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We investigate the strain energy density of the spacetinméireaum in the Elasto-
dynamics of the Spacetime Continuum by applying continuuethanical results to
strained spacetime. The strain energy density is a scalarfindf that it is separated
into two terms: the first one expresses the dilatation engeggity (the “mass” longitu-
dinal term) while the second one expresses the distortierggrdensity (the “massless”
transverse term). The quadratic structure of the energyioal of Special Relativity is
found to be present in the theory. In addition, we find thatkdihetic energypc is car-
ried by the distortion part of the deformation, while theathition part carries only the
rest-mass energy. The strain energy density of the eleafgnetic energy-momentum
stress tensor is calculated. The dilatation energy defthigyrest-mass energy density
of the photon) is found to be 0 as expected. The transversertii; energy density
is found to include a longitudinal electromagnetic energy ferm, from the Poynting
vector, that is massless as it is due to distortion, notatilat, of the spacetime con-
tinuum. However, because this energy flux is along the daeatf propagation (i.e.
longitudinal), it gives rise to the particle aspect of theotlomagnetic field, the photon.

1 Introduction Using (11) from [2] to express the stresses in terms of the

The Elastodynamics of the Spacetime Continu&WGED) is strains, this expression becomes
based on the application of a continuum mechanical approach 1, 5
to the analysis of the spacetime continuum [1-3]. The ap- & = 5 Koe” + Ho€T g 4)

plied stresses from the energy-momentum stress tensor r§gHere the Lame elastic constant of the spacetime continuum
in strains in, and the deformation of, the spacetime COl]tlmquO is the shear modulus (the resistance of the continuum to

(STC). In this paper, we explore the resulting strain energy RgGortions) andxo is the bulk modulus (the resistance of the
unit volume, that is the strain energy density, resultimfr -qninum todilatations). Alternatively, again using (11)

the Elastodynamics of the Spacetime Continuum. We thegy, 5] to express the strains in terms of the stresses, this
calculate the strain energy density of the electromagfietit expression can be written as
from the electromagnetic energy-momentum stress tensor.

1

2 1 af
. . _ , E= 0+ — 1Pty (5)
2 Strain energy density of the spacetime continuum 2o 4uo

The strain energy density of the spacetime continuum is_a - . . .
scalar given by [4, see p. 51] 3 Physical interpretation of the strain energy density
The strain energy density is separated into two terms: thie fir
s= }Taﬁgaﬁ (1) one expresses the dilatation energy density (the “mass” lon
' gitudinal term) while the second one expresses the distorti

: : . energy density (the “massless” transverse term):
wheree,; is the strain tensor anfi’? is the energy-moment- 9y Y ( )

um stress tensor. Introducing the strain and stress desiato E=&+E&L (6)
from (12) and (15) respectively from Millette [2], this equa h
tion becomes where

1 1
8“ = = K()82 = — t2 (7)
1 af af 2 ZKO
E= E (t + tg )(ea,lg + eg(,ﬁ) . (2) and L
o : , &1 = uoePeys = — t"ty. 8
Multiplying and using relations®, = 0 andt*, = 0 from the L= HoC TG g p ®)

definition of the strain and stress deviators, we obtain Using (10) from [2] into (7), we obtain

= [oc?]. )

1
_ = af =
&=3 (4te +t7eys). ®3) &1= 320
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The rest-mass energy density divided by the bulk modwuswe obtain [6, see p. 66] [7, see p. 141],

and the transverse energy density divided by the shear modu- L s 1\ 1 s oo

lus uo, have dimensions of energy density as expected. ¢ =3 (femE + 7 B ) = Efem(E +c°B )
Multiplying (5) by 32 and using (9), we obtain

) 0% =00 = L (ExB) = enc(ExB) = 18!
32k0E = p?ct + 8= Pt (10) ' ‘ ' (15)
Ho o = — (€mEIEX + - BIBX) + 36 (eenE? + -1-B?)
Noting thatt®t,s is quadratic in structure, we see that this _ _ _
equation is similar to the energy relation of Special Reiti = —€em [(E’Ek +c?B Bk) - 3ok (E2 + CZBZ)]
[5, see p. 51] for energy density

R whereS! is the Poynting vector, and where we use the nota-
E? = p2c* + p2c? (11) tiono* = O as a generalization of the! Maxwell stress
tensor notation. Hence the electromagnetic stress teasor i

whereE is the total energy density anrtie momentum den- given by [6, see p. 66]:

sity.
The quadratic structure of the energy relation of Special lem(E?+c?B?)  Sy/c S,/c Si/c
Relativity is thus found to be present in the Elastodynamics sc o -ty -
of the Spacetime Continuum. Equations (10) and (11) also ot = , (16)
imply that the kinetic energyc is carried by the distortion Sy/c T 9w 9w
part of the deformation, while the dilatation part carriesyo S./c —ox -0y Oz

the rest mass energy. N
This observation is in agreement with photons which afé1erec! is the Maxwell stress tensor. Using the relation

massless&; = 0), as will be shown in the next section, bufes = Taulsy0*” o lower the indices of+”, we obtain

still carry kinetic energy in the transverse electromaignet

. . Lean (E2+c2B%)  -Sy -S -S,
wave distortions&, = t%t,s/4uo). seon (E°+°F) fe v/ /e

-Sx/c —Oxx —Oxy —Oxz (17)
: . . o = .
4 Electromagnetic strain energy density 0% s,/c o o 0w
The strain energy density of the electromagnetic energy-mo _s.jc ” ” ”
z —Ozx Oz Oz

mentum stress tensor is calculated. Note that Rationalized
MKSA or S| (Systéme International) units are used in this ) o
paper as noted previously in [3]. In addition, the electrgma#-1 ~Calculation of the longitudinal (mass) term

netic permittivity of free space.m and the electromagneticThe mass term is calculated from (7) and (17) of [2]:
permeability of free spacgen are written with em’ sub-

scripts as the “0” subscripts are used in the spacetime con- &l = i 2 _ i o®.)2. 18

. o =3 350 ) (18)
stants. This allows us toflierentiate betweeta,, anduo. Ko 0

Starting from the symmetric electromagnetic stress tenggfe termo?, is calculated from:
[6, see pp. 64—-66]

O_wa = Nap O_wﬁ
1 1
O = — |FHFY + = ¢"F%PF 4| = 0, 12
Liem ( a 49 043) ( ) — 77”00_00 + nwlo_wl + UQZO'(YZ + 77030—03 (19)

with g** = p*” of signature €---), and the field-strength
tensor components [6, see p. 43]

= 000 ® + 7120 + 72002 + 3302,
Substituting from (16) and the metni¢” of signature

0 -Bje -Bfc e (+---), we obtain:

o _ Ex/C 0 B, -B, 13) )
- E/c B, 0 By ol = 2 €em (E2 + CZBZ) +0xxt+ Oy + 0z (20)
e 5 ° Substituting from (15), this expands to:
and o L o
0 Ex/c E,/c Elc 0'a—§€em(E +CB)+eem(Ex +C BX)+

Fo=| 0 T 14)  +een(E,2+ PB2) + conm (B2 + B2 - (21)
-Ej/c -B 0 By
~E/c B, B 0 —% €em (E2 + CZBZ)
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and further, Simplifying,
0 = L €om (E? + C2B?) + eon (E2 + 2B?) - EBterms= e, | (E2 + 2B7)’ - (E + 2B,2+
(22)
-3 €en (E? + C2B?). +E,%+ ¢?B,% + E2 + ¢?B2) (B + ¢°B?) +
28
Hence 2, 2.2\ 2 2\2 (28)
+(Ex +C BX) +(E,, +C?B, ) +
% =0 (23) ' ‘
and, substituting into (18), + (EZ2 + CZBZZ)Z]
& =0 (24) which gives
as expected [6, see pp.64—66]. This derivation thus shows EBterms= Egm[(EZ + 0282)2 - (E2 + CZBZ)Z+
that the rest-mass energy density of the photon is 0.
2 2

. Ex? + C°By? E,2 +¢°B,? 29
4.2 Calculation of the transverse (massless) term +( O ) +( A ) * (29)
The transverse term is calculated from (8), viz. + (EZZ + Cszz)z]

1 )
&L = — tP,. (25) and finally
4uo
. EBterms= 2[E4+E4+E4+

Given thatt = %o?, = 0, thent”” = ¢ and the terms €em ( X v Z)
o4 are calculated from the components of the electro- 4o 4 4 4
magnetic stress tensors of (16) and (17). Substitutinger t e (BX +B/+B; )+ (30)

diagonal elements and making use of the symmetry of the
Poynting component terms and of the Maxwell stress tensor +2¢2(E?B,® + E,?B,? + Ezszz)]~

terms from (16) and (17), this expands to: ) ) o
Including the E-B terms in (26), substituting from (15), ex-

) X . ) ’
Bores = ‘_11 egm(EZ + CZBZ) + panding the Poynting vector and rearranging, we obtain

ap g = 2 [ E 4 EL4 E 4 4 B 4 B a
+Egm[(ExEx+CszBx)—%(E2+C2|32)]2+ TP = € ( GHEA+ z)+C( B
+e2,[(E,E, + c*B,B,) - 5 (E?+ Csz)]Z N +B.*) + 22 (E?B,® + E,*B,2 + E”B/?) ]_

20 [ e 2
+e2 [(EzEz + CZBZBZ) - % (Ez i Csz)]Z_ 2€2,.c? (EyBZ Esz) + (-ExB, + E;By)? + (31)

B 2 2 [ 2 2
~2(Sy/e)’ - 2(S,/c)" - 2(Su/cf + ~(E8 -EBJ |+ 24| (B, + B8+
42 (U'Xy)z +2 (O_yz)z +2 (02> + (EyEZ + CszBz)z + (EzEx + (;ZBZBX)2 ]

The E-B terms expand to: Expanding the quadratic expressions,

By 2 4 4 4 4(p 4 4
EBterms— egm[% (E2 +CZBZ)2+ cPoep = Eem[(Ex +E,"+E; )+ o (BX + B,"+

B4) + 2¢2(E2B2 + E,?B, 2 EZBZ]—
+(E@+2BR2) - (B2 +B2)(E? + B + +B) + 21 (BB + BB, + £7B7)
~262,.c2 [EXZBy2 + E,%B2 + E”By® + B2E, >+ (32)

(
+(E2+B7) - (E2+CBY)(E?+B)+  (27)
( +B,2E2 + B2E2 - 2(E<E,B.B, + E,E;B, B+

+(E2+2B2) - (E2+ 2B2) (E2 + 2B2) +
+EZEXBZBX)] 122, [(EXZEyZ +E2E2+
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+E2E?) + 2¢(ExE,B\B, + E,E,B,B,+ or . .
_ 2_ - Q2
+EZEXBZBX) +ct (BXZByZ +B,2B2 + BZZBXZ)] & = ” [Uem 25 } (39)

Grouping the terms in powers oftogether,

1
op _ 4 4 4 2F 2
o aaﬁ_[(EX +E,* + E*) + 2(EE, %+

YE2E2 + EZZEXZ)] + 202 [(EXZBX2 1 E2B,2

+E2B2) - (E<?B,2 + E,?B2 + E”B,2 + BZE, %+
(33)
+B,2E2 + B2E,?) + 4(E«E,B,B, + E,E,B,B+

+EzEszBx)] +ct [ (Bx4 + By4 + Bz4) +
+2 (B32B,2+ B,2B7 + BZZBXZ)].

Simplifying,
1 2
op _ 2 2 2
%a' a-a,;—(Ex +E, +EZ) +
+2¢2 (E2 + E,? + E2) (B + B,2 + B2) -

22 [Z(EXZB_,,Z +E,2BA2+ E2B2+ (34)

+B2E,2 + B,2E,2 + B2E,?) - 4(ExE,B.B,+

E,E,B,B, + EZEXBZBX)] + 0t (BE+ B2+ B2)

which is further simplified to

1
— P = (E"’ + 2C2E%B? + c“B“) -
Eel"l"l

—402[(EyBZ -B,E) +(EBx-BEY+ (35

+(EcB, - BXEy)Z].

Making use of the definition of the Poynting vector from
(15), we obtain
oPoas = €, (E2 +c? 82)2 -
(36)
~4e2,? |(Ex B)y? + (Ex B), 2 + (E x B),?|

and finally
4
0P = € (E2 + B2 - S (5¢+82+57). (37)
Substituting in (25), the transverse term becomes

1 [egm (E?+ 8% - Ci; sz}

& =—
L 4/10

(38)

whereUen = 3 e (E? + ¢?B?) is the electromagnetic field
energy density.

4.3 Electromagnetic field strain energy density and the
photon

S is the electromagnetic energy flux along the direction of
propagation [6, see p.62]. As noted by Feynman [8, see
pp.27-1-2], local conservation of the electromagnetidfiel
energy can be written as
OUenm

oS
where the ternk - j representing the work done on the matter
inside the volume is 0 in the absence of charges (due to the
absence of mass [3]). By analogy with the current density
four-vectorj” = (co, j), whereo is the charge density, arjds
the current density vector, which obeys a similar consermat
relation, we define the Poynting four-vector

(40)

S” = (CUem: S), (41)

whereUq, is the electromagnetic field energy density, &d
is the Poynting vector. Furthermore, as per (&))satisfies

8,S" = 0. (42)

Using definition (41) in (39), that equation becomes

1 4
& = v S, S (43)
The indefiniteness of the location of the field energy reférre
to by Feynman [8, see p.27-6] is thus resolved: the elec-
tromagnetic field energy resides in the distortions (transy
displacements) of the spacetime continuum.
Hence the invariant electromagnetic strain energy density
is given by
&= iz S, S’
HoC
where we have usga= 0 as per (23). This confirms th&t
as defined in (41) is a four-vector.
Itis surprising that a longitudinal energy flow term is part
of the transverse strain energy density i%2,/uoc? in (39).
We note that this term arises from the time-space components
of (16) and (17) and can be seen to correspond to the trans-
verse displacements along thiene-space planes which are
folded along the direction of propagation in 3-space as the
Poynting vector. The electromagnetic field energy density
termUen?/uo and the electromagnetic field energy flux term
S?/upc? are thus combined into the transverse strain energy
density. The negative sign arises from the signature- ()
of the metric tensop™”.

(44)
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This longitudinal electromagnetic energy flux is massle§s Discussion and conclusion

as it is due to distortion, not dilatation, of the spacetirae-c In this paper, we have analyzed the strain energy density of
tinuum. However, because this energy flux is along the dir(%ﬁé spacetime continuum BTCED and evaluated it for the
tion of propagation (i.e. longitudinal), it gives rise t@tparti- oo ctromagnetic stress tensor. We have found that thestrai
ple aspect of the electromagneticfielld, the photon. As sho rgy density is separated into two terms: the first one ex-
in[9, see pp. 1_74'5]_[1_0’ SEep. 58], In the quantum theorygjssses the dilatation energy density (the “mass” longiald
electroma_gnetlc radiation, an |ntenS|t_y operator derfvenh_ term) while the second one expresses the distortion energy
th_e quntlng vector h_as, as expectation value, photonin Hénsity (the “massless” transverse term). We have fourtd tha
direction of propagation. ~the quadratic structure of the energy relation of Speci& Re
This implies that the gc)? term of the energy relation of agjyity is present in the strain energy density of the Elasto
Special Relativity needs to be separated into transverde 8Pnamics of the Spacetime Continuum. We have also found

longitudinal massless terms as follows: that the kinetic energypc is carried by the distortion part of
. the deformation, while the dilatation part carries only tbst
2 24 a2 A2 2
E? = p?c* + pic? + pic (45) mass energy.
& massless &, We have calculated the strain energy density of the elec-

tromagnetic energy-momentum stress tensor. We have found

wherep, is the massless longitudinal momentum density. Erat the dilatation longitudinal (mass) term of the stram e
quation (39) shows that the electromagnetic field energy dengy density and hence the rest-mass energy density of the
sity termUem?/ o is reduced by the electromagnetic field erphoton is 0. We have found that the distortion transverse
ergy flux termS?/uoc? in the transverse strain energy der(massless) term of the strain energy density is a combina-
sity, due to photons propagating in the longitudinal dict tion of the electromagnetic field energy density tewg?/uo
Thus the kinetic energy is carried by the distortion partef tand the electromagnetic field energy flux te®%yuoc?, cal-
deformation, while the dilatation part carries only thetresulated from the Poynting vector. This longitudinal eleetr
mass energy, which in this case is 0. magnetic energy flux is massless as it is due to distortion,

As shown in (9), (10) and (11), the constant of propoRot dilatation, of the spacetime continuum. However, be-

tionality to transform energy density squard®) into strain cause this energy flux is along the direction of propagation
energy density&) is 1/(32«): (i.e. longitudinal), it gives rise to the particle aspecttiof
electromagnetic field, the photon.

1 2
& = Tonr [pcz] (46) Submitted on January 7, 2012ccepted on January 11, 2013
0
1 2 References
E=—E 47 ) - ) )
32 1. Millette P.A. On the Decomposition of the Spacetime Meffensor
and of Tensor Fields in Strained SpacetifBogress in Physics, 2012,
1 155 o 1 s V'é' >8 . . .
&= 32 [DHC + plcz] = 4—t tos- (48) 2. Millette P.A. The Elastodynamics of the Spacetime Cantin as a
0 Ho Framework for Strained SpacetinRrogressin Physics, 2013, v. 1, 55—
59.

Substituting (39) into (48), we obtain . . . .
3. Millette P.A. Derivation of Electromagnetism from theaBlodynamics

of the Spacetime ContinuurRrogressin Physics, 2013, v. 2, 12-15.
Uem2 - i s2 (49) 4. Flugge W. Tensor Analysis and Continuum Mechanics. riger-
c? Verlag, New York, 1972.
5. Lawden D.F. Tensor Calculus and Relativity. Methuen & Candon,
and 1971.
32 1 6. Charap J.M. Covariant Electrodynamics, A Concise Gulde John
A2.2 | a2 0 2 2 ,
pjc + pic = o Uem” — po) S (50) Hopkins University Press, Baltimore, 2011.
7. Misner C.W., Thorne K.S., Wheeler J.A. Gravitation. WHeeman
This suggests that and Company, San Francisco, 1973.
- 3% 51 8. Feynman R.P., Leighton R.B., Sands M. Lectures on Phygitsme
Ho = 0 ( ) I, Mainly Electromagnetism and Matter. Addison-WesleybRshing
. . Company, Reading, Massachusetts, 1975.
to obtain the relation 9. Loudon R. The Quantum Theory of Light, Third Edition. OpddJni-
1 versity Press, Oxford, 2000.
pﬁcz + picz = Ugn? — = s2. (52) 10. Heitler W. The Quantum Theory of Radiation, Third Editidover
c Publications, Inc, New York, 1984.

_ 1 a2 2 a2 _ 1
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