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We investigate the strain energy density of the spacetime continuum in the Elasto-
dynamics of the Spacetime Continuum by applying continuum mechanical results to
strained spacetime. The strain energy density is a scalar. We find that it is separated
into two terms: the first one expresses the dilatation energydensity (the “mass” longitu-
dinal term) while the second one expresses the distortion energy density (the “massless”
transverse term). The quadratic structure of the energy relation of Special Relativity is
found to be present in the theory. In addition, we find that thekinetic energypc is car-
ried by the distortion part of the deformation, while the dilatation part carries only the
rest-mass energy. The strain energy density of the electromagnetic energy-momentum
stress tensor is calculated. The dilatation energy density(the rest-mass energy density
of the photon) is found to be 0 as expected. The transverse distortion energy density
is found to include a longitudinal electromagnetic energy flux term, from the Poynting
vector, that is massless as it is due to distortion, not dilatation, of the spacetime con-
tinuum. However, because this energy flux is along the direction of propagation (i.e.
longitudinal), it gives rise to the particle aspect of the electromagnetic field, the photon.

1 Introduction

The Elastodynamics of the Spacetime Continuum (STCED) is
based on the application of a continuum mechanical approach
to the analysis of the spacetime continuum [1–3]. The ap-
plied stresses from the energy-momentum stress tensor result
in strains in, and the deformation of, the spacetime continuum
(STC). In this paper, we explore the resulting strain energy per
unit volume, that is the strain energy density, resulting from
the Elastodynamics of the Spacetime Continuum. We then
calculate the strain energy density of the electromagneticfield
from the electromagnetic energy-momentum stress tensor.

2 Strain energy density of the spacetime continuum

The strain energy density of the spacetime continuum is a
scalar given by [4, see p. 51]

E =
1
2

Tαβεαβ (1)

whereεαβ is the strain tensor andTαβ is the energy-moment-
um stress tensor. Introducing the strain and stress deviators
from (12) and (15) respectively from Millette [2], this equa-
tion becomes

E =
1
2

(

tαβ + tgαβ
) (

eαβ + egαβ
)

. (2)

Multiplying and using relationseαα = 0 andtαα = 0 from the
definition of the strain and stress deviators, we obtain

E =
1
2

(

4te + tαβeαβ
)

. (3)

Using (11) from [2] to express the stresses in terms of the
strains, this expression becomes

E =
1
2
κ0ε

2 + µ0eαβeαβ (4)

where the Lamé elastic constant of the spacetime continuum
µ0 is the shear modulus (the resistance of the continuum to
distortions) andκ0 is the bulk modulus (the resistance of the
continuum todilatations). Alternatively, again using (11)
from [2] to express the strains in terms of the stresses, this
expression can be written as

E =
1

2κ0
t2 +

1
4µ0

tαβtαβ. (5)

3 Physical interpretation of the strain energy density

The strain energy density is separated into two terms: the first
one expresses the dilatation energy density (the “mass” lon-
gitudinal term) while the second one expresses the distortion
energy density (the “massless” transverse term):

E = E‖ + E⊥ (6)

where

E‖ =
1
2
κ0ε

2 ≡
1

2κ0
t2 (7)

and

E⊥ = µ0eαβeαβ ≡
1

4µ0
tαβtαβ. (8)

Using (10) from [2] into (7), we obtain

E‖ =
1

32κ0

[

ρc2
]2
. (9)
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The rest-mass energy density divided by the bulk modulusκ0,
and the transverse energy density divided by the shear modu-
lusµ0, have dimensions of energy density as expected.

Multiplying (5) by 32κ0 and using (9), we obtain

32κ0E = ρ2c4 + 8
κ0

µ0
tαβtαβ. (10)

Noting thattαβtαβ is quadratic in structure, we see that this
equation is similar to the energy relation of Special Relativity
[5, see p. 51] for energy density

Ê2 = ρ2c4 + p̂ 2c2 (11)

whereÊ is the total energy density and ˆp the momentum den-
sity.

The quadratic structure of the energy relation of Special
Relativity is thus found to be present in the Elastodynamics
of the Spacetime Continuum. Equations (10) and (11) also
imply that the kinetic energypc is carried by the distortion
part of the deformation, while the dilatation part carries only
the rest mass energy.

This observation is in agreement with photons which are
massless (E‖ = 0), as will be shown in the next section, but
still carry kinetic energy in the transverse electromagnetic
wave distortions (E⊥ = tαβtαβ/4µ0).

4 Electromagnetic strain energy density

The strain energy density of the electromagnetic energy-mo-
mentum stress tensor is calculated. Note that Rationalized
MKSA or SI (Système International) units are used in this
paper as noted previously in [3]. In addition, the electromag-
netic permittivity of free spaceǫem and the electromagnetic
permeability of free spaceµem are written with “em” sub-
scripts as the “0” subscripts are used in the spacetime con-
stants. This allows us to differentiate betweenµem andµ0.

Starting from the symmetric electromagnetic stress tensor
[6, see pp. 64–66]

Θµν =
1
µem

(

FµαFαν +
1
4
gµνFαβFαβ

)

≡ σµν, (12)

with gµν = ηµν of signature (+ - - -), and the field-strength
tensor components [6, see p. 43]

Fµν =





0 −Ex/c −Ey/c −Ez/c

Ex/c 0 Bz −By

Ey/c −Bz 0 Bx

Ez/c By −Bx 0





(13)

and

Fµν =





0 Ex/c Ey/c Ez/c

−Ex/c 0 Bz −By

−Ey/c −Bz 0 Bx

−Ez/c By −Bx 0





, (14)

we obtain [6, see p. 66] [7, see p. 141],

σ00 = 1
2

(

ǫemE2 + 1
µem

B2
)

= 1
2ǫem

(

E2 + c2B2
)

σ0 j = σ j0 = 1
cµem

(E × B) j = ǫemc (E × B) j = 1
c S j

σ jk = −
(

ǫemE jEk + 1
µem

B jBk
)

+ 1
2δ

jk
(

ǫemE2 + 1
µem

B2
)

= −ǫem

[(

E jEk + c2B jBk
)

− 1
2δ

jk
(

E2 + c2B2
)]

(15)

whereS j is the Poynting vector, and where we use the nota-
tion σµν ≡ Θµν as a generalization of theσi j Maxwell stress
tensor notation. Hence the electromagnetic stress tensor is
given by [6, see p. 66]:

σµν =





1
2 ǫem (E2+c2B2) S x/c S y/c S z/c

S x/c −σxx −σxy −σxz

S y/c −σyx −σyy −σyz

S z/c −σzx −σzy −σzz





, (16)

whereσi j is the Maxwell stress tensor. Using the relation
σαβ = ηαµηβνσ

µν to lower the indices ofσµν, we obtain

σµν =





1
2 ǫem (E2+c2B2) −S x/c −S y/c −S z/c

−S x/c −σxx −σxy −σxz

−S y/c −σyx −σyy −σyz

−S z/c −σzx −σzy −σzz





. (17)

4.1 Calculation of the longitudinal (mass) term

The mass term is calculated from (7) and (17) of [2]:

E‖ =
1

2κ0
t2 =

1
32κ0

(σαα)
2. (18)

The termσαα is calculated from:

σαα = ηαβσ
αβ

= ηα0σ
α0 + ηα1σ

α1 + ηα2σ
α2 + ηα3σ

α3

= η00σ
00 + η11σ

11 + η22σ
22 + η33σ

33.

(19)

Substituting from (16) and the metricηµν of signature
(+ - - -), we obtain:

σαα =
1
2
ǫem

(

E2 + c2B2
)

+ σxx + σyy + σzz. (20)

Substituting from (15), this expands to:

σαα =
1
2 ǫem

(

E2 + c2B2
)

+ ǫem

(

Ex
2 + c2Bx

2
)

+

+ǫem

(

Ey2 + c2By2
)

+ ǫem

(

Ez
2 + c2Bz

2
)

−

− 3
2 ǫem

(

E2 + c2B2
)

(21)
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and further,

σαα =
1
2 ǫem

(

E2 + c2B2
)

+ ǫem

(

E2 + c2B2
)

−

− 3
2 ǫem

(

E2 + c2B2
)

.

(22)

Hence
σαα = 0 (23)

and, substituting into (18),

E‖ = 0 (24)

as expected [6, see pp. 64–66]. This derivation thus shows
that the rest-mass energy density of the photon is 0.

4.2 Calculation of the transverse (massless) term

The transverse term is calculated from (8), viz.

E⊥ =
1

4µ0
tαβtαβ. (25)

Given thatt = 1
4 σ
α
α = 0, thentαβ = σαβ and the terms

σαβσαβ are calculated from the components of the electro-
magnetic stress tensors of (16) and (17). Substituting for the
diagonal elements and making use of the symmetry of the
Poynting component terms and of the Maxwell stress tensor
terms from (16) and (17), this expands to:

σαβσαβ =
1
4 ǫ

2
em

(

E2 + c2B2
)2
+

+ǫ2em

[(

ExEx + c2BxBx

)

− 1
2

(

E2 + c2B2
)]2
+

+ǫ2em

[(

EyEy + c2ByBy
)

− 1
2

(

E2 + c2B2
)]2
+

+ǫ2em

[(

EzEz + c2BzBz

)

− 1
2

(

E2 + c2B2
)]2
−

−2
(

S x/c
)2
− 2

(

S y/c
)2
− 2

(

S z/c
)2
+

+2 (σxy)2 + 2 (σyz)2 + 2 (σzx)2.

(26)

The E-B terms expand to:

EBterms= ǫ2em

[

1
4

(

E2 + c2B2
)2
+

+
(

Ex
2 + c2Bx

2
)2
−

(

Ex
2 + c2Bx

2
) (

E2 + c2B2
)

+

+
(

Ey2 + c2By2
)2
−

(

Ey2 + c2By2
) (

E2 + c2B2
)

+

+
(

Ez
2 + c2Bz

2
)2
−

(

Ez
2 + c2Bz

2
) (

E2 + c2B2
)

+

+ 3
4

(

E2 + c2B2
)2

]

.

(27)

Simplifying,

EBterms= ǫ2em

[ (

E2 + c2B2
)2
−

(

Ex
2 + c2Bx

2+

+Ey2 + c2By2 + Ez
2 + c2Bz

2
) (

E2 + c2B2
)

+

+
(

Ex
2 + c2Bx

2
)2
+

(

Ey2 + c2By2
)2
+

+
(

Ez
2 + c2Bz

2
)2

]

(28)

which gives

EBterms= ǫ2em

[ (

E2 + c2B2
)2
−

(

E2 + c2B2
)2
+

+
(

Ex
2 + c2Bx

2
)2
+

(

Ey2 + c2By2
)2
+

+
(

Ez
2 + c2Bz

2
)2

]

(29)

and finally

EBterms= ǫ2em

[ (

Ex
4 + Ey4 + Ez

4
)

+

+c4
(

Bx
4 + By4 + Bz

4
)

+

+2c2
(

Ex
2Bx

2 + Ey2By2 + Ez
2Bz

2
) ]

.

(30)

Including the E-B terms in (26), substituting from (15), ex-
panding the Poynting vector and rearranging, we obtain

σαβσαβ = ǫ
2
em

[ (

Ex
4 + Ey4 + Ez

4
)

+ c4
(

Bx
4 + By4+

+Bz
4
)

+ 2c2
(

Ex
2Bx

2 + Ey2By2 + Ez
2Bz

2
) ]

−

−2ǫ2emc2
[ (

EyBz − EzBy
)2
+ (−ExBz + EzBx)2+

+
(

ExBy − EyBx

)2
]

+ 2ǫ2em

[ (

ExEy + c2BxBy
)2
+

+
(

EyEz + c2ByBz

)2
+

(

EzEx + c2BzBx

)2
]

.

(31)

Expanding the quadratic expressions,

σαβσαβ = ǫ
2
em

[ (

Ex
4 + Ey4 + Ez

4
)

+ c4
(

Bx
4 + By4+

+Bz
4
)

+ 2c2
(

Ex
2Bx

2 + Ey2By2 + Ez
2Bz

2
) ]

−

−2ǫ2emc2
[

Ex
2By2 + Ey2Bz

2 + Ez
2Bx

2 + Bx
2Ey2+

+By2Ez
2 + Bz

2Ex
2 − 2

(

ExEyBxBy + EyEzByBz+

+EzExBzBx

)]

+ 2ǫ2em

[(

Ex
2Ey2 + Ey2Ez

2+

(32)
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+Ez
2Ex

2
)

+ 2c2
(

ExEyBxBy + EyEzByBz+

+EzExBzBx

)

+ c4
(

Bx
2By2 + By2Bz

2 + Bz
2Bx

2
) ]

Grouping the terms in powers ofc together,

1
ǫ2em
σαβσαβ =

[ (

Ex
4 + Ey

4 + Ez
4
)

+ 2
(

Ex
2Ey

2+

+Ey2Ez
2 + Ez

2Ex
2
)]

+ 2c2
[(

Ex
2Bx

2 + Ey2By2+

+Ez
2Bz

2
)

−
(

Ex
2By2 + Ey2Bz

2 + Ez
2Bx

2 + Bx
2Ey2+

+By2Ez
2 + Bz

2Ex
2
)

+ 4
(

ExEyBxBy + EyEzByBz+

+EzExBzBx

)]

+ c4
[ (

Bx
4 + By4 + Bz

4
)

+

+2
(

Bx
2By2 + By2Bz

2 + Bz
2Bx

2
) ]

.

(33)

Simplifying,

1
ǫ2em
σαβσαβ =

(

Ex
2 + Ey

2 + Ez
2
)2
+

+2c2
(

Ex
2 + Ey2 + Ez

2
) (

Bx
2 + By2 + Bz

2
)

−

−2c2
[

2
(

Ex
2By2 + Ey2Bz

2 + Ez
2Bx

2+

+Bx
2Ey2 + By2Ez

2 + Bz
2Ex

2
)

− 4
(

ExEyBxBy+

+EyEzByBz + EzExBzBx

)]

+ c4
(

Bx
2 + By2 + Bz

2
)2

(34)

which is further simplified to

1
ǫ2em
σαβσαβ =

(

E4 + 2c2E2B2 + c4B4
)

−

−4c2
[ (

EyBz − ByEz

)2
+ (EzBx − BzEx)2+

+
(

ExBy − BxEy
)2

]

.

(35)

Making use of the definition of the Poynting vector from
(15), we obtain

σαβσαβ = ǫ
2
em

(

E2 + c2B2
)2
−

−4ǫ2emc2
[

(E × B)x
2 + (E × B)y

2 + (E × B)z
2
]

(36)

and finally

σαβσαβ = ǫ
2
em

(

E2 + c2B2
)2
−

4
c2

(

S x
2 + S y

2 + S z
2
)

. (37)

Substituting in (25), the transverse term becomes

E⊥ =
1

4µ0

[

ǫ2em

(

E2 + c2B2
)2
−

4
c2

S 2

]

(38)

or

E⊥ =
1
µ0

[

Uem
2 −

1
c2

S 2

]

(39)

whereUem =
1
2 ǫem (E2 + c2B2) is the electromagnetic field

energy density.

4.3 Electromagnetic field strain energy density and the
photon

S is the electromagnetic energy flux along the direction of
propagation [6, see p. 62]. As noted by Feynman [8, see
pp. 27-1–2], local conservation of the electromagnetic field
energy can be written as

−
∂Uem

∂t
= ∇ · S, (40)

where the termE · j representing the work done on the matter
inside the volume is 0 in the absence of charges (due to the
absence of mass [3]). By analogy with the current density
four-vectorjν = (c̺, j), where̺ is the charge density, andj is
the current density vector, which obeys a similar conservation
relation, we define the Poynting four-vector

S ν = (cUem, S), (41)

whereUem is the electromagnetic field energy density, andS
is the Poynting vector. Furthermore, as per (40),S ν satisfies

∂νS
ν = 0. (42)

Using definition (41) in (39), that equation becomes

E⊥ =
1
µ0c2

S νS
ν. (43)

The indefiniteness of the location of the field energy referred
to by Feynman [8, see p. 27-6] is thus resolved: the elec-
tromagnetic field energy resides in the distortions (transverse
displacements) of the spacetime continuum.

Hence the invariant electromagnetic strain energy density
is given by

E =
1
µ0c2

S νS
ν (44)

where we have usedρ = 0 as per (23). This confirms thatS ν

as defined in (41) is a four-vector.
It is surprising that a longitudinal energy flow term is part

of the transverse strain energy density i.e.S 2/µ0c2 in (39).
We note that this term arises from the time-space components
of (16) and (17) and can be seen to correspond to the trans-
verse displacements along thetime-space planes which are
folded along the direction of propagation in 3-space as the
Poynting vector. The electromagnetic field energy density
termUem

2/µ0 and the electromagnetic field energy flux term
S 2/µ0c2 are thus combined into the transverse strain energy
density. The negative sign arises from the signature (+ - - -)
of the metric tensorηµν.
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This longitudinal electromagnetic energy flux is massless
as it is due to distortion, not dilatation, of the spacetime con-
tinuum. However, because this energy flux is along the direc-
tion of propagation (i.e. longitudinal), it gives rise to the parti-
cle aspect of the electromagnetic field, the photon. As shown
in [9, see pp. 174-5] [10, see p. 58], in the quantum theory of
electromagnetic radiation, an intensity operator derivedfrom
the Poynting vector has, as expectation value, photons in the
direction of propagation.

This implies that the (pc)2 term of the energy relation of
Special Relativity needs to be separated into transverse and
longitudinal massless terms as follows:

Ê2 = ρ2c4

︸︷︷︸

E‖

+ p̂2
‖c

2 + p̂2
⊥c2

︸         ︷︷         ︸

massless E⊥

(45)

wherep̂‖ is the massless longitudinal momentum density. E-
quation (39) shows that the electromagnetic field energy den-
sity termUem

2/µ0 is reduced by the electromagnetic field en-
ergy flux termS 2/µ0c2 in the transverse strain energy den-
sity, due to photons propagating in the longitudinal direction.
Thus the kinetic energy is carried by the distortion part of the
deformation, while the dilatation part carries only the rest-
mass energy, which in this case is 0.

As shown in (9), (10) and (11), the constant of propor-
tionality to transform energy density squared (Ê2) into strain
energy density (E) is 1/(32κ0):

E‖ =
1

32κ0

[

ρc2
]2

(46)

E =
1

32κ0
Ê2 (47)

E⊥ =
1

32κ0

[

p̂2
‖c

2 + p̂2
⊥c2

]

=
1

4µ0
tαβtαβ. (48)

Substituting (39) into (48), we obtain

E⊥ =
1

32κ0

[

p̂2
‖c

2 + p̂2
⊥c2

]

=
1
µ0

[

Uem
2 −

1
c2

S 2

]

(49)

and

p̂2
‖c

2 + p̂2
⊥c2 =

32κ0
µ0

[

Uem
2 −

1
c2

S 2

]

(50)

This suggests that

µ0 = 32κ0, (51)

to obtain the relation

p̂2
‖c

2 + p̂2
⊥c2 = Uem

2 −
1
c2

S 2. (52)

5 Discussion and conclusion

In this paper, we have analyzed the strain energy density of
the spacetime continuum inSTCED and evaluated it for the
electromagnetic stress tensor. We have found that the strain
energy density is separated into two terms: the first one ex-
presses the dilatation energy density (the “mass” longitudinal
term) while the second one expresses the distortion energy
density (the “massless” transverse term). We have found that
the quadratic structure of the energy relation of Special Rel-
ativity is present in the strain energy density of the Elasto-
dynamics of the Spacetime Continuum. We have also found
that the kinetic energypc is carried by the distortion part of
the deformation, while the dilatation part carries only therest
mass energy.

We have calculated the strain energy density of the elec-
tromagnetic energy-momentum stress tensor. We have found
that the dilatation longitudinal (mass) term of the strain en-
ergy density and hence the rest-mass energy density of the
photon is 0. We have found that the distortion transverse
(massless) term of the strain energy density is a combina-
tion of the electromagnetic field energy density termUem

2/µ0

and the electromagnetic field energy flux termS 2/µ0c2, cal-
culated from the Poynting vector. This longitudinal electro-
magnetic energy flux is massless as it is due to distortion,
not dilatation, of the spacetime continuum. However, be-
cause this energy flux is along the direction of propagation
(i.e. longitudinal), it gives rise to the particle aspect ofthe
electromagnetic field, the photon.
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4. Flügge W. Tensor Analysis and Continuum Mechanics. Springer-
Verlag, New York, 1972.

5. Lawden D.F. Tensor Calculus and Relativity. Methuen & Co,London,
1971.

6. Charap J.M. Covariant Electrodynamics, A Concise Guide.The John
Hopkins University Press, Baltimore, 2011.

7. Misner C.W., Thorne K.S., Wheeler J.A. Gravitation. W.H.Freeman
and Company, San Francisco, 1973.

8. Feynman R.P., Leighton R.B., Sands M. Lectures on Physics, Volume
II, Mainly Electromagnetism and Matter. Addison-Wesley Publishing
Company, Reading, Massachusetts, 1975.

9. Loudon R. The Quantum Theory of Light, Third Edition. Oxford Uni-
versity Press, Oxford, 2000.

10. Heitler W. The Quantum Theory of Radiation, Third Edition. Dover
Publications, Inc, New York, 1984.

86 Pierre A. Millette. Strain Energy Density in the Elastodynamics of the Spacetime Continuum and the Electromagnetic Field


