliculties inevitably inherent the
sizeV, = (dxdyd(dpdp,dp) = 2, any finite volumeVps ve formalism, the present theoretical model implements an

nclosing m rabl mbinations of rdinat nd approach conceptually fiierent: it exploits directly the sta-
enclosing measurable co ations ot coordinates and cly.| formulation of quantum uncertainty, which therefore

jugaie momenta consists of a finite numhx_g,rs/vps of _eI becomes itself a fundamental assumption of the model and
ementary volumes. The quantum uncertainty was |nferre ds in one space dimension

by W. Heisenberg as a consequence of the operator formal-
ism of wave mechanics, on which relies the quantum theory: AXApy = i = AtAe. 1,1)
the wave functiony = y(x,t) replaces the lack of definable '

quantum values ok concurrently associable to the conju-  This set of 2 equation disregards since the beginning the
gate px. However most physicists believe unsatisfactory|gcal dynamical variables of the particles forming the quan-
theory based on the wave functigrwithout direct physical tym system and simply counts its numinesf allowed states.

meaning [1]; indeedyy" only has the statistical meaning ofare therefore required the following positions
probability density and contains the maximum information

obtainable about a physical system. The wave function char- X — AX, t > At, i=13 (1,2)
acterizes a pure state, represented by a single "ket” vector

to which corresponds a well defined eigenvalue, whereas in No hypotheses are made about the uncertainty ranges,
general a particle is found in a mixture of states; so the kghich are by definition unknown, unknowable and arbitrary.
sult of a measurement on a quantum state represents a pltolfuantum mechanics the square complex wave function of
ability distribution of finding the particle in a given volumespace and time variables contains the maximum information
of phase space. The density matrix is the mathematical tabbut a quantum system, which has therefore probabilistic
to describe mixed quantum states by means of a distribut@raracter. The present model intends instead starting from a
function of coordinates and momenta. Owing to the statiminimal information about any quantum system, still based
tical character of the knowledge we caflioad in the quan- on the failure of the physical concept of points definable in
tum world, the Wigner functioW(x, p) [2] aims to repre- the quantum phase space but trusting on the idea that a min-
sent a quantum state in terms of a joint probability distimum information is consistent with the maximum general-
bution involving both coordinates and momenta, in formday: despite the knowledge of one dynamical variable only is
analogy with the classical statistics; the former is therefdreprinciple allowed even in the quantum world, the present
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model disregards “a priori” the local values of both conjugatiee uncertainty ranges and related numbers of states, i.e. on
dynamical variables. This means renouncing even to the ctire phase space, rather than on the specific coordinates of
cept of probability density provided by the wave function ofthe particles concerned by the particular physical problem.
particle, while also disregarding the related concept of wavefact, the local dynamical variables are conceptually dis-
packet to describe its propagation; in the present model itégarded since the beginning in the present model. Put for
only possible to say that if the particle moves during a tiniestanceAx = X — X,: if either boundary coordinate, say,
rangeAt throughout its uncertainty rangex, then its average is defined by the origin of the coordinate syst&nthen it
velocity component is, = Ax/At regardless of any local fea-determines the position @&x in R; the other boundary coor-
ture of its actual delocalization motion. So egs (1,1) requidinatex determines its size. The crucial point is that bagh
by definitionAe = vyApy. In fact the positions (1,2) ignoreandx are arbitrary, unknown and unknowable by fundamen-
both local dynamical variables, not as a sort of approximatital assumption; the reference systBris therefore "a priori”
to simplify some calculation but conceptually and since tlagbitrary, unspecified and unspecifiable as well, whence the
early formulation of any quantum problem; accordingly, thequivalence of all reference systems whenever implementing
delocalization of a quantum patrticle in its uncertainty rangiee positions (1,2) to describe the quantum world. Otherwise
is conceived in its most agnostic form, i.e. waiving any kinstated, egs (1,1) do not specify any particular reference sys-
of information about its position and motion. Thus, regardéeim because analogous considerations hold for all uncertainty
in this way, egs (1,1) exclude the concept itself of probabilitgpnges they introduce. Moreovers itself arbitrary as well; it
density and contextually also the definition of Wigner funernerely symbolizes a sequence of numbers of allowed states,
tion linking the Schrodinger equation to the marginal distmot some specific value in particular. Let therefore egs (1,1)
butions in the phase space; both equations are bypassed adb@tdefined in aniRand rewrite them a&xX'Ap), = ' = Ag’At’
with the concept of wave equation itself. Egs (1,1) merely list any R': it is self-evident that actually these equations are
the eigenvalues of pure states, indeed they are a set of eduaistinguishable becauseandn’ do so as well. Whatever
tions corresponding to the respective valuer;ao they also a specific value oh might be inR, any change tao e.g.
skip the probability with which in a mixed state each eigetecause of the Lorentz transformations of the ranges is phys-
value could be measured. Despite waiving themselves italy irrelevant: it means replacing an arbitrary integer in
concept of probability density through the positions (1,2), etiee former set with another integer of the latter set. In ef-
(1,1) enable however also this kind of probabilistic informdect, two examples of calculation reported below highlight
tion; it is essential indeed to mention that the wave formalisitmat modifying the range sizes from primed to unprimed val-
is obtainable as a corollary of egs (1,1) [4], which means thats does notféect any result, in agreement with their pos-
all considerations previously introduced are in fact comprisedated arbitrariness: no range size is expected to appear in
also in the present theoretical model: one infers first from eipe quantum eigenvalues. Hence the egs (1,1) have general
(1,1) the operator formalism and then proceeds as usualclharacter, regardless of any particular reference system to be
this way the wave formalism, with its conceptual weaknesgpropriately specified; this holds alsd?findR’ are inertial
loses its rank of fundamental root of our knowledge aboamd non-inertial, since no hypothesis has been assumed about
the quantum world, becoming indeed a mere by-producttbém [7]. On the one hand this entails obtaining the indis-
egs (1,1); yet, even so it still represents an added value totihguishability of identical particles as a corollary, regardless
physical information by introducing the concept of probabibf which particle in a set could be that actually delocalized
ity density that partially overcomes the total agnosticism of a given uncertainty range; indeed no particle is specifically
egs (1,1). concerned “a priori”. On the other hand it also entails that
What however about the chance of formulating any phythie properties of motion of the particle, and thus the marginal
ical problem exploiting directly the eqgs (1,1) only? Is legitidistributions of its dynamical variables, are disregarded by as-
mate the belief that the equations enclosing conceptually guenption and skipped by consequence when formulating any
wave formalism as a corollary also enclose the inherent phpkysical problem. To better understand the following of the
ical information. The question that arises at this point copaper, these remarks are now exemplified examining shortly
cerns just the real chance of obtaining physical informatitime non-relativistic quantum angular momentiun on the
once abandoning the typical ideas and mathematical tool®oé side to highlight how to exploit the positions (1,2) and on
wave mechanics: is really redundant the concept of proliae other side to show why the minimal information accessi-
bility density? Several papers have demonstrated ffez-e ble through eqgs (1,1) is in fact just that available through the
tiveness of this alternative approach, e.g. [5,6]; moreovasual operator formalism of wave mechanics.
without the need of hypotheses arand on the uncertainty ~ Consider the classical componevit, = r x p - w of M
ranges defined by eqgs (1,1), the paper [7] has shown the @deng an arbitrary direction defined by the unit veatorbe-
sibility of extending the mere quantum horizon of these equag r the radial distance of any particle from the origin of
tions, initially concerned, also to the special and general rak arbitrary reference system and its momentum. The po-
ativity. The positions (1,2) compel focusing the attention aitions (1,2) compet — Ar andp — Ap and enable the
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numberl of states to be calculated only considering the totiahit caseAx — 0, which means that the random local vari-
rangesAr and Ap of distances and momenta physically akblex, < x < x; tends to a classical local value uniquely and
lowed to the particle, about which no hypothesis is necessayactly defined; (xii) the total arbitrariness of the boundary
let us show that the random local valueandp themselves values of the ranges is necessary to ensure that any local value
have instead no physical interest. Blg = (Ar x Ap) - w = is allowed for the corresponding classical variables; (xiii) the
(Wx Ar) - Ap, i.e. M, = AW - Ap, whereAW = w X Ar. range sizes do not play any role in determining the eigenval-
If and AW are orthogonal, thet,, = 0; else, rewriting ues of angular momentum, their conceptual reality, i.e. the
AW - Ap as(Ap - AW/AW) AW with AW = |AW]|, the com- total uncertainty about both conjugate dynamical variables of
ponenttApw = Ap - AW /AW of Ap alongAW yieldsM,, = a quantum patrticle, is the unique hypothesis of the present
+AWApy. model. The same holds of course for any other uncertainty
range.
These ideas have been extended and checked in the papers
,6] also for more complex quantum systems like hydrogen-
Ike and many electron atorfigns and diatomic molecules;
also these papers allowed concluding that egs (Hitjently
replace the standard approach of wave mechanics, without
JFquiring the concept of proba'bilit.y dgnsity and thus without
the average values M2 >, < Myz > and< M2 > should need of calcula}tlng marglpal distributions in the phasg space
be equal; so the quantity of physical interest to describe 595099*‘ the _\ngne_r functions. In these Papers the interac-
properties of quantum angular momentun,ias a function tion is descrl_bed .v_la the Coulomb potential energy between
of which M? is indeed inferred as well. The components a\gharged particles; in otherwords., one assumes already known
eraged over the possible states summihyf from —L to +L, the Coulor_‘nb law to calcglate _for.mstan.ce the energy IeveI; of
whereL is an arbitrary maximum value o¢f yield < M? >= Z%ﬂzgoggrn!iﬁp?ggsthgilznp(r)é?;tli\s/izssIlrilyzlr?)glvlegnrllitlfg ggg;g’
li=L -
Zi—t (71)?/(2L+1) and thusv® = Zi3=1 < Mi2 >= L(L+1)n?. levels; also this topic, already introduced in [5], is reported
The physical definition of angular momentum is enoudtere for completeness.

to find quantum results completely analogous to that of the Assuming the origirO of an arbitrary reference system
wave mechanics even disregarding any local detail about Bhen the nucleus, the classical energyis p?/2m— Z&/r
angular motion. This result has been reminded here as itlieingm the electron mass. Sing® = p? + M?2/r2, the po-
troduces several significant considerations useful in the fsitions (1,2)p, — Ap; andr — Ar yield e = Ap?/2m +
lowing: (i) egs (1,1) and the positions (1,2) plug the classidsi?/2mAr? — Ze?/Ar. Two numbers of states, i.e. two quan-
physics into the quantum world; (ii) no hypothesis is necesim numbers, are expected because of the radial and angu-
sary about the motion of the particle nor about its wenatter lar uncertainties. Eqgs (1,1) and the previous result yietd
nature to infer the quantum result; (iii) trivial algebraic ma¥s?/2mAr? + (I + 1)i#%/2mAr? — Z€&?/Ar that reads: = &, +
nipulations replace the solution of the pertinent wave equé-+ 1)#2/2mAr? — E,/n? with E, = Z%¢*m/2i? ande, =
tion; (iv) the result inferred through eqs (1,1) only is consiazi/Ar — Z&m/nk)?/2m. Minimize & puttinge, = 0, which
tent with that of the wave mechanics; (v) the local distangeelds Ar = n?#?/Zém ande = [I(I + 1)/n? — 1]E,/n?;
between the particles concerned in the angular motion dged < n — 1 in order to gete < 0, i.e. a bound state.
not play any role in determininig (vi) the number of allowed Putting thusn = n, + | + 1 one finds the electron energy
states plays actually the role of angular quantum number@felse. = —E,/(n, + | + 1)? and the rotational energyo =
the operator formalism of wave mechanics; (vii) the amoulft+ 1)E,/n* of the atom as a whole arou@ Hold also here
of information accessible for the angular momentum is nall considerations introduced for the angular momentum, in
complete like that of the classical physics, but identical particular it appears that the range sizes do not play any role
that of the wave formalism; (viii) egs (1,1) rule out “a priori'in determining the energy levels. The physical meaning of
any chance of hidden variables hypothetically encodableAn, related to the early Bohr radius, appears noting that
the wave function, i.e. local values of any kind that could in

o 2 : E, Zé n2i2 Z2e*m
principle enhance our knowledge abddif andM“ to obtain gy = —— = -—_ Ar=—— E,= ——, (1,3
a more complete description of the angular quantum system; n? 2Ar Ze?m 2n?
(ix) the eigenvalues, i.e. the physical observables, are adte- ¢ is due to charges of opposite sign delocalized within
ally properties of the phase space rather than propertiesaaiametric distanceAt apart. As previously stated, nucleus
specific particles, whence the indistinguishability of identicahd electron share a unique uncertainty radial range: in gen-
particles here inferred as a corollary of egs (1,1); (x) the nueral, the greatem, the closer its delocalization extent around
bers of states are here simply counted; (xi) the positions (1t}2¢ nucleus. Also note thatandl are still properties of the
are consistent with the concept of classical coordinate in fhigase space, but now they describe the whole quantum sys-

Thus, according to eqgs (1,1, = +l#, beingl the usual
notation for the number of states of the angular momentu
As expectedM,, is a multi-valued function because of th(lg
uncertainties initially postulated far andp. One compo-
nent ofM only, e.g. along the-axis, is knowable; repeating
the same approach for theand x components would triv-
ially mean changingv. Just this conclusion suggests th
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tem "nucleust+ electron” rather than the nucleus and the ele@- Physical background of the interactions

trgq separatel){. Since the first eq'(1,3) does not depend & us show that the concept of interaction relies in the frame
plicitly on the kind of particles forming the concerned hydrc5f the present model entirely on eqs (1,1). Consider first an
genlike atomm or the reduced mass are actually hidden infg,| +eq particle of mass and momentum componempt’

Ar; itis possible to linke to the known conditiom = 2rAr, free to move in an ideal infinite range. When confined in a

according which an integer number of steady electron WaYfe_space uncertainty range, however, its energy changes
lengths is defined along a circumference of radius For by an amount\s given by

such electron waves one finds
nZ¢& __aZpc h 3

m o n2° PTT YThe (1.4) i.e. Apy is by definition the range including any change of
Note that introducingr to express the quantum energ{?cal momentum compone occurring when the free par-
levels compels defining the De Broglie momentum. Even /€ turns from a non-confined to a confined state within
this form & is still related to the reduced mass of the sys- SINC& NO Process occurs instantaneously in naturétlet
tem, which can be introduced via the momentpmthus eq be the confinement time range correspondlng.ng: to the
(1,4) holds in general for any system of charges. Moreovg,gnflnement process corresponds thus t?ﬁfarlsmg_ of a force
the factorz/2 apart, appears interesting that the energy levéiRld whose componemtFy = Apy/At = Fx™ — F is re-
of the systemee are linked to the kinetic energg,c of the |ated t0Ae, being clearlyAFy = As/Ax = Apz/2mAX. By
running electron wave circulating along the circumference @gfinition AF, includes any randorfy’ < Fy < F i
radiusAr via the codficiente/n. On the one hand, this resulthe present model the local dynamical variables are replaced
emphasizes the electromagnetic character of the interachyrcorresponding ranges of values, so the classical fékce
between electron and nucleus; on the other hand, the key Ajléhe local coordinate is replaced by a range of possible
of the quantum uncertainty in determining the allowed enerffjfces active withimx. Actually the resuliAp,/At = Ag/Ax
levels of egs (1,3) also evidences the kind of interaction itsélfuld have been inferred directly from egs (1,1) without need
The more general question that arises at this point is thereféfeany remark; yet these considerations highlight that a force
do egs (1,1) provide themselves any hint also about the pfﬂgld in a space time uncertainty range is the only information
ical essence of the fundamental interactions? The stanciifailable on the particle once accepting the egs (1,1) as the
model [8-11] provides a satisfactory description of the fundgique assumption of the model.
mental forces of nature. So the present paper does not aimClearly, once concerning one particle only, energy and
to replicate the electro-weak model or the chromodynamié@fce component cannot be related to any form of interaction;
which indeed would be useless and unexciting; neverthelga&er both have mere quantum origin. Als; and AFy
seems useful to propose a simplified approach aimed to si8d obviously to zero foAx — oo; hence ifp;’ changes
(i) that the fundamental interactions are inferable from etfsps"" concurrently with the arising of a force component
(1,1) only and (i) that exists a unique conceptual root cor@cting on the particle, thepi’ must be constant by defini-
mon to all fundamental interactions. This task is ifieet tion as it represents the momentum of the particle before its
particularly valuable because the present model has alre@@gfinement driven perturbation. This again appears from the
accounted for the gravity force [7] and for the basic princstandpoint of egs (1,1)Ax — oo requiresAp, — 0 for any
ples of special and general relativity. finite number of states regardlessAdf Since an uncertainty
The purpose of the paper is to examine the ability of etgnge infinitely small tends to a unique classical value of its
(1,1) to describe also other kinds of possible interactions sgfresponding quantum random variable and since this holds
their relative strengths at comparable energies; it will be akggardless oft, then the limit value must be a constant: so
shown that further information is obtained about the vectpf = constcorresponds by necessity &g’ = 0.
bosons associated with the respective kinds of interactions. Despite the present model allows reasoning\é® only,
Therefore the worth of the present paper rests mostly on éhéirst corollary is the inertia principle that holds for a lonely
chance of finding concepts today known as fingerprints of tparticle in an infinite space time delocalization range. Other
electroweak and strong interactions in the frame of a unigi#eresting consequences follow for any finkg = x; — x:
logical scheme based on the quantum uncertainty and inclti notation emphasizes that instead of considering the parti-
ing the relativity. The paper [7] has somewhat concernetg initially in an infinite unconfined range, we are now inter-
the electromagnetic interactions, while also showing that @fited to describe its behavior in a confined state, e.g. in the
concepts of quantum wave formalism are indeed obtainggsence of two infinite potential wallsx apart. Clearly this
through the present approach. Here we concern in particuigans introducing the correspondingy = p"" — pS°"":
the weak and strong interactions between nuclear and sa@ain the egs (1,1) compel writings/Ax = ApZ/2mAx®
nuclear particles. The next sections will describe the possileen py has turned into a locgh?™" < px < pi™', which
features of these interactions. entails once mordF, = Apy/At within Ax. These ideas are

ApZ/2m= (nh)%/2mAx2,  Apy = po - p;

Eel = —
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now extended to the interaction forces. Rewrite first the forse that
field componente/Ax = Ap2/2mAx3 of a particle confined

2 3
within Ax as follows Iog(Agn”‘m) _on_ }(é_n) . }(@) o
#i2nn Aé‘nl Ny 2\ng 3\m
AFy = 5 —=, V=A% (2,1)
2mV N7
Agp, = —, 6n=1,2 (2,2)
Even the one-dimensional case defines the delocalization &m = At TS ,

volumeV because, beingx, Ay andAz arbitrary, any value  Thjs equation describes the size change of the energy

allowed toAxAyAzis also allowed tch3._Is crucial the fact rangene,, as long as the number of allowed states increases
that the range of each force component s proportionalto ity respect to the initial value;: S0 Aep,.sn With on = 1
number of allowed states per unit mass, tinm¥, nUM-  gescribes the first increment of energy range size with respect
ber of allowed states per unit delocalization volume. Cops A thensn = 2 the next size increment and so on: in

. . . . . 1 ’
sider now two free particles andb in their own uncertam_ty short, eq (2,2) describes how are modified the random local
rangesAxa and sz; hold szeparately for themzthe re'%t'O”ValueSEn1+5n included inAen, .sn atén progressively increas-
shipsAea = (Nah)*/2MalAXi, and Asp = (Mf1)/2MbAXy,  ing. Insteadhen, plays here the role of a fixed reference range

These particles are non-interacting, as tingiandn, are as-. with respect to which is calculatetkn, ,s,. For reasons that
sumed independent each other like, andAx, themselves; | e clear in the next section 5, it is mostly interesting to

nothing in these equations accounts for the most typical and, mine the particular caseof such that
obvious consequence of any kind of interaction, i.e. some

relationship between their allowed states or between their de- Agn, — Agn, << Agp,, on/ng << 1. (2,3)
localization ranges. Two free particles do not share by defi-

nition any kind of link, any possible coincidence of allowed Let us truncate thus the series expansion (2,2) at the first
states would be accidental and transient only. Consider noxger of approximation under the assumption (2,3) and sim-
their possible interaction; a reasonable chance of linking thelify the notation putting = én; one finds (1,2,...)

allowed states is to assume, for instance, that the particles

share the same uncertainty rangeAXfis unique for both par- n |og(_i) =i, Ai=Agnm  A=Asy.  (2,4)
ticles, then their allowed states must be somehow linked be- A

cause of egs (1,1); in other words, even being il ny, the

Despite the generality of egs (2,2), is particularly signifi-
random values of local momentum componepts and pyy P! 9 s as (2,2), is particularly signifi

cant for the purposes of the present paper the case of a quan-

ﬁlret S?bj(?cu:d 0 ttr;];cor}strangal/ gp.xa |: dnb/ %p"d” ? .At_x/ h. IItum system consisting of an arbitrary number of particles,

° e.b?r 'z.s ;’;mce b rto eq ( I, )tmc u ZS y Ie ni 'Or?. ah each one delocalized in its own uncertainty range: if these
possible distances between eIectron and nucieus, Which gk 5o non-interacting, then let the energy of the system
plicitly means that both particles share the same uncertalgg/

h the int "’ ) dl ch terizi included within the rang&e,, and ben; its total number
range where the interaction occurs;rsandi charactenzing ¢ states; if instead all particles are delocalized in the same
the electron energy levels of the hydrogenlike system re%ﬂ%ce-time range, then their interaction changes the energy
from the change of the early quantum numbers, e'§¢ and '

[free — 0. owned by each particle independently of the Othrange of the system taey, .5, Characterized of course by a

. ; . . w number of statas = ny + on.
before interaction. In this respect two relevant points are: (i % !

the interaction driven changa of the numben of states and As concerns the point (i), we expect according to eq (2,1)
(il the physical meaning of the relatef(n/m)(n/V)]. that fromAes, andAey, of the two free particles follow because

N . . . of the interaction the change®\e, = (A2/2)6(n2/MmaAX2
As concerns the point (i), considaeAt = n in an arbi- gei\ea = (7°/2)0(M/Malg

andsAep = (7?/2)5(n3/mpAXZ). The expressions of the cor-
g?;%;ﬁ{;r (\a/glcjeiystf)e?n?/n:ufégsb;vaelI\C/);\;ﬁg g)ufizzng?i;?dmresponding changes of the initial confinement force compo-
1
. . o .. NentsAFy, = Aga/AXy andAFy, = Agp/AXy from the non-
time rangeAt; whatevem; andn, might be, this is admissi- xa £a/AXa o &b/ 8%

. . . ) interacting to the interacting state read thus
ble becauset is arbitrary. The notation emphasizes that a g g

given value ofsn = ny — ny is obtainable regardless of the SAFya = (12/2)5 [(Na/Me)(Na/Va)]
initial value n; because, is arbitrary; sosn = 1,2,.. any-
way, regardless of the specific valuergf Calculate next the SAFp = (1%/2)8 [(No/Mb)(No/Vb)] -

changesAe of Ae as a function obn during At, which reads
now (Aen, — Agn,)/Aen, = dn/m with obvious meaning of
symbols. Note that in general the series expansion oAlgg(
around logQep,) reads

These equations agree with the previous idea, i.e. the
forces are related to changes of the allowed numbers of states
per unit mass and delocalization volumes of the partieles
andb: in effect the interaction between two particles consists
Aen, — Aep, 1(Asn2 - Aep, )2 of forces acting on both of them and requires that the respec-

log(Aer,) = log(Aen,) + Agn, 5 tive numbers of states aréfected as well. More precisely

Agn,
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6 [(n/m)(n/V)] means that are modified during the interachance of rewriting it asnt/nk)AFy = (%/2)(n/V). Note that
tion not only the states allowed to the particles themselvas|eft hand side appears the raftion having physical dimen-
but also that of the delocalization space surrounding thesions of difusion codicient; write therefor&\Fy = D*ni/2V
Clearly the former are consequences of the latter. In othégth D* = nfi/m. Moreover the fact that the physical dimen-
words, the fact thaf(n/m) requires explicitly also the con-sions ofF/D* aremasg(length x time) suggests the position
currents(n/V) compels thinking: (i) that a particle interacts

with another particle because it generates a field that propa- AFx - hn - d_u‘“ D* = L (2,5)
gates outwards through the space volwhand (ii) that just D* 2V  dw’ m’ '

in doing so this field changes the number of states allowe%té{/ing at the moment mere formal meaningwifepresents

the other particle; i.e. the changes of number of states of eacﬁequency and, an energy density, the physical dimen-
particle are somehow correlated, as previously stated. SiQgshs of both sidlés arenewy x time/z;olume S0 AF, =

no event occurs instantaneously in natd(a/V) requires an D*du,/dw agrees with the idea that the force field is due

appropriate time range to be realized, i.e. the propagatign, gjrusion-like flux of particles. This appears properly

rate is finite in agreement with the existence of an upper "rﬂ'éndlingduw/dw: indeed it is possible to writelu,/dw =

obliged by egs (1,1) [7]; in this way the interaction exchanggs, 4c;dx once more via dimensional requirement, being C
information about physical features and strength of the I§7V or C = &/c2V the concentration of massive or massless

lated force between particles. The most natural way t0 aCiriars. HencaF, = wVD dC/dxi.e. AFy = —wVJy; the
knowledge this way of regarding two interacting particles iy s sign means of course an incoming flux of messenger
to admit that they exchange intermediate virtual particles ﬂb”é{rticles ifJ, > 0, yet both signs possible faiC reveal a
propagate, whenag(n/V), and carry the necessary informagomplex fluctuation driven space distribution of interaction
tion that dfects in turn the real particles themselves, Whenggriers randomly moving forwards and backwards between
6(n/m); indeedn definingn/V is the same as that deﬁmn_glhe real particles. This result is easily understood: in a volume
n/m, i.e. the changs(n/m) of states allowed to the particle is;; \yhere are delocalized interacting particles, boson carriers
_actuallyjust that(n/V) of the space around |t._ Strictly Spea!(\'/vith density C are exchanged at frequengsccording to a

ing, however, one should say more appropriately space-tiffigy ke law that generates the force fie\6,; the flowJ, of

and not simply space: indeedk definingV in €q (2,1) is ac- \ector hosons crosses an ideal plane perpendicular to the flow

tually Ax = Ax(At) because of egs (1,1) themselves. So theying at ratewAx consistently with an energF,Ax/V
finite time range required faf(n/m) to occur is nothing else per unit volume. The diusion codficient of the bosons is

but the finite time range required to propagae/V) and 0 o antized. In [12] has been demonstrated the quantum na-

come back, i.e. to allow exchanging the interaction carrief§re of the difusion process and also the link between particle

Interaction force and propagation of force carriers througBW and concentration gradient driven Fick's law, as a conse-

M are therefore acco.rdilng to eq (2’1), two basic aSpeCtSq‘Blfence of which the statistical nature of the entropy also fol-
the interaction. In principle these carriers could be massi\gs: this latter result is further inferred in the next section 7

or massless, in which case one expests?s [(0/)("/V)], iy an independent way, see egs (7.7). Eq (2,5) is immediately
but they must have anyway boson character in order that {ieis- 1o considering the cubic volumé = Ax® of space
aforesaid forcesfiect the allowed states of the interactioBf eq (2,1) filled with photons. LeAx = A be the longest

partners while minimizing their exchange energy. It has bega, ejength allowed in/ to a steady electromagnetic wave
already demonstrated in [7] that as a consequence of eqs (}#) nodes at the opposite surfaces of the cube, whose side
integer or half-integer spin particles have &elient link to is therefore1/2; thusV = (1/2)3, whereasu, = (fiw/2)/V

the respective numbers of allowed states: an arbitrary numiej, o corresponding zero point energy density of the oscil-
of the former can be found in a given quantum state, i”Stqﬁﬂng electromagnetic field. So, with = c/v one finds

one particle only of the latter kind can be found in a give@,_b — 4n(v/c)®hdw; since by definitiomidw = hdv, and thus
guantum state. Consider a multi-body interaction, where - (20 lduy, :chis result readsiu, = (87T(v/,c)3hdv)n'

arbitrary number of force carriers is to be expected: fermigh caction 7 it will be shown that the number of states

carriers would require a corresponding number of quantufii,ed to the photons trapped within the cube is given by
states with energy progressively increasing, whereas a uni%mv/k-r) — 1)1, whence the well known result
ground state allows any number of boson carriers; as it will '

be shown below, the former case would be incompatible with  dqu,  87hy3 1

a unique amount of energy to be transferred between all in- 4" = ~ 3 n, n= Wk'l’)—l' (2,6)
teracting particles and thus with at a minimum transfer en-

ergy. The corpuscles that mediate the fundamental forces oflt is interesting the fact that the black body law comes
nature are indeed well known in literature as vector bosoimamediately from the same idea that shows the existence of
which also suggests the existence of a pertinent boson enenggsenger bosons mediating the interaction between parti-
field. An interesting consequence of eq (2,1) comes from tties. ClearlyAx® represents the black body volume.
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Recall now that, in agreement with the arbitrariness of (= Eoo—f , _ dAX
. x = Px ox = Poxs vy = .
n, the ranges of eqs (1,1) can be regarded as arbitrary func- dAt
tions of time throught; read for instancéx = x — X, with Having replaced any local distangevith the uncertainty

X = X(At) andx, = Xo(At), being in generak(At) andx,(At) rangeAxincluding it, the local force=y is replaced by a cor-
different time functions. Of course no hypothesis is necegsponding rangéF, including local values of force. The
sary about these functions, which are undefined and undefiatationn, emphasizes that the arbitrary numineof states
able. Hence the size @fx is in general an arbitrary functionrefers here to th& components oAp, v/, F andF,; of course

of time itself, whereas the concept of derivative relies in tlage likewise definabla, andn, too. Moreover note that is
frame of egs (1,1) only as mere ratio of uncertainty rangesnceptually dierent fromy introduced in section 1: despite
This idea generalizes the previous definition of force fielbth have formally physical dimensions of velocity, the latter
AFy = F&" _ . For instanceAp,/At takes the physical only is the actual average velocity of any real particle travel-
meaning of force field componemts/Ax generated within ing through its delocalization rangex during At, the former

Ax by the change rate of afl, compatible withAp, during is the deformation exteiaiAx of Ax during the time increment
At, whatever the physical reasoffiectingp, might be. More- dAt. Souy is self-defined without need of further considera-
over, being the range sizes arbitrary, these ratios can even takes, the physical meaning of is instead strictly related to
the local physical meaning elucidated by the familiar nottat of Fx concurrently inferred. This distinction is inherent
tionsAs — de, At — dtandApy — dpx. In other words, the the character of the present theoretical model that, as previ-
local concept of derivative is here a particular case of that@fsly remarked, concerns the uncertainty ranges of the phase
ratio of arbitrarily sized uncertainty ranges. There is no cospace where any particle could be found rather than the par-
tradiction betweeme/At andde/dt, which have both mereticle itself; however the examples of the angular momentum
conceptual meaning and in fact are both indeterminable: #rd hydrogenlike energy levels have shown that working on
former because of the arbitrariness of the range boundaribs, uncertainty ranges that define a physical property allows
the latter because the local variablgsandt around which to gain information on the related behavior of the particle and
shrink the respective ranges are arbitrary as well. The consis-the given law itself. Eqgs (2,7), reported here for clarity,
tency of this position with the concept of covariancy has bebave been early introduced in [7] and therein exploited to in-
concerned in [7]; in this paper and in [4] has been also shofen as a corollary in the particular case of constagt(i) the

that just the evanescent concept of distance required by elgivalence principle of general relativity, (ii) the coincidence
agnostic positions (1,2) in fact determines the non-locality gravitational and inertial mass and then (iii) the Newton
of the quantum world. Exploit now egs (1,1) to calculatgravity law as a particular case; actually this law results to
in any reference systelR an arbitrary size changip, of be the first order approximation of a more general equation
Apx = Px — Pox @s a function of thatgdAt, of the time un- allowing to calculate some interesting results of general rela-
certainty rangeAt, assuming thah remains constant duringtivity, for instance the perihelion precession of planets.

dAt; hence duringlAt the size ofAx necessarily changes by  Also in the present model, therefore, the deformation of
an amountAx as well. Of course this reasoning can be réhe space time quantum delocalization range entails the aris-
versed: a force field arises within the space-time rafige ing of a force as a corollary of egs (1,1). In this paper we
because of its deformatiatiAx that in turn, because of eqgpropose a further way of handling eq (2,7): in agreement with
(1,1), requires the momentum rangyp, deformation as well the purpose of this paper, i.e. to infer various forms of interac-
[7]. Is evident the link of these ideas with the foundatiori®on between particles from a common principle, it is enough
of relativity. Differentiating egs (1,1) and dividing lmAt, to rewrite egs (2,7) in dierent ways and examine the respec-
one findsdAp,/dAt = —(ny7i/Ax?)(dAx/dAt). Of course, in tive consequences. The fine structure constegnabledi to

R one would obtairdAp,/dAt = —(n/i/Ax’?)(dAX /dAY'); be eliminated from egs (2,7), which read in c.g.s. units for
yet any consideration carried out about the unprimed equatidmplicity

can be identically carried out on the primed equation. In the de Ny

present model there is no local value defineRthat changes Fx—Fox=+-—, e =+—*e (2,8)

into a new value iR, while any uncertainty range undefined Ax ac

in R remains undefined iR’ too; so considering primed and Here AF;, = Fyx — Fqx is the force field between two
unprimed range sizes means actually renaming a unique cimarges and €’ interacting through their linear charge den-
defined range. The same holds of course for the ratios of aitjese/Ax ande' /Ax: i.e. even the electric interaction force
two ranges. If in particulaat = t—t, is defined with constant relies on a physical basis similar to that of the gravity force.
to, Since actually even this latter could be itself a function dhe double sign accounts for both chances ttiaexpands

t without changing anything so far introduced, then one findsshrinks at deformation ratev}, which is a decisive param-

inanyR eter to express the respective states of chargg. # 0 then
dApy ni € =0, i.e. it corresponds to a chargeless particle; of course
L Fx — Fox, (2,7) the related electric force is null, i.e5, = Foy accounts for
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other forces possibly acting on the particle, for instance thesensible conclusion is that we should have 6 quarks and 6
gravity; this case, concerned in [7] to emphasize the link mtiquarks: for instance, to the,(- n,)e/n’" quark charge
tween quantum theory and relativity, is skipped here. Moresrresponds thef — ny)e/n” antiquark charge. Now the first
over holds an obvious boundary conditionmpi.e. a value problem is how to sort the charge signs between particles and
of n, must necessarily exist such tlgat= +e. Ben' this value antiparticles; in principle one could think the former as the
such that by definitiom’v), = ac; beingn; arbitrary integer ones havingagl) = +e/3 andegz) = +2¢/3, the latter as the
and v} arbitrary as well, this position is certainly possibleones with both negative signs. In this way, however, consid-
Then ering all values of charges compatible witfrom 1 ton’, one
= +(ny/N)e. (2,9) should conclude that in nature the mere charge signs discrim-
inate particles and antiparticles. Since this is not the case, itis
Here the double sign agrees with the chances allowed fioore sensible to expect t y=—¢€/3 ande/,, = +2¢/3, for
e depending on the expansion or contractiom\&f It is rea- instance, identify quarks whereas the inverted signs identify
sonable to assume thait = 3; considering also the deformathe corresponding antiquarks: likewise exist as a particular
tion rates+v;, and +v; of Ay and Az defined likewise ta}, case particles with either integer charge whose antiparticles
the number of states is actually countedhas- n, + n, + n, have either opposite charge.
with ground values, = n, = n, = 1, while being 1< n,; < Moreover if two charge statese/3 and+2e/3 are con-
n’ depending on the number of respective force componesitstent with six particles physically distinguishable, then each
Fy«i — Fox actively contributing ton’. Consider first thex- quark requires three chances of a new property, which is in-
component, eq (2,7), only. t, = n" = 3, thene/,) = +ecor- deed well known and usually called color charge: each quark
responds to electron and proton chardgs;Fox 0f eq (2,8) is can exist in three quantum states, i.e. it can take three dif-
the related Coulomb force component. The agse 2 yields ferent color states. Being the quarks characterized by sev-
€ = +(2/3)e, whereas, = 1 yieldsegl) = +(1/3)e; accord- eral quantum numbers, this way of justifying their number
ingly Fx — Fox must have a characteristic physical meanirdpes not mean a specific color uniquely assigned to each one
that will be concerned in section 5. The same result woufl them; rather it means introducing a number of internal
be obtained considering tlyeor zcomponents correspondingreedom degrees of color that make two fractional charges
to eq (2,7). Hence fractional charges are in principle to bensistent with six distinguishable particles. Anyway, since
expected in nature. It is easy guess how many particles watho anti-quarks exist for which hold the same considerations,
fractional charges, the well known quarks, are to be expecttitee anti-colors must exist too.
Consider the four chances corresponding to the double signsEventually, let us calculate how many kinds of bosons are
ofe/ ande’ and the three deformation ratgsv;, andvz, the necessary to describe the interactions between quarks via bo-
prewous d|scu55|on has exemplified the Ilnle’of\nth vy only, son exchanges able to modify their initial color states. Con-
yet an analogous reasoning holds of course also;!’/fmnd sider for instance a charmed meson identically symbolized as
v} Instead three dierent situations are in general compatiblc} or {cc} and assume that each boson mediating the quark
with €, ) ande;, when (i)v, # O only, (i) v, # 0 andv; # 0 interaction is specifically entrusted with changing one couple
only, ém) vl ;t 0 andv; # 0 along withv, # O too. Slnce color-anticolor only: let for instance the exchange of one bo-
Ny, Ny, N are mdependent and arbitrary, one could replace sen turrr intor and vice-versa. The mesofts} and{cc}, for-
second eq (2,8) for instance witnyv}, /ac+n,v; /ac, obtain- mally obtained by quark-antiquark and antiquark-quark ex-
ing thusx(ny+n,)/n’ as done to infer eq (2,9); then one couldhanges, are clearly identical and indistinguishable. Imagine
combinen, andn, in order to obtain again ratios having the¢herefore of turning all colors af, whatever they might be,
same values1/3 and+2/3 previously found, but involving into the corresponding anticolors gfwhose anticolors are at
now bothv} and v, instead ofv} only. Analogous consid- once turned into the respective colors. How many exchanges
erations hold for the case (jii) that involves algo In (i) the of color states into the respective anticolor states are consis-
vectorF—F, is oriented along one of the axes, herexkaxis, tent with the identity oftc andcc? Given two objects; and
in (i) it lies on one coordinate plane, here tkey plane; the c, each one of which can be found in three quantum states, the
components oF — F, arbitrarily oriented correspond in genthree colors, the trivial answer i$;2eight exchanges are not
eral to (iii), whereas a null vector is instead related’te= 0 only enough to turn all color states ofnto the respective an-
i.e. € = 0. Anyway, whatever the linear combinationgf ticolor states, which means by definition obtainmffom c,
v, andv, might be, it is reasonable to think that these ways biit also purposely necessary, as each single exchange gener-
inferring &) andeg2 are physically dierent from that involv- ates a new quantum configuration of states physically distin-
ing vy only; otherwise stated, to the various ways of findingguishable from that previously existing. Since a total of eight
given kind of charge correspondfidrent particles. With the color-anticolor exchanges are required to account for as many
aforesaid 3 chances for each signehf and e(z) we expect different configurations, eight is also the number dfedi
therefore a variety of 12 particles in total. Since this numbent bosons required to make the aforesaid couple of identical
is reasonably expected to include particles and antiparticlegsons ffectively indistinguishable. Theseffirent chances
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of interaction, each one characterized by its own specific @9Ap® = nOr = AtOAO); the superscripts emphasize
ergy, should be someway correlated to and described by tihat the ranges are sized in order to fulfill this delocaliza-
existence of as many such particles representing the posdiile condition during an appropriate time rangt®. Then
exchanges, i.e. just eight vector bosons. Also these partidap® = A=©. To find how scale the sizes of the momentum
are well known and usually called gluons. Is this reasoniagd energy ranges with respectﬁtpﬁf) andA&e© in the case
extensible also to three-quark particles like neutron or pmaf-a massive particle traveling at slower rate< c through
ton? The quark-gluon plasma of these latter is necessanitf®, write AXOAPY = nWn = AtOAD. Since neither
more complex than that of the mesons, so the question arisesor ¢ appear explicitly in this equation, it is also possible
whether the 8 gluons previously introduced are enough to tlewrite N7 = AtOA© = AtWAL®D); this is indeed true if
scribe also such three quark systems. Consider the puoihn At© and As© scale likeAt® = (c/v))At©, as it is reason-
and the antiprotonud. The conversiomu — Uu has been al- able, and\e® = (v,/c)As©. Replacing these positions in the
ready described. As concerds- d, still holds an analogousformer equation yieldax©@ApY = AtO(v,/c)Ae© whence
reasoning: a specific kind of gluon undertakes to change cmq)(x”) = (vx/C)Ae®. Actually the superscripts can be omit-
color into the anticolor, another kind of gluon does the sartesl because they do not identify particular range sizes; both
with another color and so on. However the kind of gluon emp@ and Ac© are indeed arbitrary likey itself. The su-
changes that turns red into antired of the quacknnot difer perscripts are also irrelevant as concerns the functional rela-
from that acting similarly on the quaxk it would mean that tionship between the local values of the respective variables,
each gluon "recognizes” its own quark on which to act, i.ehich readsp, = (vx/c?)e regardless of how the respective
we should admit that éierents(n/m) require diferents(n/V) uncertainty ranges are defined. Note thaande, exactly de-
depending on the respectime But nothing in the previous termined in classical physics and in relativity, are instead here
eq (2,1) allows this conclusion, rather it seems true exaathhdom values within the respective uncertainty ranges. Also
the contrary becauséx definingV has nothing to do with note that an identical reasoning i solidal with the parti-
m therein delocalized: indeed, as above stated, the indistite would yieldp}, = (v}/c?)e’: this is therefore a quantum
guishability of identical particles is just due to the possibilitgxpression relativistically invariant. This kind of reasoning
that any particle could be found in a given range. Soitis mdnas been carried out in [7] to show the connection between
reasonable to think that each kind of gluon excharftgrts a quantum mechanics and relativity. Now instead consider for
specific color, not the color of specific quark only; otherwigbe next discussion the following equations directly inferred
stated, the total number of gluons in a nucleon is greater theom eqs (1,1)
that in a meson without necessarily compelling a new kind
of gluons, i.e. any gluon in the tree-quark system turns one = As, Uy = —,
specific color regardless of whether that color is of a quhrk Ax At
or u. This way of thinking allows that the gluons transmitthe The last position does not merely emphasize a feature in
interaction between fierent quarks modifying theif(n/m), principle expected for any velocity, it takes a special rele-
i.e. their color quantum states, regardlessyf So, when vance in the present context. Being andAx arbitrary, one
counting the number of fierent gluons that allow the threecould writeAp, = Ae°%/c? too, with oS and Ae® still fulfill-
quark particlgantiparticle exchanges the result is the sameiag the givenApy. The total arbitrariness of the range sizes
that previously computed. plays a key role in the following reasoning basedvpfic =
These short remarks are enough for the purposes of thas®: if vx = ¢, then necessarily; < candAe® > As. Ex-
present paper; further considerations on other properties kigine step by step this point writing identically eq (3,1) as
strangeness, isospin and so on, whose conservation rule$aii@vs
necessary for instance to describe the decay of complex par- €  al 0®  As
. g X A O X¥X (o]
ticles consisting of two or three quarks, are well known and =xonc 2 = Ao Ae < Ag”. 3,2)
thus omitted here for brevity. The remainder of the paper aims
to describe the fundamental interactions by implementing the The last position emphasizes that both chare€s= Ae
ideas hitherto exposed. andAe® # Ae are equally possible. e = Ag°, thenuvy = v}
compels concludingy = 1§ = c only; so egs (2,7) and (3,2)
yield €/Ax = yAe, beingy = a/n a proportionality fac-
tor. This means correlating the potential eneggjAx of two
Divide all sides of egs (1,1) bs?Ax and recall that in generalelectric charges tae, introduced through p, and thus hav-
Apx = (vx/C®)Ae. An intuitive hint to this equation, alreadying the meaning of kinetic energy range. On the one hand
concerned in [7] and important also for the present purposas? # Ae requires diferentv andoy, thus both velocities or
is quickly reported here for completeness. Let in an arlait least either of them smaller thanwhence the inequality;
trary reference systemR a photon travel at speedthrough on the other hand, relating the physical meaning of the ve-
an arbitrary delocalization rangex©, so that egs (1,1) readlocities hitherto introduced to that of the boson carriers that

Nhvy AX

vy < C. (3,1)

s

3 The quantum interactions
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mediate the interaction force between particleés:= ¢ re- conceptual constraint of being mutually self-consistent. The
quires massless boson$,< ¢ massive bosons. Therefore théollowing sections 4 and 5 aim to outline the respective ways
arbitrariness ofA\e andA¢° justifies the conclusion that eithetto link the potential and kinetic energies.

chance of range sizes prospect8atient results for egs (3,2) ) ] )

and (3,1), despite their common origin from eqgs (1,1). Twh The interaction according to eqgs (3,1) and (3,2)
questions arise at this point: (i) whether these equations e following discussion concerns the ways to reduce the eqs
scribe two diferent interactions or two fierent appearances3,1) and (3,2), regarded together, to the fafAx = yAe

of a unique interaction, (ii) whether or not it is possible tim both casese = 0 andse > 0. Consider firste = 0, which

infer from both equations a relationship lik8/Ax = yAs requiresi® = v, = ¢ and thus massless boson carriers. So the
despite their formal dierence. The answers rely on the faginique result possible is

thatin eq (3,2) appears explicitly the Coulomb chazgeher-

ent the definition ofy, in eq (3,1) it does not necessari]y hold; g = Yem&, Xem = ¢ (4,1)
nothing compels assuming that even the enefgy/Ax is by X n
necessity referable to a Coulomb energy. Herea/n emphasizes the electromagnetic interaction in anal-

If nfivy/Ax does, then the common origin of these equagy with eq (1,4).
tions from eqgs (1,1) is a good reason to expect that the chancesThe further chancée > 0 requiring the condition§ < ¢
of massive or massless vector bosons are merely tiereint prospects instead the presence of massive boson carriers; thus
ways of manifesting a unique kind of interaction; rewritinge > 0, related to the formation of massive carriers, repre-
the inequality af\e® = A + dg, with § > 0 of course arbi- sents reasonably the energy gap with respect to the former
trary like Ae andA&®, both chances are in principle acceptablease of eq (4,1) involving massless carriers only. While heavy
depending on the amount of energy at which the interactieector bosons are the physical consequence of the concurring
occurs. In other wordée > 0 is an additional energy rangénequalities$ < c andde > 0, the arbitrariness af, prevents
motivated by the arbitrariness Ak, which indeed admits in- the possibility of deciding a priori either chance f&x and
troducing alsoAs° too, and justifying the presence of massompels the conclusion that a unique kind of interaction is
sive vector bosons. By consequence the chance of findingctually compatible with both chances. It will be shown that
unique link like€?/Ax = yAe between potential and kineticthe interaction energy related to the possible sizéftlis-
energies is to be reasonably expected; so, fixing an arbitraryninates either chance. Despite both chances are incorpo-
Ae allows assessing viathe relative strengths of both interrated into a unique conceptual frame, further considerations
actions at comparable values & and respective characterare necessary in this case. Write the first eq (3,2) as follows
istic lengthsAx. The physical consequences of this reasoning &2 2. 0
. ; a“® Ag 3
are exposed in section 4. —==—, oP°=—,
If insteadnfivg/Ax is an energy not referable to that be- A% N° d Nk
tween integer charges, in fact nothing hinders thinking that it Since eqgs (3,2) requir&s®/q® = (c/vy)(n/a)As, the ob-
is directly related to the aforesaid fractional charges; accouibus inequality
ing to eq (2,8)vx = Ax/At is physically diferent fromv) = (n/@)? > vy/c 4,3)
o_IAx/dA_t. Then eq (3,1) describes an interaction prospeﬁéldsAa"/qo > (@/N)Ae.
tively different from that of eq (3,2); so the former equatlo&(i ts such that
must be considered regardless of the latter to check what kmd's A& _
v ; A °/0 = (a/N)Ae. (4.4)
of physical information follows from the considerations of . ) i i i
section 2. Also the consequences inferred from these equa-Replacing this result into the first eq (4,2), one finds
tions are expectedly fierent; in particular the ling between e a3 N
potential and kinetic energies should be reasonaltffgrdint X = xwle,  Xu = (—) . Axy = EAX (4,5)
in either case just mentioned. In other worgs;an be com- g
pared for similare?2/Ax and Ae to characterize the relative ~ The firstequation is formally analogous to eq (4,1) a scale
strengths of the various kinds of interactions. The physidaftord./a° for Ax apart, whilea/n is replaced by the much
consequences of this reasoning are exposed in section 5. Smaller quantity ¢/n)*; hold however fory,, considerations
These are the key ideas to be further highlighted belo#alogous to that previously carried out fa, i.e. it links
The dual way of elaborating a unique principle, the statistiddnetics and potential energies. The explicit form of the in-
formulation of quantum uncertainty, has an intrinsic physequality (4,3) readsnfic)® > €'(ux/c), so that (iic/Ax)* >
cal meaning coherent with the purposes of the present pafr/AX)?(vx/c) and thus €Apy)? > (€/AX)*(cAe/v3As°); as
i.e. to demonstrate that kinds of interaction apparentiedi CAPx = As°v3/C, i.e. CApyx = (duuye/nC)Ae according to eq
ent are in fact consequences of a unique principle. In otfér4), the inequality (4,3) reads
words, egs (3,2) and (3,1) are the starting point to distinguish
two cases, which will be discussed separately under the only{¢As)® > (€2/AX)*Ae, ¢

i<c (42

Hence a valug,, > @ certainly

_ Quuka
nc

- w(g)z. (4,6)
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Hence an energyp > 0 certainly exists such that Note now that
LPA® — (€/AX)?As — 55 = 0. (4.7) Aey + Agp + Aez = 0 (4,11)

Regarding; as a constant through an appropriate choig@d that eq (4,7) is directly related t8/c < 1 because it

of q,, not yet specified and here accordingly defined, let gsmes from the inequalities (4,2) and (4,3). Moreover each
solve the eq (4,7) in order to introduce three real sixe§ energy range by definition introduces its own random value
j = 1,2,3. Note that this does not mean assigning definigg energy: this suggests that are related to eq (4,5) three char-
values to the size ok, which remains indeed arbitrary anycteristic energies, i.e. three corresponding massive particles,
unknown like any uncertainty range because\af solving whose energies are by definition included within the uncer-
eq (4,7) means examining the physical information cons{ginty ranges of egs (4,11).

tent with some particular range sizes that fulfil the inequality consider in general three energy ranges = &, — &/

(4,6). One finds beingj = 1..3, of course with botlz’ ande’ arbitrary and
13 unknown; define then the energigsincluded within them
o = (&3) Z—l/Zi, Agy = 2 ﬁ (4,8) asnj = (s’j + g’j’)/2, i.e. as average values of the respective
9 i AX £8/24/3 AX boundary values. It is immediate to realize that the condi-
tion 3 Agj = 0 is compatible withy, n; # 0; indeedZ(a’j -
1 ¢ &/)/2 = O reads identically (s} +¢7)/2— ¥ & = 0, whence

Aer3 = Aegp = Aegz = — —. ) . . .
23 2 3 [8/24/3 AX in general}y; nj = 3, &} # 0. Repeat this reasoning regarding

The former equation is the condition to make null th® as the average values of the specific energy ranges of eq

imaginary parts of the rootse, andAes that, as emphasized_4’11)' The fact thakoy = 171 + 172 + 173 # 0 agrees with the

by the last equation, result by consequence coincident. As'fgga of mteracnqn energy; indeed no f:onstraln could be de-
pected, all quantities expressed here as a functiaxaie in inable for three independent free particles. On the one hand

fact arbitrary like this latter. The constantan be eliminated the dcr;]anﬁeroffcrlip.lacr:r;g-aﬁy quant:n: rla:/nglenwnrg) its aver?rg]]e,
from the equations; so as done here foke; andp;, has a general valence because the

range sizes are arbitrary, undefined and undefinable like the
Aey 2 9 \3 Aey 3 average value inferred from their boundaries. Since any value
= (—) — == (4,9) allowed to the former is also allowed to the latter, consider-
23 f (/A% ing n; instead ofAe; does not exclude the point of view of
& o egs (1,1): replacing an arbitrary value with another arbitrary
— =¢&0, /3—. value corresponds to replanevith n’, which is however im-
AX Ay material because both symbolize sets of integer values and not
Itis interesting to rewrite eq (4,7) a&8’A\s?—(€2/AX)?)Ae  specific values. On the other hand the ranges (4,11), regarded

Eo_é’_\/é

= gg, which yields all together, fulfill globally the energy conservation regard-
less of whethene; # 0 or Ag; = 0; as just shown, however,
3(eZ/AX)Z As \2 3 the same does not necessarily hold/gt. To make also this
At = nng 3 (eZ/Ax) < latter compliant with the eq (4,11), let us assume therefore
0

that ot has a finite lifetime of the order df/nr. Let At,
In this way A&® splits into a multiplicative factoAe, re- be this lifetime. In agreement with eq (4,10), durig, the

lated toAt through egs (1,1), times a factor merging togeth&fM 2 A¢j is still globally null likewise as before and after
As? and €2/AX)2. Let us specify in particulax asAx, of their actual transient appearance; in this way the massive par-

eq (4,5); owing to the last eq (4,9), one finds then ticles concerned by the respective energy ranges are jointly
involved as concurrent physical properties inherent eq (4,5)

3nke3 [ nd)? . 2 & and thus the present kind of interaction. The physics of the

At, = Aop, (@) - W = G M (4,10) weak interactions is well known. Here, as a significant check

of these ideas, we propose a simple energy balance to infer

DespiteAx is unknown and arbitrary by definition, wherthe energieg; and thusni: exploiting just the requirement
it is specified as the rangex,, purposely pertinent to eq (4,5)that then; must be regarded all together.
the former equation takes the fort « (n/a)® plus a term A possible interpretation of the equal sizes and negative
7 = 3nii/Aey,. If Aey, andn are large enough so that<< Signs ofAe; andAes, despite in the present model the ranges
(n/@)%, thenAt, and the factoy,, linking €/Ax, andAs of are always introduced positive by definition, is that their sum

eq (4,5) fulfill the well known condition with Ag; equal to zero requires interacting particles; as ex-
plained in section 2, no relationship would be possible by
Aty o< X;z. definition for free particles. Let two of them, say andzs,
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interact in order to release the energy necessary to form alsg and its initial momentunp, in an ideal unconfined state;
n1. The fact thaty, = n3 because ofAe; = Aeg means that hence the corresponding energy gap after confinement within
their interaction occurs regarding identically either of them ixx,, resulting from thex, y andz components iss&pjz/ij =

the field of the other one; together, therefore, these parth‘iﬂﬁth/ZmJAxl%) Assume now that the confinement energy
provide the energy necessary to allow the kind of interactigrpZ/zmj is just the energy); = ijZ itself that determines
here concerned. The simplest hypothesis is that the partigi@sspace-time scale of this kind of interaction, i.e.

n, andnz have charges of opposite signs whergas neu-

tral, thus fulfilling the global charge conservation before, dur- _ §02Ap12_

ing and after their lifetime; if so, the energy gain of Coulomb =3 nj (4.13)

energy at an appropriate interaction distance justifies also the 12 ]

neutral particley;. In this way the model allows the existencf€NA%, = (3/2)7“nfic/n;, i.e. fornz andns

of three range sizes whose finite lifetimes agree with the finite Ax, = (3/2)Y2n2A(hc/€?). (4,14)

values of the respective heavy bosags This conclusion is

summarized as follows Forn = 1 thereforeAx, coincides withl,,, = 1,, a trivial

numerical factory/3/2 apart; an identical conclusion holds

Thot = 111+ (72 + 173), 2 = 13- of course fom; too, the numerical factor(— 2) v3/2 apart.

This confirms the assumed link between delocalization ex-

Th ti hasi that actugll
e second equation emphasizes that actualigndns Eerp[t and energy of the force carriers, which allows identifying

form a Coulomb system of charges, whose energy transi . .
y 9 9y = —gg in agreement with eq (1,3).

uniquely defined likewisese; Of eq (1,4) characterizes theltot A . .
present kind of interaction. This idea suggests to estimate Put fwstq = linegs (4.’12)' The V"?"“e dfcorrespozrgdlng
just computing the energy levels of the system of chafgesto the energies of the partlclggandng IS4 = 1.79% 1018 m:
andz; by analogy with that of a hydrogenlike atom. Exploif> thatl, =4,, = 245x 10" *'m and,, = 2.15x 10" m;
for simplicity the previous non-relativistic equations (1,3) ang® chlz;racter_lstlc rangex, O_f Interaction |s_thus of the OTder
1018 m. Since the classical proton radiys= €?/myC? is

(1,4); owing to the generality of these equations, there is )
reason to exclude that analogous considerations hold at | Qut 0'8768 fm according to recent measurgments .[13]’ Fhe
above energies concern a sub-nuclear scale interaction; vice-

approximately also here putting of course the chatge 1 .
and describing the system of charged bosprandys as due versa, one could estimate the correct scale of energy of the
wyector bosons requiring an interaction that occurs at the sub-

to —e¢ = m€2/NA. It is necessary to take into account ho | tent at which lcul —2®=39x107
ever that now also the neutral partieje contributes tapt, nucsea:( exten ha whic qge Z%Eufle\‘/sv‘h at h_ I X b. ¢
in agreement with the idea of regarding the particles all to- 0 far we have consideret= L. at however abou

. ; 2 Fi i -
gether. Guess first according to eqs (4,8) that the mass of > 1? First of all, Ax,, becomes times larger than the afore

should have the same order of magnitudecfndrs, so that said Compton Iength's of}; this deviation means a longer
Mot ~ 3n2; the chance of identifying; With —ze is consis- range allowed to the interaction. Moreover, according to eqs

tent with this idea simply putting (4,12) Tot = 0 fpr N — co; a'F this Iimit the aforesaid space
scale of interaction is inconsistent with the corresponding en-
Mot = M2, 2 =13 =€/nl, m = (7—2)/ni. (4,12) ergies of massive boson carriers, which therefore should ex-
pectedly require an appropriate threshold energy to be acti-
In other words, eq (1,4) suggests that the expected Ggted. Fomn — o is thus allowed the less energy expen-
efficient ~ 3 must be actually regarded as Despite the sjye and longer range interaction with = 0 only, in agree-
non-relativistic reasoning, these conclusions are correct Rsnt with the initial idea thage # O is related to the boson
cause confirmed by the experience. The experimental masgg8ses. This conclusion is intuitively clear, but what about
of the W* andZ° vector bosons arew- = 80.39 GeV and the energy threshold? According to the eqs (4,12) the ener-
Mz = 9119 GeV respectively, for a total mass Wl = giesy,, 1, andns downscale with, whereas according to
25197 GeV; in dfect eq (4,14)Ax, upscales witm?; so the lower threshold for
the existence of massive bosons, i.e. for the validity of these
equations themselves, concemef n{l) = —£o(Z = 1.n) =
are compatible with the values expectedf@ndzr — 2. Triv- (m/n)€?/A: it is required that the interaction distance of the
ial considerations show that the reduced Compton lenigtHaydrogenlike system of charges enable the energy to create
of the vector bosons consistent wifyna arel;1 =n1/((r— vector bosons. The inequalitﬁgz > €2/4, which holds for
2)a) andl,, =4,, = nd/e, having introduced explicitly the n < 3, ensures that, whatever the masél@sandng‘) might
massesn; = n;/c?. These results are confirmed considbe, the energy gain due to their Coulomb interaction accounts
ering the zero point energ&(pJ?/ij of the vector bosons not only for the energyg?/A of the system of charged parti-
nj, whereAp; = p> — p:1 is the gap between its momencles themselves but also for the surplus required by the neu-
tum p, after confinement within a given delocalization rangeal particle '7(1n)- Clearly the threshold corresponds to the

Myt = 3.134 My My = 1.134mpy:
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valuengz = (n/3)€?/4, i.e. about 81 GeV; the correspondan attractive forceF, is compatible with a potential energy

ing Compton lengths of the bosons &g =12 = 31/a and Ui of thei-th quark having the form

I = 31/((x - 2)a). In fact even fom = 3 these lengths a

are of the order of 187 m, i.e. still consistent with a sub- Ui=- bAX + Uo (5.2)
nuclear range. At energy below this threshold, ire> 4,

eq (4,1) only describes the interaction. Of course the mbstingUg, a andb appropriate integration constants; the lat-
favorable condition for this interaction to occur is that witker is clearly related td-,x. ConsideringAU; = U; — Ug

n = 1, which ensures the maximum binding energy given lone recognizes a well know formula, the so called “asymp-
eq (4,12) and corresponds to the shortest interaction distatatie freedom”, describing the interaction between quarks; of
and maximum values of the three boson masses in fact eaurse in the present model where any local distanan-
perimentally detected. The model admits however even themly included by its quantum uncertainty range is replaced
possible existence of lighter bosons. In conclusion, the dify a range of distancesx, the local value of potential energy
ferent energy scales characterize the features of eqgs (4,1)joturns into a rang@&U; of allowed values. Let us examine
(4,5) because of ffierent values ofi; both equations describethe eq (5,2) in two particular cases wherea(iAx ~ bAx and

however the same kind of interaction. (ii) a/Ax ~ Uo; the arbitrary size oAx justifies in principle

both chances. The former case holds whef? ~ va/b and

5 The interaction according to eq (3,1) yieldsU® ~ Uy; according to the chance (iyx® ~ a/Uy
The starting point of this section is the eq (3,1) that reads yields insteadJ” ~ bAx® = ba/U,. This means that a
vy delocalization extent of the system quarkgluons around

Ax = xsA¢g, xs=1 (5,1) Ax® the potential energy is approximately of the ordetgf

around a rangax® the potential energy increases linearly
with Ax. Definea andb in agreement with egs (2,8) and (2,9)
in order that eq (5,2) takes a reasonable form. &pitopor-
%onal to the electric charge = (x(ni/n)e)?, i.e. a = ac?
via the proportionality constaat; also, let analogously be
roportional to the color quantum numb@y, i.e. b = b,C?
ith j = 1--3. The subscripts symbolize theh quark in

The lack of cofficient at right hand side of eq (3,1) is ten
tatively interpreted here as the presence offocentys = 1
Beinguy andn arbitrary, it is certainly possible to introduce
proportionality constarg defined asviv, = ¢€; so eq (3,1)
reads £€2/AX)/Ae = 1. Usually a proportionality constan
linking two quantities that fulfill a given condition or a give

physical law is of the order of the unity, unless some speci I j-th color quantum state; in this way = 0 for a color-
reason compels an appropriate hypothesis about it§ actua|QI= ~q . ilomb particle with; = v, in which case the eq (5,2)
der of magnitude. Since here evar andAe are arbitrary, turns, according to eq (2,9), into the classical potential en-

however, itis dificult to guess a valid reason to compekery ergy —€2/AX + Up of two Coulomb charges attracting each

different from the unity. So, in terms of order of magnitud@yo . This reasoning suggests that the color quantum number
the positiont ~ 1 seems reasonable although not thoroug Mould have the form®; = f(n' — m)? + fia(r — m)* + -

demonstrated, whence the tentative conclusion quoted i ref, andfj, are appropriate cdgcients of series expan-

(5,1). On the other hand, once having reduced this equatigg, f,ifilling the actual value of; whatever it might be; it is

_ I
to t:e forin ez/AdX)/Af —3,gs,f_onedcban ﬁomparg_s =&~ 1 interesting the fact that the electric charge depends; tm,
with yem ~ @ andy,, ~ o” defined by the equations (4,1) angy o ooy charge on’ — n;. As concerns\x’ = Ax/ao, note

(4,5) formally similarz of course under the assumption that t t multiplying the size ofAx by any factor yields a new
ranges at left hand sides defining these values are compar %e still arbitrary and thus still compliant with egs (1,1):

as well. Even without a specific reason to exclude the plgi} ie same reasons introduced in the previous section, i.e.
BEtause any size possible 6k is allowed toAX as well,

however necessary: the lack &fat left hand side, replace_dthe notationAx’ means in fact nothing else but renamitg

by nfwy, allows handling eq (5,1) in order to introduce the i, summary, the Coulomb potential appears to be a particu-

teraction between the fractional charges concerned in secii9Nase of eq (5,2), whose local features are described by the
2; but this chance, suggested by eqs (2,8) and (2,9) that agy; o

4S (.0 o resaid chances; the expressions)ffandu® are
way do no exclude themselvés: 1, is justified only revising

the terme?/Ax. a .
Consider again the eq (2,Bx = —a /AX? + Foy With AXD = \/g u® = U,
a’ = nhw} in the simplest case where bahandpyx = Fox are C\2 -
constants. Actually these constants could likely be first order a= |a8a(g) , b= I—CJ-Z,
approximations only of series developments whose higher or- A = & b (5.3)
der terms are neglected; yet, even this approximate meaning T Uy
of the eq (2,7) is enough for the present discussion. Assum- @ _ ab  gagplafCC; 2 — pAx
ing Fox < 0 likewise as the first addend in order to describe i T U_o - U_oE(T) = DAXT.
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The constant energieg andey, together with the constantthis question holds even for one quark only witMnA pos-
lengthsl, andly, describe the physical dimensionsandb itive answer would explain whjFy increases when pulling
without need of proportionality factors. Note tHgt— oo, apart the interacting quarks, e.g. of a nucleon or meson, or
compelsAx®? — oo andb — 0; as the color is introduced byeven a lonely quark and its gluon system; in the latter case
b, this agrees with a constant Coulomb potenttléﬂ = Uy a greater delocalization range describes indeed the chance of
of a colorless particle. By definition therefokg, = € for mowing away the gluons from their own quark, which how-
ni/n’ = 1, whereas it is expected to take #éient value for ever increases the energy of the system. To emphasize how
n/n < 1: the new value ofas,/€% whené? is replaced by the positionFo, # 0 answers the question, suppose that the
(ni/n’)€? is known in the literature ass ~ 1. In summary, quark-gluon and gluon-gluon interactions does not allow dis-

egs (5,3) yield tinguishing the interaction between a quark and "its own”
gluons from that of these latter with another identical quark;

0 (i) ,(Ci\? , asgbezcjz this would mean distinguishing identical particles, which is

Ui" =Uo, U7 = Uo(g) » Up= bUo (54) however forbidden by egs (1,1) [7]. If the gluons are not

mere interaction messengers but rather self-interacting mes-
Appears here once more the importance of the delocséngers, then eq (5,2) describes the asymptotic freedom sim-
ization rangeAx: in eq (4,14)Ax, controlled either appear-ply as a feature of one quark and its own system of gluons, i.e.
ance of the electroweak interaction, in egs (5,3) twftedént even without necessarily requiring a further quark; otherwise
range sizea\x ~ AX) or Ax ~ AX) emphasize either fea-stated, a net splitting of gluons from a quark interferes even
ture ofU;: in (i) it depends upon the fractional charge, in (ijvith their propensity to follow another quark. The concept of
it does not becausea/Ax is balanced byAx despite both asymptotic freedom is linked to the energy constrain that ex-
terms describe attractive force. plains why do not exist bare quarks without gluons and bare
Let us concern now eq (5,2) in a more general way. Th&ions without quarks. Calculate the chang&Jpfs a func-
features ofJ; as a function oi\x are related té[(n/m)(n/V)] tion of Ax asAU; = (dU;/0AX)Ax at the first order; the force
because\x definesV, eq (2,1), and also because the eq (5,8¢ld AF, = —0U;/dAx acting on quark and its gluon system
comes directly from\F of eq (2,7). What is distinctive heredelocalized inAx can be calculated in particular at the delo-
with respect to the gravitational or Coulomb interaction is thualization extentax(®) or Ax() . Replacing here the previous
mere fact of having puEoy # 0; so the consequent form ofresults, one findAFY = —2b andAF{") = —b(1 + Uy/U™).
U; with b # 0 describes a peculiar kind of attractive force that It will be shown in the next section thaly ~ 2U, =
increases withAx. Another remarkable point is thaF, is 1 MeV; so, beingU; a monotonic function ofAx, results
not necessarily that betweenfidrent quarks only, because\x® < Ax becaus&)™ < U according to eq (5,4). x®
eq (2,7) concerns a merdtect of confinement that holdsis of the order of the proton radius, i.e.£Bm, then accord-
even for an isolated quark; rather it seems more appropriiig to eq (5,3 results of the order of 1 GeNm, as itis well
to think that the interaction betweenfiiirent quarks strictly known. Then, inside a proton the force field at (i) is about
replicates an intrinsic feature of the potential energy duettwice than that at (ii); of courseAx further increases for
the confinementfect even of a single particle, which alsax > Ax?, i.e. outside the actual radius of the proton. This
involves its messenger bosons. In fact, in the present moahelans that extending delocalization range of the qgarén
AXx is by definition the delocalization range of one particlsystem fromAx® to Ax() and then to anpAx > Ax®, i.e.
the arising of any form of interaction is due to the presenafowing quark and gluons to have more space to move apart
of a further particle that possibly shares the same delocalizach other, corresponds to a greater energy; this is not sur-
tion range. In general the number of states within a systenypoising once having found thaji(") is already in the region
interacting particles is related to their energy, to their mass#dinear increase of); as a function ofAx. The dependence
and to the whole space volume in which they are delocalizedU; on Ax s trivially self-evident; the reasoning abok(®
eq (2,2) shows indeed thatrif is the number of states of theand Ax® allows to quantify this evidence with specific refer-
system with its particles supposed non-interacting, tireis ence to the sub-nuclear length scale.
the change consequent to their interaction, whitg, ,sn is The behavior ofU; and the concept of asymptotic free-
the concurrent energy change from the initkal,,. Accord- dom equation are straightforward consequences of eq (2,7)
ing to the considerations of section 2, in the present dasand thus of eqs (1,1); this feature of the strong interaction is
is the time space delocalization volume of one quark andiitsleed characterized by the concept of uncertainty, which in
interaction messengers, the gluons. If a further quark coplarticular prevents specifying the actual siz\af From the
share thisV, then the quarks interact. If the delocalizatiopresent standpoint only, therefore, no kind of correlation ap-
volumeV is filled with gluons of both quarks mediating theipears in principle between quark generations and chances (i)
interaction, then the changén/V) stimulates a question: areand (ii) inherent the eq (5,2). Yet, it seems intuitive that either
the particles that mediate the interaction interacting theohance forAx and thus either behavior of potential energy
selves? Clearly, from the standpoint of egs (2,7) and (5s3jould be selectively related to the energies characteristic of
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the three generations of quarks. This supposition will be canterest to take nown comparable withe of eq (4,1) and
firmed in the next section, at the moment one must only adi#t5) in order to infer fromB(An) the functiong(An) = ysto
that both chances are allowed to occur. be compared with the respectiye, andy,. The next task
Now let us revert to the opening question of this sectiois,to calculate the first eq (5,6) in order to confirm tlpats
i.e. how to regard the energy temhw,/Ax andys of eq (5,1). of the order of the unity. To this purpose let us expgnd
The conceptual analogy gf with yemandy,, of egs (4,1) and series of powers afy, i.e. 8 = Bo + 8169+ B20g> + - the coef-
(4,5) was in principle legitimated by the arbitrarinesspin ficientg, must be equal to zero because of egs (5,6), whereas
defining €/AX)/Ae = xs With ys expectedly of the order of 8, = 0 as well to fulfill the reasonable conditié/d(dg) = 0
the unity. Exploit now eq (2,2), for simplicity regarded agaiaf minimumg for §g = 0. HenceB = B,64%, neglecting the
at the first order only higher order terms, require® = (8.6 log(An))~t; this ap-
pears replacing /A6 log(An)) in eq (5,6), which indeed turns

ng = _on —, 6log(An’) = 10g(Aen,+sn) — l0g(Aey,), into B(An) = B2(8g)?. According to the fourth eq (5,5)g =
dlog(an) B2/(log(Ae/Asy)) is reducible to the well known form
introducing two further energy uncertainty rangks, and £ 27

As whose sizes are by definition intermediate between that ofg = Zloga?A) £ =pP2, Aeo~02GeV. (5,7)
Agp, and that ofAen, i sn, i.6. Agp, < Agg < Ae < Agpion. °

Hence eq (2,2) rewritten as a function of these new rangesThe order of magnitude ofe, is easily justified recall-

takes the form ing the eq (2,5) of section 2 and the conclusions thereafter
zon inferred: Ag, implies that toAt ~ 71/ Ag, corresponds the path
ym = oo’ ¥ y(An), ¢ =¢(An), 5.5) 5% ~ lic/Ag, of gluons moving at the light speed to carry the

interaction between quarks. The given value\ef is there-
fore consistent with the order of magnitude ~ 10*°m
B'reviously guoted for the strong interaction. The result (5,7)
likewise as the earlye,, did. The correction cd&cientsy and the value .Oﬁ_EO are well kr?OW” ‘.’“tcomes Of_ quantum
andZ account for the fact that; andsn = n, — n, were early chromodynamics; further cpn&derahon_s, in partlcular gbout
the constants andZ, are omitted for brevity. This paper aims

defined forAg, = Aen, andAe = Aep,.sn, being therefore . .
y = 1 andZ = 1; having changed the ranges at right haﬁadeed to show the consistency of the present model based

sides, clearlyy andz must be replaced here by, andzsn _uniquely on eqs (1,1) with the standard features of the strong

with y # 1 and # 1, whence their definitions of functions ofnteractions, not to repeat known concepts.

Ae once having fixed\e,. So the previous eq (2,2) become%

a particular case of the present result (5,5), which reads now
This section consists of two parts, the first of which concerns

dlog(An) = log(Ae) — log(As,).

Now Ag, plays the role of fixed reference energy rang

The quark and lepton masses

o9 the ability of eq (2,4) to describe the ideal f iso-
An) = ’ An) = yn, y g (2,4) to describe the ideal masses of iso
Aln) =5 log(An) Alln) ' lated quarks. Correlating these masses to the energy ranges
Sg = My — £y = 6(2N). (5.6) A = Aen45n 1S in principle sensible first of all regarding the

various quarks as a unique class of particles: there would be
The third equation is interesting as it defines the nawe reason to expect thatfférent kinds of particles of dissim-
rangedy. Let the function be someway proportional v, ilar nature are all described by a unique law simply chang-
i.e. let{ decrease with\n; also, consider the particular caséng a unique distinctive index, here represented by sn.
whereAn is so small that the notatiafy can replaced by the Moreover must hold for the energies of the various quarks
familiar differential symbobyg whatever the actuan might a common sort of functional dependence uponlike that
be. Being the range sizes arbitrary, this position alfigut of Aen,1sn. Eventually, this dependence must still hold even
is not a hypothesis; it focuses the attention on a particuteplacing these ranges with the respective average energies
chance ofAr that must be taken into account simply becauses,,.sn > calculated as described in section 4. This last re-
it is allowed and thus to be actually expected. Since a smaliglirement suggests correlating the quark masses with these
and smaller uncertainty range identifies better and better adgerages in agreement with the eq (2,4), tanks to the fact that
cal value of the random variable included by its boundaridmth < &, .sn > andAen, sy are consistent with their owdn.
¢log(An) tends todlog(n); hence the former equation (5,6)Jndeed an incremental index representing the quark ener-
tends to the known beta functi@{y) = dg/dlog(y) defin- gies is defined replacing in eq (2,2) ldgf,) and logQen,)
ing the coupling constant at the energy scale defined hy with log(< &, >) and logk &n, >); a procedure completely
This particular limit case helps thus to understand the phgsalogous yields an equation of the average quantities fully
ical meaning of the ratio in the first eq (5,6), merely writtecorresponding to eq (2,4). The second point has been ex-
as a function of ranges instead of local values. It is clear thiained: the self-interaction of quarks justifies in princighe
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simply admitting that the various quarks are characterizeddpyarks. These averages have neither specific physical mean-
different self-interaction strengths and thus by distinctivelyg nor come from some particular assumption, they merely
different values obn. So the critical step is the first onerepresent preliminary starting points defined within realistic
i.e. whether or no\F, of eq (2,5) really governs the self-intervals; thus their worth is that of reasonable inputs to carry
interactions of all quarks in order that all of them are relatedit calculations. The validity of the results inferred in this
to a unique law (2,4) obn. This means in practice: (i) re-way relies mostly on their self-consistency; the only initial in-
garding one quark delocalized in its own uncertainty rangermation is that any sensible output calculated starting from
(i) thinking that various quarks are characterized jedent the values (6,2) should expectedly fall within the intervals
é(n/m) because of their own kind of self-interaction; (iii) as(6,1). Regard therefore the available data as mere reference
suming that in fact the eq (2,4) accounts for th@adent num- values to clarify with the help of eq (2,4) what d@ vs i

bers of states that characterize uniquely the various quarksnifiht actually mean in the present context. According to the
the functional dependence described by the eq (2,4) is corasoning carried out in the previous section let us try prelim-
sistent with the three points just mentioned, tigmlescribes inarily to correlateQ; with A; puttingA;/A = ((Qi/U;)/q)*®,

the ideal masses of the quarks as a functiom; aflso, the whereq s a proportionality constant arida codficient to be
point (ii) shows that the energies of this class of particles atetermined by successive calculations; thisiecent fulfills

really related to their number of allowed states through ttiee chance that ik Ag,, >~< Agp, >, i.€. < &, >~< &p, >,

self-interaction between quark and gluons. then the corresponding rati®{/U;g)*/° with increasingb
The estimated mass€} of the quarks quoted in literatureanyway matches the limit behavior &f/ A whateveg andU;
[14] are reported here: might be. Initially U; is justified as mere dimensional factor
to be determined; the next results will show that actually it re-
Qu=17 e 33 MeV sults to be just the potential energy of eq (5,2). Let us sort now
Qi =41 5.8 MeV the variousQ, by increasing value to check if really the esti-
Qs = 80 & 130 MeV 6.1) mated quark masses fulfill the logarithmic dependence of eq
Qc =118 1.34 GeV " (2,4) upon the incremental number of statasghich therefore
Qp =413 & 4.85 GeV takes from now on values from 1 to 6. In this way each mass is
Qi =1707 & 1733 GeV progressively related to its own increasing his expectation

quark actually merges two "%g, indeed reasonable because én definesA; =< en4on >

The mass interval of the "b” . .
tervals, that reported for tHdS "mass-independent subtracVith respect to a ground reference state number, to which cor-
sponds the reference energy range< ¢, >. Being by

tion scheme” and that of the 1S mass” scheme [14]; the {? L
spective mass intervals arel8%18 GeV and 467018 GeV efinition Aj = A for 6n = 0, one also expects that holds for

[15] 006 ~006 the eq (2,4) the boundary condition

It is known that these literature data represent estimates
instead of experimental values, as actually isolate quarks do Qo/Uo =1 i=0 (6,3)
not exist; because of their confinement, the masses are indi-
rectly inferred from scattering experiments. In fact the masselsateverb might be; this fact justifies the proposed notation.
depend on their dierent combinations in various hadronghen handling sets of data, regression calculations are in
and mesons. So the values quoted above must be regagieeeral needed; the outcomes of these calculations are usu-
with carefulness when compared with the results of theoretlly expressed as power series development of an appropriate
cal calculations. Nevertheless the intervals of values (6,1) plrameter. Implementing the linear eq (2,4) with the values
not overlap, which suggests that their order of magnitude(&2) as a function af, means therefore calculating the best fit
somehow related to and thus at least indicative of the ideaHticientsa andb of the form logQ;/U;) = a+ib; clearlyn;
masses of isolated quarks; by consequence it seems alsolsanbeen included in the regressionfticeents. This is easily
sible to expect that the sought values of quark masses shaldde regarding\; andA of eq (2,4) as follows
fall within these intervals. In lack of further information,
therefore, exploit the intervals (6,1) to calculate the average|og(Q,/U;) = a+bi, a=log(g, 1<i<6. (6,4)
valuesQ;:

Qu#® =250 MeV L .
Q:(-1/3) — 4.95 MeV The factorg linking U; to the reference energyis deter-

Q.13 = 105 MeV mineq by the boundary c_ondition (6,3); this holds qf course
Q.23 = 1.26 GeV (6,2) eveninthe presence of higher order terms. The plain first or-
QC(—l/S) - '449 GeV der approximation decided foragrees with the intent of the
Qb(z/g) _ 17'2 GevV present paper: to describe the quarks through an approach as
! - simple as possible and compatible with the minimum amount
The superscripts indicate the charges of the respectifanput data needed for an unambiguous assessment of re-
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sults. So, owing to egs (5,3) and (5,4), one expects [ ] o -

11 -{teg| ~- /

log(Qi/Uo) 1 L
asen€CP (6,5) 104 R

log(Qi/Uy(ci/e)?)  Ug = o _ “

a+bi=

Now the Ax-dependent behavior df; can be checked:
if these equations dfl; and the positiom\; /A o« (Q;/U;)¥P
are correct, then both chances (5,3) should somehow appear s A
when exploiting the logarithmic law. A series of plots shows ] R
this point step by step starting from the raw data (6,2). R

The variousQ; are preliminarily plotted v§taking allU; ) R
equal to a constant; this first result is reported in fig 1. The 1 o/ i
boxes represent the input data, the letters betwgéten- 6 1 =
tify the quarks, the dot lines describe tentatively their possi- A . . . .
ble connection; the best fit dashed line has a mere indicative 0 1 2 3o 4 5 6
meaning of preliminary reference trend. The various points
are not completely random, rather they roughly follow a0

. oo . . Fig. 1: Plot of logQi/d) vsi; qis a best fit constant. The boxes
identifiable increase with It appears that couples of the Varrepresent the theoretical quark mass estimates (6,2), the dot lines

ious Qi lie _along three lines reas_onably parallel each Oth%[}e tentative connections between couples of quarks, the dashed line
so, according to eq (6,4), these lines should be characterizgflosents a preliminary best fit trend of all masses.
by a unique best fit cdicientb and difer by the coéicient

aonly. Yet, since each line must be handled in order to fulfill
the condition (6,3), the dierenta are irrelevant: indeed the
three regression lines 10Q() = ax + bi, with k = 1..3, must 1 '°g[,%] e
be actually plotted as lo@%/qx) = bi puttingax = log(a). 54 s
In effect the fig 2 shows that once having forced the three
dotted connections to cross the origin, all quark masses are
perfectly aligned along a unique best fit line, whose regres- | .
sion codficients area, = 4.7, 5.1, 5.4; the respective values o
of b range between.067 and (B85, i.e. it is reasonably un- A
changed. Clearly are here concerned the masses of isolated l o s
quarks, since the raw data (6,2) have been plotted one by one 21
independently each other. The relevant conclusion is that of :
having confirmed the validity of eq (2,4) and (2,14x has 1 e
physical meaning of delocalization range of a unique quark. |~
Considering that the masses spread over 5 orders of magni- e
tude, the result is certainly interesting. If one would calculate o 1 2 3 ;o4 5 &

the masses of quarks through this plot, however, four con-

stants must be known: threg andb: too many, to consider

physically meaningful this way of exploiting eq (2,4). Thé&ig. 2: Plot of logQi/q«) vsi; three values ofj calculated via the
worth of fig 2 is merely heuristic. It must be noted, howevetoundary condition (6,3) enable a unique trend line of the quark
that significant information abott can be obtained throughMasses with a unique constasy.

very simple considerations. In the linear regression (6,4), the

best it codficientb weights the increase of lo@() as a func- i, \yhich caseQs is normalized with respect to the total en-

tion of the incremental number of staie€onsider in partic- ergy of all possible states allowed betwe®s, andAsn,sn.
ular the highest mas®s of the top quark, corresponding t9Q4ance the estimates (6,2) yield ' '
i = 6: the greateb, the greater the calculated value @§. '

Sob is expected to be proportional @s. Moreover for the Qs
same reasoh controls also the masses of lighter quarks for Ziti:l Q
i < 6; the link of Qg with the masses of all quarks, inherent the

plot of fig 2, suggests that the proportionality constant should In effect, the value o calculated in this way is very close
reasonably have form and physical dimensions somehowtrethat determined in (6,6) via best fit regression.

lated to all quark masses. Put therefbre (Zi6:1 Q) 1Qs, Yet even three input data to calculate the quarks masses

6 w 7
o

=0.967.
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Fig. 3: Plot of logQ€?/c2q’) vsi. Fig. 5: Plot of logQ; /q;) vsi; x are defined in fig 4¢,, with k =
1,2, are calculated in order to fulfil the condition (6,3).
{ti m
I
111 1.,g[%{] 4 _ . _
{‘;}/ quark masses andmust have exclusively physical valence:
< here the problem does not concern a random dispersion of ex-
10 | ‘_{S} / perimental measurement errors, but the relationship between
R masses of isolated quarks and bound quarks on the basis of
/ data extrapolated from the experience; the challenge is to ex-
9+ {.,}/ 7 tract the former from the latter trusting to their initial order of
y magnitude only. The fig 3 reports a new plot where the ratios
py (Qi/Uo)/q are replaced by the respecti@e?/q c?, beingc
*1 g, the electric charges of the various quarkss clearly intro-
" duced for dimensional reasons. The chafke/qg is not
w 7 mentioned because found of scarce interest after preliminary
™ :/ checks. From a numerical point of view, therefore, the plain
: : . . . . Qi are now corrected by fractional charge facter$/3)? and

(2/3)%. In this way the logarithmic terms are handled exactly
as before, which allows the comparison with the former plot:
Fig. 4: Plot of logQ'/q) vsi with Q' = Qi/3%: herex, = constfor the figure 3 reports again a new best. fitilint_a._ Now the linear
the quarkgc) and{s} andx = /e for the other quarks. trend of logQ;€?/q/ ¢?) as a function of is significantly better
than that of fig 1; thé¢s} and{c} quarks only, both second gen-
eration quarks, deviate appreciably from the best fit line; their
are still too many; certainly there is something else not yedlculated values consistent with the linear best fit trend are
evidenced by the plot of fig 2. Moreover this result, whileespectively 51 MeV and.@ GeV, well outside the literature
showing that the idea of concerning the masses of isolatetérvals (6,1). Considering that the orders of magnitude cal-
quarks is basically correct, does not highlight anything abautlated are however globally correct, two chances are in prin-
the potential energidd; of egs (6,5), at the most it could ac<iple admissible: either the literature estimates of the masses
count forUg only. Since the idea of considering;/g« is of these quarks must be replaced by the values calculated here
theoretically too naive, let us regard the varid@sall to- or some further physical reason, not yet taken into account,
gether. If so however, despite the previous warnings, the piolables to modify just these values and align them with the
of fig 1 is unsatisfactory; owing to the logarithmic ordinatethers. The former option is in principle acceptable accord-
scale, the deviations of the vario@ from the best fit line ing to the previous warnings on the literature quark masses,
are markedly large. Seems however decipherable an unaot-would conflict with the plot of fig 1: both masses of these
biguous configuration of these points; this plot prospects tipgarks were correctly aligned on a similar best fit line before
chance of better results. An improved connection betweiaetroducing the correction due to their electric charges. So the
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latter option seems more stimulating. The superscripts are assigned to the generations of quarks
Replace therefor@;e?/q'c? of the quarkgc} and{s} only by comparison with egs (5,4) and (6,5); 8¢ = 0.148 MeV

with Q;/const This idea works well definingonstappro- andU| = 0.556 MeV.

priately, i.e. in order to fitQ; of these two quarks to the = Some further remarks on this result are also useful. The

main best fit line of the other quarks. The fig 4 reports tliest concerns the plots of figs 2 and 5: despite the former has

same data of fig 3, yet replacirﬁ/ci2 of the quarkgs} and been obtained from logJ;/q«) and the latter from lodp; /U;)

{c} only with a unique value not dependentgnnow Q;/q" that involves the potential energy, both plots look like and fit

with QF = Qi/xi2 includes both chances through The ideal surprisingly well the logarithmic law (2,4) despite the quark

line joining these quark masses is reasonably parallel to thasses spread over 5 orders of magnitude. These plots are

four quark best fit line, i.e. the plot of these two quarks difot trivial duplicates: it is interesting the fact thH@{/U; takes

fers trivially from that of the other quarks by the value of thieoth formsQ;(e/c;)? andQ;/const while are determinetdy

constanta only. As before, in fact this means admitting twand Uj. On the one hand is remarkable the fact of having

values ofa: one for the main best fit line, another one for thielentified the mass range as the reason that discriminates the

second generation quark best fit line; of course both validsnces (i) and (ii) of egs (6,5): indeed the mass range of the

must make the best fit lines compliant with the condition (6,8gcond generation of quarks is well defined with respect to

via a uniqueb. The result is shown in fig 5: despite replacthat of the first and third generations. On the other hand, the

ing ¢;/ewith a unique constant is certainly an approximatiofact that both chances are merged in the same plot is itself

nevertheless all quark masses are reasonably representeal foyther fingerprint of the quantum uncertainty, early intro-

a unique eq (2,4). In conclusion, the path from fig 1 to figduced because of the mere arbitrarinesaxf The third re-

was aimed to verify thatféectively the logarithmic law (2,4) mark confirms the fact thatx is not necessarily the distance

is expressed via the rati@;/U; vs the incremental numbeér between two quarks, it can also be the delocalization range of

of states. The plot of the quark mas$gss described by the one quark only; the fact that the plot of fig 5 overlaps very

following equation well that of fig 2 shows that even isolated quarks must be
o regarded as self-interacting and that the interaction potential
|og(_i) =bi Q= %‘ b=09723 energy between quarks, the well known eq (5,2) is a replica
Qo X g (6,6) of the self-interaction potential energy. This conclusion, also
X =c/e Q =0.556 MeV  T,3%gen supported by the fact that the plot of fig 5 is better than that

% =03644 Q=1118MeV 29generation of fig 1 by introducingQi/c? and notQ;/c;, explains why

Sob is very similar to that of fig 2. The double valu€d (3,2) describing the interaction betweeffefent quarks
of Up corresponds to the two regression constargowing holds also for isolated quarks. The fourth remark concerns

to merge the best fit lines of fig 4 according to the conditidi® values of the constant, andUg reported in egs (6,6),
(6,3); Q* plays the role of an "Bective mass” of quarks TheWhich describe the asymptotic freedom introduced in the pre-
L L | .

reliability of the results inferred from the plots is assess¥{PUs section. , , , ,
recalculating via eqs (6,6) the quark masses and comparin Note eventually that the considerations hitherto carried
them to the starting values (6,2); one find32 5.44, 1.22x U have assumed already known the quark masses; also, in
10, 1.14x 103, 450x 10°, 1.69x 10° MeV that agree rea- €4S (6,6) appear several constants to be known "a priori” to
sonably with the literature intervals (6,1). As mentioned garry out the calculations. Moreover, 'Fhe Iiterfature estimates
the beginning of this section, this is the basic requiremdfl) appear now as values well configured in the frame of
to be fulfilled. To assess this result also note however %4 (2,4) but not directly supported by experimental measure-
the values (6,2) do not have the rank of experimental daﬁ‘é?”ts- In this respect, a sound proof of their meaning would
to be necessarily matched as exactly as possible; as stifedP calculate them contextually to other well known and
before, they have a mere indicative meaning of reference V4RI determined particle mass. The merit of this first part of
ues. Hence the conclusion is that the egs (6,6) yield a sensjBfeSection is to have checked the egs (5,2) and (5,3) via the
result, while having also the merit of verifying the position@9arithmic law of eq (2,4). Yet it is also possible to extend
(6,5) strictly related to egs (5,3). But the most interesting rirther this idea considering together both lepton and quark
mark concernsJ;, which depends explicitly on the charges Masses. Indeed a simple question arises at this point: does
in the first and third generation of quarks only: in the secolfef €d (6,4) hold also for the leptons? The fact that quarks
generation it does not, which brings to mind the respectig@d leptons are both fundamental bricks of matter suggests
limit cases introduced in egs (5,3) and further emphasizedfj§ [de@ that the eq (6,4) could hold for both classes of parti-

egs (6,5). The generations of quarks are indeed describe§'65- More.over.note an interesting coincidence: the nu.mber
log(Qi/U;) = bi with U; defined by the following equations of leptons is 6, like that of the quarks. Is this a mere accident
or is there some correlation between each quark and each lep-

uU® = 0556(/e)> MeV 1%, 3 generation ton? The next part of the section will show that considering
u? = 0.148 MeV 24 generation together both kinds of particles allows obtaining all of their
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masses as a consequence of a unique principle. 1 {1’}:{1}5
The literature data on the massgsof the 6 leptons are jMEAPREY i

summarized here: 15 1 (v} g

1 -~

e— 051 MeV, u— 10566 MeV, ] ohigp 7 el
7> 177684 MeV, ve— <22¢V, (6,7) ol p
v, = <170KeV, v; » <155MeV. ] @il
1 s

The dificulty of comparing calculated and experimental ] /
masses concerns now the neutrinos, because of their very 5 fuh{v)
scarce interaction with matter and because the neutrino fla- ]
vor eigenstates are not the same as the mass eigenstates due

to the neutrino oscillations [17]. However, being the masses 0 _‘.'_'_ . . — . .
of electron, muon and tau well known, the strategy to carry ] i\ : oo * ¢
out the next calculations is: (i) to assume preliminarily the g (g ol 2]

eq (6,4) for_ the masses of the Ieptons; (i) to fit the masses o] NI - 9 pLi
of the neutrinos to the profile required by the logarithmic law / ishie} - 8

via an appropriate correction factor downscaling their upper

limit values (6,7); (iii) to look for a unique best fit calculatiorFig. 6: Plot of logQ;/Qo) =+ log(Li/Lo) vsi; Qo andL, are dimen-
including both leptons and quarks; (iv) to infer some conclgional best fit constant€, is defined in egs (6,6).

sion about the physical meaning of such a result.

Since the most important task of this sectionistofinda . . . : . .
reliminarily the reasoning previously carried out for the

correlation between the lepton and quark masses previOLPsI 6 | \o1 >
determined and to confirm the validity of the previous result%huydré(f;5 é)_csriceu:i?]tjgiﬂ L)"Ls exploiting the values (6,7)
the approach proposed here does not concern directly eq (318 T

rewritten in the form (6,4) logL;) = & +b'i involving the lep- Le Qs 2
ton masses only; rather we start looking since the beginning 5 — =0935 ( 5 ) =0.936
for a connection betweely andQ;. Let us show first of all iz L iz Q

that such a link actually exists, i.e. that are physically sengjnich shows that the lepton equation is related to that of the
ble logarithmic laws having the forms 1¢@;) +1og (L)) with  quarks. To explain this result assume that the normalized val-
Q/ defined in egs (6,6). From lo@) = ag + bi + ci? + - ues ofLg andQg are correlated, i.ele/2jLj = b'Qe/2;Qjs

and logli) = a_ + b'i + ¢’i? + -, with ag = log(Qo) and beingb’ a constant; imposing thesi = b, in order that also

a_ = log(Lo) regression constants, one finds first QE(+ Le/>;L; be proportional td of eq (6,5) for the same afore-
log(Li) = ag + a_ + (b + b)i+(c+)i2+-; the higher powers said reasons, one finds the given result. These considerations
of i have been skipped for brevity, whereas the dimensiopalt a constrain on the best fit deients ofQ; andL; vsi.
factors Qp and Ly are included in the constanés anda_. The fig 6 suggests the reasonable chance of introducing a fur-
as in eq (6,4). The fig 6 evidences that the idea of plottittger arbitrary constarit, that defines the more general linear
log(Q7) +log(Li) and logQ;) - log(Li) vsi is sensible: in fact combinations 10gQ;) + bolog(Li) = a + boa + bli + -

both curves are reasonably definable through appropriate &stice, multiplying side by side these equations and collect-
fit coefficients. To obtain these plots, the neutrino massésg the constants at right hand side, it must be also true that
quoted in literature through the respective upper limits only,

have been downscaled to the following values (log(Q)))” - bE(log(Li)* = 362 — ba(/? + -

ve= 1802 eV,v, = 34816 eV, v, = 1.549x 10" eV. (6,8) SKipping even the first power af In effect the advantage
of having introduced the arbitrary cieientb, is that it can
Moreover the varioug; have been sorted by increasin@e defined in order to make even the first order term negli-
mass like the respectiv@;. This sorting criterion establishesgible with respect to the constant term, whence the notation
a one-to one correspondence between leptons and quarks'@irted here; so, neglecting all powersi othe right hand
reads side reduces to a constant. The last equation reads thus

leptons ve v, € v, u 7
t 11111 6.9 (09(@))°=a+(ogLi)’h, a=ay*-blay?, b=b3

quarks u d s c bt Now implement again the input data listed in (6,7), (6,8)

Before commenting this correspondence and confirmiagd (6,2) to check if this last equation correlates sensibly the
the validity of eq (2,4) also for the leptons, let us repeat hegets of leptons and quark masses via two constaaisd b
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only; these constants are clearly best fitfioents that de- physical meaning only, merely reminiscent of the respective
scribe the correspondence (6,9). If the zero order apprayirark masses (6,12); nevertheless, it is possible to show the
mation just introduced is correct, then trivial regression c&ley role of these further energies for the physics of quarks
culations should yield a sensible statistical correlation of alhd leptons.

masses. The best fit ddieients consistent with the zero order Any statistical regression concerns by definition whole

approximation of the last equation are sets of values; here eq (6,11) correlates all masses of leptons
and that of all quarks reported in (6,2) and (6,7), (6,8) ac-
a=4549178521 b=1039628847  (6,10) cording to their representation (6,9). The best fitfioents

(6,10) are therefore the fingerprintaf masses. Various sim-
ulations have been indeed carried out (i) altering deliberately
some selected input values of either set of masses, (ii) alter-
log (Qibf/x,?) = ++/a+ b(log(L))% ing either whole set of masses and (i) altering both whole
sets of masses by means of arbitrary multiplicative factors
the notation stresses th@f of eqs (6,6) are replaced by valto find out how the corresponding results aféeeted; the

uesQibf of Q; determined by the regression, while the varioussults, compared with that of eq (6,11) obtained from true
X are of course still that defined in eq (6,6). This result i@lues, confirm of course that anyway the new regression co-

So the best fit equation is

readily checked calculating efficients difer from (6,10). The obvious conclusion is that,
for some specific reason, just the quotedfioents (6,10)
Qibf =X x 10° a+b(log(L))’ (6,11) identify uniquely the fundamental masses of our univesse:

is related to their measure units, as previously explaibed,
via the respective lepton masdeslisted in (6,7), (6,8) and controls instead the link between quarks and lepton masses at
comparing withQ; reported in (6,1). Note that, because dncreasing values of Actually one coficient only is enough
the exponentials, the decimal places of the regressiofiicodo identify all masses; the other is merely associated to it, be-
cients are important to reproduce the results of the followilitg concurrently calculated. Otherwise stated, one could as-
calculations. All of the values calculated with the positv@ume as a fundamental assumption one of thesgicieats

signin eq (6,11) only, the other one results consequently determined by the
unigue set of quark and lepton masses consistent with the for-
QA =250x1Pev Q) =497x10°eV mer one. Is clear the importance of understanding the spe-
QY =108x10fev Q'=122x1CBeV (6,12) cific physical meaning of the particular couple of fioments
ng =445x10°eV Q' =175x101eV (6,10) able to account for the fundamental masses of our uni-

verse as a function afne predetermined input. Besides the
fit surprisingly well the values (6,2) and, mostly importanjumerical calculation of these masses, however, it seems rea-
fall within the estimated intervals (6,1); it is worth noticinggonable to expect that some physical idea is still hidden in eq
that the agreement is much better than that obtained thro(gi1).
eqgs (6,6). A further remark in this respect is the following. To investigate this point consider the following equation
When carrying out the regression calculations with random .
input data, have been traced the percent deviations of the re- q’ = x,-2 x 10t Va+(log(L) (6,14)
sulting values of quark and lepton masses with respect to the ) ) o
respective input values: the best self-consistency was folfigred from (6,11) leaving unchangedvhile replacing in-
with the true data; the conclusion is that the regression is f§tadb V‘Z"th the unity. This equation results formally from
mere calculation procedure, but rather a real physical rétn)g(qio ) = (log(Li))? + a, which is interesting becausg
resentation of the masses. This also supports the idea #@mtL; can be interchanged simply changing the siga bfit
the average values (6,2) of the estimated intervals (6,1) condd its absolute value. Of course the variofiso defined are
have an actual physical meaning. Yet are also allowed th@longer quark masses; being still related to the respective

following results calculated with the minus sign true lepton masses, however, als@y are somehow related
to Q.
qﬁf =791x10%eV qgf =248x10°%eV Itis very significant to regard eqs (6,14) thinki@gcorre-
R =164x100ev @ =145x10ev (6,13) lated toL;, which in turn are correlated @f via one additive
' =277x102ev @' =113x102eV constant only.

So far the experimental masses of quarks and leptons have

The former set of energies has a literature check througgen introduced as a matter of fact, thus finding that a unique
the estimates (6,1), the latter set does not; yet there is no egp4ation, (6,11), accounts for all of them simply postulating

son to exclude the values (6,13), whose physical meaning willvell defined and unique couple of regression constants. Eq

appear shortly. In the latter case the subscripts have a forfgal4) adds to this standpoint a new perspective: the existence
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of a field whose quanta are related to tfieas a function of having in particular boson character. So, when summing up
which are first calculated; via eq (6,14) and thef; via eq all these terms one finds a total boson energy having the value
(6,11). The number of input data confirms that highlightédst quoted. This peculiar energy that accounts for the lepton
before, i.e. the quoted value afonly; the masses of bothand quark masses corresponds tooanpositeparticle con-
quarks and leptons appear then as consequences of a ursigiigg of the sum of 6 termg’* — ¢~ rather than to a truly
kind of particles, just thep’, since the only possible regreselementary particle. This conclusion is supported by the fact
sion of L; with @Q; consistent with the givem is that with that the lifetimeAty of such a particle should reasonably re-
the concurrent valub. This explains whyg® have been de- sult from that of its longest life constituent term with= 1,
fined keepinga and changindp only; even without appearingi.e. Aty = 7/(q]" — g"); one calculates in this way via eq
explicitly appearing in eq (6,14), we know that the latter ($,14)
required to be just that consistent with the former.
Note now that also eq (6,14) allows two sets of of values, ;" —d = 2.50 MeV, Aty = 2.63x 10%s,
g’ andq’", defined by either possible sign of the exponen- )
tial; it is easy to realize that, likewise as the values (6,12) ahfi€Se last results are reasonable and fully agree with the out-
(6,13), also now from a numerical point of vieyft" >> g°-. COmMes of recent experimental measurements.
This appears regarding ajf together: the resulting total en-
ergies corresponding to the positive and negative signs gre
Ziﬁ:l g = 129x 10t ev andzf:1 g>- = 8.189x 108 eV. This section investigates further consequences of eq (2,2).
Define therefore the linear combinatiofi” — g°~ and sum This part of the paper is thus significant because just this
together ali-th terms; one obtains again a total energy ~ equation leads to eq (2,4), which has been heavily involved
to infer the asymptotic freedom equation (5,7) of quarks and
ey = 129 GeV. the masses of quarks and leptons; confirming once more eq
?) means therefore to correlate these results to another fun-
amental topic of quantum physics concerned in the present
%gction, i.e. the statistical distributions of quantum particles.
gs (1,1) link the energy rangees including the possible en-

The quantum statistical distributions

Regardless of the numerical values, however, the physi
meaning of each terg®* — g°~ is profoundly diferent from

that of the termg>* andg®™ regarded separately: the mass
my, charges;, spinss, colorsC; and so on of these virtual = . )
particles, expectedly the same fift andg® whatever they ergies of a quantum system to its numhef allowed states:

might be as a consequence of eq (6,14), subtract each om%rCh"?mge of energy range sidae = (h/At)én_during a
and thus do no longer appearg?t — g°-. This point is easily given time rageAt has been concerned in section 2 to cal-
[l |

highlighted and explained. Actually the eq (6,14) estabnsh‘é‘é'atze 4‘“9 Ire'f‘htetd changa = n, - i gf n th‘]f.s Odbtai”i”?t
the numerical values of the new energigsandg’, not their €q (2,4). nf al case, vt;/as rfegar ed as af e quafn 'ﬁ/.’ h
specific forms about which nothing has been hypothesized'Sr as a reference number of states as a function of whic

is known. The most natural way to regard these quantitié%,def'ne‘sn' Now we generalize these ideas: boihandn,

in full line with the basic ideas of the present model, is to rg_re'aill'owed to change in a quantum system ch'aract'erlzed by
initial number of states,. If so /At can be identically

late the various) to appropriate energy uncertainty ranges g
done in eq (2,4); this means assuming for instance rewritten ash/At = Aen, /Ny O i/ At = Aen, /12, because both

right hand sides are equivalent reference states in deffining

ot = &f(m,c.s,Ci,..) - £(0,0,0,0,..) So, being both chances alike as well, it is reasonable to expect
o =& (m,c.s,Ci,..) - £(0,0,0,0,..) that7i/At o« Ki/(ninp) with K; = K;(At) proportionality fac-
. tor having physical dimensions of an energy. This position is
with possible in principle becaug¥ is arbitrary; so, whateven
g (m,ci,s,GCi,.) ~£(0,0,0,0,.) andn, might be, certainly exists a time lengtt = At(ny, ny)

as well. As repeatedly stressed, both boundaries of any unéeat fulfills the proposed correlation. From a formal point
tainty ranges are arbitrary. Here we are interested to consi@feriew, assume thade/n of the system is described dur-
in particular ranges fulfilling the following condition aboutnd At by the linear combinatioBiAen, /N1 + @Aen, /Ny, be-

the upper boundaries: ing a; anda, appropriate time dependent ¢heients; if so,
thenK; = aynyAep, + axniAey, is defined just by the equation
&'(m,c,s,Ci,.) =& (M,c,s,Ci,..). SAe/on = h/At = K¢/(ninp). Since all quantities at right hand

side are arbitrary, for simplicity let us approach the problem
in the particular case whekg is regarded as a constant in the
¢ - =£(0,0,0,0,.) — £(0,0,0,0,.) following. This chance is obviou_sly also obtainab_le de_fining
appropriatelya; or a; or both duringAt. The following dis-
that definesg®™ — g°~ as the energy uncertainty range of aussion will show that even this particular case is far reaching
massless, spinless, chargeless, colorless,.. virtual partiate deserves attention.

These positions agree witf* >> g°~ and also yield
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Write n; = ny + j andn; = +j, beingn, a reference fixed The inequality ensures that is fulfilled the initial condition
number of states anfla variable integer accounting for theof the case (i) concerned here, whereas the first eq (7,4) shows
change oh; andny; of course botm, andj are arbitrary and the probabilistic character af;j resulting from the previous
independent each other, which yields indeed n; = n, or positions.

n,—n; = Ny+26j depending on the signs ¢f In this way it is Consider now the limit case (ii). Despite the second eq
possible to describe a steady system witnjtmitial states or (7,3) requires in principle a very large number of series terms
an evolving system where is allowed a new numidet n, of to express,/j >> 1, even tending to infinity, there is no rea-
states; since now botly, andn, are allowed to changén = son to exclude that the second equation (7,4) defiriig
+2§j. Simplifying the notations, the equation inferred frorstill holds: beingK’ arbitrary, it can be still defined in order
dAg/on = K¢/(mny) of interest for the following discussionto fulfill the inequalityK’%;(1-no/2j +n2/3j?+..) < 1 what-

reads ever the ratia,/ j might be. On the one hand this inequality
‘m?i - _ 2K . §i=1 2. (7,1) can be accepted in principle even though the series consists
oj (o £ j) of an infinite number of terms; in fact the series does not

whereK must be intended as the constant repladfagre- need to be explicitly computed, which makes plausible also

viously introduced; it is allowed to take both signs, which ie positionr; = K’'wj. On the other hand, however, in this

avoids writing explicitly+5j. The notationAe; emphasizes way the resultjAs; = K’gowj is not explicitly inferred: the

the variable number of states appearing at right hand side.Idio hand side of the last inequality is indeed undefined. Oth-

proceed on, consider the case where boimdn, are large erwise stated, without the straightforward hint coming from

enough to regard approximately the former as a continuahe case (i) the egs (7,4) could have been hypothesized only

variable, so thatj << j; so the left hand side can be handlednd then still introduced in the case (ii) as plausible inputs

for mere computational purposes onlydds:;/d j; henceAg;  but without explanation. Actually, the assessment of the limit

calculated solving the fierential equation, resultstobe  case (i) and the subsequent considerationsydff are the
(k! ; _ points really significant of the present reasoning: while ex-

Aej = (K'eo/No)log (no/j 1) + const 2K = ~K'eo, (7.2) tending the physical meaning of and jA¢; also to the case

beingconstthe integration constank’ is an arbitrary dimen- (ji), they ensure the compatibility of the limit cases (i) and

sionless constant ang an arbitrary constant energy. Congj). Once again, the arbitrariness of the numbers of states

sider now two boundary conditions of eq (7,2) concernifglays a key role to carry out the reasoning.

the respective limit cases (@, << j and (i) no >> j. From Looking back to eq (7,2) and multiplying biyboth sides,

a mathematical point of view, note that eq (7,2) is obtaings} ys write

by integration of eq (7,1) with respect joregardless of;

hence one could think the cases (i) and (ii) as due to fixed in-  jAgj = K'eo(j/No) log (No/ j = 1) + constj (7,5)

tegration limits ord j for two different values ofi, consistent ] ] )

with either inequality, of course without modifying the resuffccording to egs (7,4)Ae;/K’s, = wj; so, neglecting 1 with-

of the integration and the subsequent considerations. ~ '€SPect tano/j in agreement with the present limit case (ii)
In the case (i) holds,/j + 1 only; puttingconst= 0 and @nd summing all terms;, eq (7,5) yields

expanding in series the logarithmic term, the right hand side

of eq (7,2) reads We — i (i)log(i) B O_const’ > i . @6
ij/So =i Mo Mo K'eo =i
Ab‘j = T 5
0 2 ] (7,3) It is useful now to rewrite eq (7,6) as a function of a new
wj=1—2—?+3—j°2—..., O<wj<1l variableg;

Let j be defined between two arbitrary numbers of states 12 K’gg j
j1 and j» > ji; moreover define novK’ in order that the W= _qui log(€;). const= — o log@. ¢ = g’
sum of all termsK’w; introduced in the last equation over all =i
values ofj fulfills the following condition whereq is a proportionality factor not dependent grit has
i iz been defined according to the second equation to eliminate
1< 7m=Kuj, K’ij = Zn,- =1, the second constant addend of eq (7,6). The next step is
I I to definej, so far simply introduced as an arbitrary integer

then the result is without any hypothesis on its actual values, in order Wvat
] i has specific physical meaning with reference to a thermody-
7| = JAg; o = Z jAe] No <1 (7,4) namic system characterized by a numbesf freedom de-
j2 k) - 9 . . il

> A j=i1 grees. To this purpose assume thaan take selected values
Ej -

j=i1 n® only, with n arbitrary integer. This is certainly possible:
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nothing hinders calculating the eq (7,2) as a functionggh® lower sign allows in principle botls, < ¢; ande, > ¢j, as
instead of anyj progressively increasing; in this way alsin effect it is well known. To understand these conclusions,
the eq (7,6) accordingly calculated takes a specific physit=tlus exploit the reasonable idea that the numjbef states
meaning consistent with that of the ratio¥n,. Clearly this allowed for a quantum system is related to the nuntberf
does not mean trivially renaming now n® readsAxAp/#S, particles of the system. Recall another result previously ob-
whereAx = Ax; - -AXs andAp = Ap; - -Aps. Since there- tained exploiting eqs (1,1) [7]: half-integer spin particles can
fore AxAp symbolizes a volume in &dimensional phaseoccupy one quantum state only, whereas one quantum state
space, AxAp/h® represents the number of states allowed @an be occupied by an arbitrary number of integer spin parti-
this volume. It is known that this ratio introduces the statisles. In the former case therefojres directly related td\, i.e.
tical formulation of the entropy [16]; so puttingpnsYK’e, j = N andn, = 1, in the latter case instead in gendxab> |
proportional to a new quantitgg, one finds without a specific link betweepandN. Yet the arbitrariness

of n, makesj suitable to represent afy also in this case as

ny . .
B _ N = 3] = noY (exp@ej/K)— 1)1 In the classical case
S=- log(&n). So = —qlog(Q), R .
qn;hfn 9n) 0= ~qlog(©) 7.7) whereAg; >> K, this equation is the well known partition
const 1S, Q= gl "7 function.
Ke ¢ 0q° .

8 Discussion
The notation of the first sum emphasizes that rjgakes

values corresponding to the possibfe The constant of eq After the early papers concerning non-relativistic quantum

(7,6) has been therefore related in the last equati@ytdhe physics [5,6], the perspective of the eqgs (1,1) was extended to

second equation can be regarded as a particular case OFQEeS_pECiaI a_nd general relativity; the gr_avitational interaction
former when the thermodynamic probabilitigsare all equal; was indeed inferred as a corollary just in the present theoret-

while in eq (7,2)j was an arbitrary number progressively inical frame. The problem of examining more in general also

creasing frojs 1o jo, in eq (7,7) its relationship to° does not other possible forms of quantum interaction appeared next as

exclude the chance of coincident values for equal volumesao[fatural extenspn of these results. This paper al.med '”‘?'eed
fer some basic concepts on the fundamental interactions

phase space. It is well known that the results so far expo 24 ible i ‘ E ithout ambii ; et
introduce the statistical definition of entropy a trivial propof2SSIP'€ [N nature. Even without ambition of completeness

tionality factor apart. Note that this result has been obtain exhaustlveness, the ch_ance of finding some ouj[standmg
in a very diferent context [12], i.e. to show the quantu atures unambiguously typical of the electromagnetic, weak

character of the Fick @iusion laws as a consequence of ejﬁﬂd strong interactions has the heuristic value of confirming

(1,1) only; despite the fiierent topic, the theoretical frame i e fundamental t':haracter' Of €qs (1,1): seems indeed signif-

however exactly the same as that hitherto concerned. |c_ant that the weird peculiarities Of the q”a”th world are
Let us return now to the early eq (7,2). Define as usﬂfectly related not only to the physical properties of the ele-

the energy range as; = &/ — ¢, so that the eq (7,2) reagdnentary particles but also to that of their fundamental inter-
] = ’ ’ . . . . . .
ne(const+ &' — &”)/K = log(no/j + 1). Exploit once again actions, which are described in a unique conceptual frame in-

the fact that in general the boundary values of the uncertaig‘gding also the gravity and the Maxwell equations [7]. Now

ranges are arbitrary; hence, whatever the sign and value P the gra_v|t_at|onal cogp!lng constant, so far not explicitly
%ncerned, is inferred within the proposed conceptual frame.

K andconstmight be, the left hand side can be rewritten ! o . :
e starting point is again the eq (2,7) rewritten as follows

(ej — €0)/K, being of course both; ande, still arbitrary. So
the number of stategof the eq (7,2) reads , AF, AR | dAx
No o vy = — e vy = aAC AFy = Fx—Fox. (8,1)
= = @ —e)/K) =1 Ag = gj—&o = No(CONstr&’ —&”).
Pl ~ %o By means of this equation the paper [7] has emphasized
The second equation reports again the starting point froine quantum nature of the gravity force, approximately found
which is inferred the former equation to emphasize that, degual toAF, = Grmymy,/AX? for two particles of massy, and
spite the arbitrariness of the boundary values that define thg also, the time dependence @f or pox Of Apx = Px — Pox
size of the energy uncertainty range, the specific problem des alternatively introduced to infer the equivalence princi-
termines the values of physical interest. For instance in e of relativity as a corollary. In the present paper, instead,
(2,6) has been inferred the Planck law identifyifng; with both boundary values of the momentum component range
hAv;; clearly the number of states therein appearing is to bave been concurrently regarded as time dependent to infer
identified here withj, whereas, can be taken equal to 1 bethe expected potential energy (5,2) of the strong interactions:
cause the photons are bosons. Here the upper sign requlreseasoning is in principle identical, although merely car-
signs of K andgj — &, such that £ — &,)/K > 0 because ried out in a more general way; the form of eq (5,2) comes
the number of statesmust be obviously positive; instead theutting in eq (2,7) bottpy # 0 andpox # 0, which is the

j
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generalization of the relativistic reasoning carried out in [7As concerns the ratim,e/mp Note thatm,. is a real particle,
In fact the eq (2,7), straightforward consequence of egs (179 is a mere definition; so for the former only holds the idea
and thus valid in general, has been reported also in the preseat any particle confined in an arbitrary uncertainty rathge
paper to better understand these results through its underlyingharacterized in principle by a momentum component gap
reasoning: what changes is the way it can be exploited to dgy = p§°"f — py with respect to an ideal unconfined state,
scribe specific physical problems, as it has been also empdee eq (2,1). For the reasoning is irrelevant how an electron
sized about the physical meaning@f Now we are interestedneutrino could be confined in practice, becauseis arbi-
to implement a particular case of eq (2,7), i.e. the Coulortriary; it could even be the full diameter of the whole universe.
law quoted in eq (2,8). The procedure followed below doéss instead significant in principle that, as already shown in
not need any additional hypothesis with respect to these ceeetion 4 about the weak interaction boson vectors, it is pos-
siderations: it is enough to specify appropriatallf, in eq sible to write for the electron neutrino a delocalization energy
(8,1). As,e = Ap2/2m, valid for any real object; this reasoning has

Consider first the eq (2,8): in the particular case- eit been in &ect exploited in eq (4,13). These considerations
yields the Coulomb lawy — Fox = AFy = +€°/AX?. Replace aim to conclude that, whatevap, might be, the equation
this expression into eq (8,1), which reads then

Mye = Ap%/2Ae,e Agye = M, (8.4)
vl = +€*/nh. (8,2)
The + sign is a trivial feature of the velocity componen uggestsn,e proportional to a reciprocal energy range,e

' along the arbitrary-axis, it is in fact of scarce interest for. at in turn should be proportional tG. If this reasoning
Ux 9 X ’ is. physically sensible, them,e/mp « ¢2 suggests by con-

:22 F:crtptc;wsefts o{t.trr]]e/pr_es(er;ltq)c(i;s;gsdscl)onr; tg/l'(r)1 rft;rlr:ater(ezsgl;%é uenceamn,e/mp o @?; since the fine structure constant is
putting, = (a/njc, ' q (< 'proportional itself toc™!, this position simply means includ-

one obtains the identitg/n = €/n#ic. This result supports . . ; .
the idea thatl,/c of eq (8,2) &fectively represents a couplingmg €?/h into the proportionality constant. Write therefore

constant: it reads/n, just the electromagnetic coupling con-
stant found in eq (1,4).

ConS|d.er now thg grgwty forcaFx = Grmymy/Ax* and having called IN the proportionality constant. The ratio at
replace ,th's expression into eq (8,1): go= Gr_nimb/nh. left hand side is immediately calculated with the help of the
Comparmg this result with the case of th(_a electric force Profrst value (6,8), it results equal taSlx 1028 the factor
agating between charged masses, one finds a? ~ 5.3x 107 calculatesN equal to 35 x 10?3, a value sur-
8.3) prisingly similar to well knowrN = 6.02x 10?2 for the ratio at

right hand side. The agreement between these values is really

Is obvious the reason why the gravitational coupling connexpected: while the positian,e/me o< o* could be accept-
stant, recognizable at the right hand side, has been formaipje at least in principle, is reallyfticult to understand what
obtained through elementary considerations identical to ttze Avogadro number has to do with the present problem. A
of eq (8,2): the unique eq (8,1) turns into either result sirasonable idea is to regatd/N, perhaps a mere numerical
ply depending on whether one replaaes, with €2/Ax? or accident, as a whole factor between ordinary mass units and
Gmamy/AX2. Egs (8,2) and (8,3) suggest that the gravitation@lanck mass units. To support this statement replace in eq
and electromagnetic field propagate at the samecrateem- (8,4) As,e With m,ec?, regarded as the average of the bound-
phasized when discussing the physical meaning, @indv, ary values ofAe,; for the following order of magnitude esti-
in section 2, the latter is the deformation rate of the spac¢eate this replacement is acceptable. So, recalling/Apat=
time rangeAx that determineaF,, whereas is insteag the ("2/AX)? and that actually to calculatke,e one should con-
real propagation rate of the respective messenger particlesiflerAps + Ap? + ApZ, eq (8,4) readax = nic+/3/2/m,ec?;
the interaction space-time range; in both casedx/At = ¢. puttingn = 1, one findsAx = 1.3 x 10’m. Replace now

These results are not end points, they have heuristic chie;e with (N/e?)As,e: the factor previously found to con-
acter. Let us start from eq (8,3) considering for simplicityertm,_into Planck mass units should now convert the energy
my = My, = m, so thatm = mp+/Nag; i.e. anymis pro- &, from the ordinary units into Plank energy units. Indeed
portional to the Planck mass, the proportionality factor beifg = nfic v/3/2¢?/Nm,C? calculated again witm = 1 re-
just yag. Owing to the small values afg, one expects thatsults equal to 1L x 10-3m, which is reasonably comparable
large values oh are required to fit even small masses. Alwith the Planck lengthe = 1.6 x 1073°m. Actually this result
thoughag depends in general on the specific values of tkeuld be expected, because it is based on regarding the energy
masses, it is interesting to examine its minimum value cate,e = Ap2/2m,e asAs,e = Ap2c?/2Ae,e, as already done in
responding to the particular case where boghandm, rep- section 4; accordingly, this means identifying,. calculated
resent the lightest elementary particle, the electron neutrifrom the confinement uncertainty equation with the nrags

Mye/Mp = @?/N

ag = vy/C = GmyMmy/NnAic.
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of the particle itself via the facta?. This idea was found rea-calculated through eq (6,10) supports also the values of the
sonable to calculate the characteristic length of the weak nasses not experimentally available. On the other side, how-
teraction, eq (4,14), and appears adequate also here becaesei in lack of a self-interaction mechanism characteristic
shows that the conversion factormf into mp also converts of the quarks only, the question arises: is justified a simi-
&, IiNt0O Ep. lar mechanism for the vacuum polarization around the real

The main reason for having proposed this result is to sticharges with formation of virtual particle-antiparticle pairs?
ulate (i) further considerations on the link betweeandage) Does the interaction between these couples of virtual parti-
and (ii) a greater attention td when searching fundamentatlegantiparticles surrogate the self-interaction of the quark-
relationships between the constants of nature. Another giuton plasma? Work is in advanced progress on these points.
merical accident, which is worth noticing here because per-
haps of possible interest, concerns the keytogents (6,10);
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a dissimilarn/V, thus explaining not only the fierentm of

the various quarks but also the equations (5,3) and (6,5). Yet
thereafter also the leptons have been handled through the eq
(2,4) simply guessing an analogy of behavior for both kinds
of fundamental particles of our universe. But, strictly speak-
ing from a physical point of view, why should the lepton
masses depend @im? On the one side the extension of the
eq (2,4) certainly works well, because the well known masses
of electron, muon and tau particles fit the proposed scheme;
the fact of having included these masses among the results
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