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The derivation of the Heisenberg Uncertainty Principle @jUrom the Uncertainty
Theorem of Fourier Transform theory demonstrates that tHe ldrises from the de-
pendency of momentum on wave number that exists at the quaettel. It also es-
tablishes that the HUP is purely a relationship between fieetive widths of Fourier
transform pairs of variables (i.e. conjugate variablesp Mite that the HUP is not a
quantum mechanical measurement principée se We introduce the Quantum Me-
chanical equivalent of the Nyquist-Shannon Sampling Témoof Fourier Transform
theory, and show that it is a better principle to describentieasurement limitations of
Quantum Mechanics. We show that Brillouin zones in SolideS®ysics are a manifes-
tation of the Nyquist-Shannon Sampling Theorem at the gquaté¢vel. By comparison
with other fields where Fourier Transform theory is used, wippse that we need to
discern between measurement limitations and inherentdtions when interpreting the
impact of the HUP on the nature of the quantum level. We furginepose that while
measurement limitations result in our perception of indeteism at the quantum level,
there is no evidence that there are any inherent limitatirise quantum level, based
on the Nyquist-Shannon Sampling Theorem.

1 Introduction wheref is the function of interest anfli is its Fourier trans-

The Heisenberg Uncertainty Principle is a cornerstone af qfo™- W(T) is the gfective width of functionf, defined by

ntum mechanics. As noted by Hughes [1, see pp. 265-266], fw If(W2[u - M()]2du
the interpretation of the Principle varies IW(f)]? = ==—
. o . [ 1f(u)Pdu
e from expressing a limitation on measurement as orig- oo
inally derived by Heisenberg [2] (Heisenberg’s micraandM(f) is the mean ordinate defined by
scope), . ,
¢ to being the variance of a measurement carried out on M(f) = LX, If(Wl“udu 3)
an ensemble of particles [3] [4], L‘X’ [f(u)l2du ’
¢ to being inherent to a microsystem [5], meaning essen- , ,
tially that there is an indeterminism to the natural world | Nere are several points that must be noted with respect

which is a basic characteristic of the quantum level, t© this derivation: _ _ _
Eq.(1) applies to a Fourier transform pair of variables.

Greenstein retains only the first and last alternativesédsé, Sl'aking the simple case of timteand frequency to illustrate

p.51]. the point: If we consider the functiohto be the function that

_ However, the Heisenberg Uncertainty Principle can be qgsripes a time function then the width of the function,
rived from considerations which clearly demonstate theg¢h W(f), can be denoted a&/(f) = At. The Fourier transform

interpretations of the principle are not required by itsimat ¢ 4,nctiont is the frequency function and the width of this

matical formulation. This derivation, based on the appiet® ¢, \tion can be denoted A4(®) = W(») = Av. Substituting
of Fourier methods, is given in various mathematical and A1), the Uncertainty Theorem then yields

gineering textbooks, for example [7, see p. 141].

(@)

i o ) , AtAv = 1/2. 4
2 Consistent derivation of the Heisenberg Uncertainty

Principle However, if one wishes to use the circular frequeacy

In the Fourier transform literature, the Heisenberg Ureiest 27 instéad, (4) becomes

ty Principle is derived from a general theorem of Fourier the AtAw > 7. (5)

ory called the Uncertainty Theorem [7]. This theorem states

that the &ective width of a function times thefective width It is thus necessary to take special care to clearly idetttdy

of its transform cannot be less than a minimum value givEourier transform variable used as it impacts the R.H.S. of

by the resulting Uncertainty relation (see for example [8] fhd
W(f)W(f) > 1/2 (1) pp.21-22)).
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Equations (4) and (5) above correspond to the followinvglue7i/2 is used instead of the valdg2 obtained in this

definitions of the Fourier transform respectively [8]: analysis. The application of (4) to circular variables.(us-
Equation (4): ing w in (4) instead of (5)) would result in the (incorrect)
. expression
f(t) = f f(v) exp(2rivt)dy (6) AtAw > 1/2 (14)
_o; and the more commonly encountered (incorrect) expression
fo)y= | f(t) exp2zivt)dt 7
) j:oo () exp-2rivy % AEAt > 1/2. (15)
Equation (5): : - I
However, Heisenberg’s original derivation [2] had the R.
1 e H.S. of (13) approximately equal tg and Greenstein’s re-
O = 27 j:w f(w) exp(wt)dw 8) derivation [6, see p.47] of Heisenberg's principle resirits

the valueh/2. Kennard's formal derivation [12] using stan-
{(w) _ fm f(t) exp(iwt)dt 9) dard deviations established the valuéif? used today. This
—oo would thus seem to be the reason for the use of the val2e
Sometimes the factor/2x is distributed between the twoln the formulation of the Heisenberg Uncertainty Principle
integrals (the Fourier and the Inverse Fourier Transform In Recently, Schurmann et al [13] have shown that in the
tegrals) as 1vV2x. In Physics, (8) and (9) are preferred, agase of a single slit @iraction experiment, the standard devi-
this eliminates the cumbersome factor afil the exponen- ation of the momentum typically does not exist. They derive
tial (see for example [10, p. 12]), but care must then be takég conditions under which the standard deviation of the mo-
to ensure the resulting factor of4x in (8) is propagated for- mentum is finite, and show that the R.H.S. of the resulting
ward in derivations using that definition. inequality satisfies (13). It thus seems that (13) is the more
Using the relatiorE = hy, whereh is Planck’s constant, general formulation of the Heisenberg Uncertainty Pritegip
in (4) above, or the relatioE = 7w, wheresi = h/2x, in  While the expression with the valug’2 derived using stan-
(5) above, one obtains the same statement of the Heisenl§@fg deviations is a more specific case.

Uncertainty Principle namely Whether one uses/2 orh/2 has little impact on the Hei-
senberg Uncertainty Principle as the R.H.S. is used to geovi
AEAt > h/2 (10) anorder of magnitude estimate of tHEeet considered. How-

. ever, the diference becomes evident when we apply our re-
in both cases. N . _ ~ sults to the Brillouin zone formulation of Solid State Phogsi
Similarly for the positionx, if we consider the function (a5 will be seen in Section 5) since this now impacts calcula-

f to be the function that describes the positionf a parti-  {jons resulting from models that can be compared with exper-
cle, then the width of the functioWy(f), can be denoted asjyental values.

W(f) = Ax. The Fourier transform of functioris the func-

tion X = /l_l a.nd the W|dth Of thIS fUnCtion can be denOted @ |nterpretati0n of the Hamnberg Uncertajnty Princi-
W(X) = W(1™1) = A(171) which we write asA~? for brevity. ple

You will note that we have not used the wavenumber function o . .
k, as this is usually defined &s= 27/ (see for example [11] This derivation demonstrates that the Heisenberg Unceytai

and references). Substituting in (1), we obtain the refatio Principle arises becaugseandp form a Fourier transform pair
of variables. It is a characteristic of Quantum Mechanies th

AXALL > 1/2. (11) conjugate variables are Fourier transform pairs of vaesbl

Thus the Heisenberg Uncertainty Principle arises becdgse t

In terms of the wavenumbér (11) becomes momentump of a quantum patrticle is proportional to the de
Broglie wave numbek of the particle. If momentum was

AXAK > . (12) not proportional to wave number, the Heisenberg Uncestaint

. ... Principle would not exist for those variables.
Given that the momentum of a quantum patrticle is given __ ; . .
by p = h/4 or by p = ik, both (11) and (12) can be express This argument elucidates why the Heisenberg Uncertainty
yp= yp=nk P elgrinciple exists. Can it shed light on the meaning of the
as . . L2 . .
Heisenberg Uncertainty Principle in relation to the basie n
ture of the quantum level? First, we note that the Uncenaint
Equations (10) and (13) are bothffdirent statements of thePrinciple, according to Fourier transform theory, relates
Heisenberg Uncertainty Principle. effective width of Fourier transform pairs of functions or vari
The R.H.S. of these equations idfdrent from the usual ables. It is not a measurement theorper se It does not
statement of the Heisenberg Uncertainty Principle whege thescribe what happens when Fourier transform variables are

AXAp > h/2. (13)
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measured, only that theiffective widths must satisfy the Un-where Yk is the constant of proportionality of (20) given by
certainty Principle.

Indeed, as pointed out by Omneés [14, see p.57], "it is K = 2_6 \/EzgagcRH 22)
quite legitimate to write down an eigenstate of energy at a 3V3

well-defined time”. Omnes ascribes this seeming violatibn ) o
the Heisenberg Uncertainty Principle to the fact that time'{"€T€Z is the nuclear charge of the hydrogenic iens the

not an observable obtained from an operator like momentJ€-Structure constant, ait is the hydrogen Rydberg con-
but rather a parameter. Greenstein [6, see p. 65] makesfg't- Eliminating the middle term, (21) becomes
same argument. However, timenultiplied by the speed of h. In(n)
light cis a component of the 4-vectgt and energy divided Emnz 5 k=5~ (23)
by c is a component of the energy-momentum 4-ve&ér
The time component of these 4-vectors should not be treafgablying L'Hopital’s rule, the R.H.S. of the above equatio
differently than the space component. The operator verisusf order
parameter argument is weak. _ _ RHS ~ O(i) asn — oo (24)

What Omnés’ example shows is that the impact of the ef- n°
fective widthsAt andAE of the Heisenberg Uncertainty Prinyhile the L.H.S. is of order [16, see p. 9]
ciple depends on the observation of the time functiamd
of the energy functiork that is performed. A time interval
At can be associated with the time functioduring which is
measured the energy eigenstate funciomhich itself has a
certain widthAE, with both widths Q) satisfying (10). This Given that (24) tends to zero faster than (25), (23) is satlsfi
example demonstrates that the Heisenberg Uncertainty PBAth 7, the lifetime of the atom in energy eigenstateand
ciple is not a measurement theorem as often used. RatH,transition energfmn for the transition between states
it is a relationship between thefective widths of Fourier andm satisfy the conditions for observation of the spectral
transform pairs of variables that can have an impact on i emission. Thus for the time intervat, given by (16),
observation of those variables. associated with the time functian for the transition energy

A more stringent scenario for the impact of the energfgnction Emn which itself has a certain widthE, given by
time Heisenberg Uncertainty Principle is one where the tirfik/), bothA’s satisfy (10) as expected, given the observation
and energy functions are small quantities. For example, @fespectral line emission.
consider the impact aft on the observation af;, the lifetime
of an atom in energy eigenstateand the impact oAE on
the transition energlnn, for a transition between statesind
m during spectral line emission. The conditions to be able Ad the quantum level, one must interact to some degree with a

1
L.H.S. ~ o(ﬁ) asn — oo (25)

4 Quantum measurements and the Nyquist-Shannon
Sampling Theorem

observer, andEq, are: quantum system to perform a measurement. When describing
the action of measurements of Fourier transform variables,
™ > At (16) one can consider two limiting measurement cases: 1) trunca-
E.n> AE. (17) tion of the variable time series as a result of a fully intérag

measurement or 2) sampling of the variable time series at in-
Using (10) in (16), tervals which we consider to be regular in this analysis, in
the case of minimally interacting measurements. As we will

n > At > h/(2AE). (18) see, the action of sampling allows for measurements that oth

Hence ferwise YVOU|d not be possible in the case of a single minimal
h1 interaction.

AE > 20 (19) It should be noted that the intermediate case of a partial

neasurement interaction resulting for example in a transfe
more constrained in the limit of large Using the following of energy or momentum to a particle can be considered as

hydrogenic asymptotic expression far from Millette et al the truncatllon of the original tlme series and the initiatio
[15] of a new time series after the interaction. The advantage

As statenincreases, the lifetims, decreases. Eq.(19) is thu

ns of decomposing measurement actions in this fashion is that
Tn ~ m (20) their impact on Fourier transform variables can be desdribe
_ by the Nyquist-Shannon Sampling Theorem of Fourier trans-
into (19), (17) becomes form theory. This theorem is a measurement theorem for
h. In(n) Fourier transform variables based on sampling and trumcati
Emn> AE 2 s k—- (21) operations.
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The Nyquist-Shannon Sampling Theorem is fundamentaheresp is the p-domain sampling rate and thevalues can
to the field of information theory, and is well known in diditabe measured up tgy (corresponding to the equality in the
signal processing and remote sensing [17]. In its most basguations above).
form, the theorem states that the rate of sampling of a signal Conversely, applying the theorem to the case where a par-
(or variable)fs must be greater than or equal to the Nyquistle's trajectory is sampled at a ratet, one can also write
sampling ratefs to avoid loss of information in the sampledrom (29), forX < %y, wherex'stands for either o™, k, or
signal, where the Nyquist sampling rate is equal to twice tha
of the highest frequency componeffitax, present in the sig- oxAt <172, forat <Ayt (34)
nal: or
fs > fs = 2fmax. (26) sxk<m, fork < k (35)
If the samplmg rate is Ies_s than that of (26), aliasing OSCUL 1ioh becomes
which results in a loss of information.
In general, natural signals are not infinite in duration and, oxp<h/2, forp<pn (36)
during measurement, sampling is also accompanied by trun-
cation of the signal. There is thus loss of information dgrirwheredx is the x-domain sampling rate arkl, is the wave
a typical measurement process. The Nyquist-Shannon Saomber range that can be measured. For the case where the
pling theorem elucidates the relationship between thege®cequality holds, we havky = 7/6x whereky is the Nyquist
of sampling and truncating a variable and ttikeet this ac- wave number, the maximum wave number that can be mea-
tion has on its Fourier transform [18, see p.83]. ffeet, it sured with asx sampling interval.
explains what happens to the information content of a vari- Sampling in one domain leads to truncation in the other.
able when its conjugate is measured. Sampling §x) and truncation Xy) in one domain leads to
Sampling a variable at a ratesx will result in the mea- truncation ky) and sampling dk) respectively in the other.
surement of its conjugate variabté&ing limited to its max- As x andk form a Fourier transform pair in quantum mechan-
imum Nyquist range valugy~as given by the Nyquist-Shan-cs, the Nyquist-Shannon Sampling theorem must also apply
non Sampling theorem: to this pair of conjugate variables. Similar relations can b
derived for theE andv pair of conjugate variables.

X < Xy (27)
5 Implications of the Nyquist-Shannon Sampling Theo-
where rem at the quantum level
= 1/(26%). (28) Equations (32) and (35) lead to the following measurement
Combining these two equations, we get the relation behaviors at the quantum level:
Lower-bound limit: If the position of a particle is mea-
Xox<1/2, forX< Xn. (29) sured over an intervady, its wave number cannot be resolved

with a resolution better than sampling réteas given by (32)
Conversely, truncating a variableat a maximum valuey  with x = xy. If the momentum of a particle is measured over
(x < xn) will result in its conjugate variablg Being sampled an intervalky, its position cannot be resolved with a resolu-
at a ratesX given by the Nyquist-Shannon Sampling theoretion better than sampling raé as given by (35) withk = ky.

0% = 1/(2xn) resulting in the relation Upper-bound limit:If the position of a particle is sampled
. at a ratesx, wave numbers up tky can be resolved, while
6Xx<1/2, forx<xn. (30) wave numbers larger tha cannot be resolved as given by

(35). If the momentum of a particle is sampled at a &e

The impact of the Nyquist-Shannon Sampling theoremi,gihs up toxy can be resolved, while lengths longer than
now considered for a particle’s positiocrand momentunp. xn cannot be resolved as given by (32).

Applying the theorem to the case where a particle’s rajgcto  The |ower-bound limit is similar to how the Heisenberg

is truncated toc, we can write from (30), fok < xu, Uncertainty Principle is usually expressed when it is used a

a measurement principle, although it is not strictly equiva

lent. The Nyquist-Shannon Sampling Theorem provides the

proper formulation and limitations of this type of measure-

ment.

The upper-bound limit suggests &fdrent type of quan-
which becomes tum measurement: regular sampling of a particle’s position
or momentum. In this case, one can obtain as accurate a mea-

xop<h/2, forx< xy (33) surement of the Fourier transform variable as desired, up to

X611 <1/2, forx< xy (31)

or
xok <m, forx< xy (32)
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the Nyquist-Shannon Sampling limit bf2 (i.e. in the inter- 6 Measurement limitationsand inherent limitations

val f h/2]). le of this oh in Solid S It is important to dfferentiate between the measurement lim-
n example o this p €nomenon occurs in Sofl ta1'tt_(§\ti0ns that arise from the properties of Fourier transfor
Physics where the translational symmetry of atomsin a s irs previously considered, and any inherent limitatibras

resulting from the regular lattice spacing, is equivalena may or may not exist for those same variables independently

effective sampling of the atoms of the solid and gives rise 8P the measurement process. Quantum theory currently as-
the Brillouin zone forwhich the v_alid valugs bare governe_d sumes that the inherent limitations are the same as the mea-
by (35). Settingx = a, the_latt|ce spacing, and_EXtend'ngurement limitations. This assumption needs to be re-exami
by symmetry thd(_ values to include the symmetric negativiey pased on the improved understanding obtained from the
values, one obtains [19, see p. 34], [20, see p.100], [10, gfibct of the Uncertainty and Sampling Theorems in other ap-
p.21]: plications.

-n/a<k<n/a (37) The properties of Fourier transform pairs considered in
the previous sections do not mean that the underlying quanti
ties we are measuring are inherently limited by our measure-

(38) ment limitations. On the contrary, we know from experience

This is called the reduced zone scheme ayualis called the N Other applications that our measurement limitations oo n

Brillouin zone boundary [21, see p. 307]. The Brillouin zend€Presentan inherent limitation on the measured quasiitie

of Solid State Physics are thus a manifestation of the Nyquisourier Transform theory: for example, in Digital SignabPr

Shannon Sampling theorem at the quantum level. cessing, a signal is c_ontlnuous even th_ough our measqrement
In essence, this is a theory of measurement for variab?ésthe s_|gnal “?S“'ts In d|screte_and aliased values_ of dichit

that are Fourier transform pairs. The resolution of our mer§§OIUt'on subject to the Nyquist-Shannon Sampling Theo-

surements is governed by limitations that arise from the Ny (anqlog and dig_ital repres_entation of the signal). The e
quist-Shannon Sampling theorem. Equations (32) and ( tive width of the signal and its transform are relatedhsy t

are recognized as measurement relationships for quantuficertainty theorem. Even though the time and frequency

mechanical conjugate variables. Currently, Quantum Mecffyolution O.f a 3|gnal that We measure 1S limited by our mea-
nics only considers the Uncertainty Theorem but not the Sa?H_rement limitations, f[he tlme_domam and frequency domain
pling Theorem. The two theorems are applicable to Quantﬁmnals are both continuous, independently of how we mea-
Mechanics and haveftiérent interpretations: the Uncertaint?ure them. o

Theorem defines a relationship between the widths of conju- 1 N€ measurement limitations apply equally to the macro-
gate variables, while the Sampling Theorem establishes s&fPPIC level and to the quantum level as they are derived from

pling and truncation measurement relationships forccrrt}mgthe properties of Fourier transform pairs of variables \Wwhic
variables. are the same at all scales. However, at the quantum level, con

The valuesx is a sampled measurement and as a resit’y to our macro_s_copic environmentt we cannot percewe th
can resolve values qf up to its Nyquist valugy given by underlying quantities other than by instrumented measure-

the Nyquist-Shannon Sampling theorem, (36). This is a sP?—entS' I_—|e_nce during a measurement process, the quantum
prising result as the momentum can be resolved up to figel IS limited by our measurement I!mqatlons. Howeyer,
Nyquist value, in apparent contradiction to the Heisenbe‘?fgsr_m_”“g_that th?ﬂe measé)ure_mehntllmltatllons r?phresermnh
Uncertainty Principle. Yet this result is known to be cotre t "_“”'ta“ons and form a basic ¢ ar_a_cterlsnc of the quamt

as demonstrated by the Brillouin zones formulation of Sol 8"6' IS an assu_mptlon thatis nOtJUSt'fle.d based on the prec_e
State Physics. Physically this result can be understood 9 considerations. Indeed, the Nyquist-Shannon Sampling

the sampling measurement operation which builds up the rﬂ'g_eorem of F_ourler Transform thgory shows that the rahge of
mentum information during the sampling process, up to 4 lues of variables below the Heisenberg Uncertainty Rrinc

Nyquist limit py. It must be remembered that the Nyquisﬂe value ofh/2 is accessible under sampling measurement
limit depends on the sampling rasix as per the Nyquist- conditions, as demonstrated by the Brillouin zones formula

Shannon Sampling theorem, (36). The Nyquist value mdgn of Solid State Physics.
also satisfy (26) to avoid loss of information in the samglin
process, due to aliasing.

This improved understanding of the Heisenberg Uncer-
tainty Principle and its sampling counterpart allows udao-c Brillouin zone analysis in Solid State Physics demonssrate
ify its interpretation. This is based on our understandifig that one can arbitrarily measukefrom 0 up to its Nyquist
the behavior of the Uncertainty Theorem and the Nyquiditnit, as long as the variable is sampled at a constant rate
Shannon Sampling Theorem in other applications such as,(father than performing a singbemeasurement). The Ny-
example, Digital Signal Processing. quist-Shannon Sampling Theorem can thus be considered to

or alternatively
k<|rn/al.

7 Overlap of the Heisenberg Uncertainty Principle and
the Nyquist-Shannon Sampling Theorem
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cover the range that the Heisenberg Uncertainty Principle ég new experimental conditions beyond the Brillouin zone
cludes. example from Solid State Physics considered in this paper,
However, one should recognize that the coverage res@allowing a unique vista into a range of variable values previ
from two disparate theorems, and one should be careful aosly considered unreachable due to the Heisenberg Uncer-
to try to tie the two Theorems at their value of overlagThe tainty Principle. Regular sampling of position allows us to
reason is that one expression involves the widths of comgugdetermine momentum below its Nyquist limit, and similarly
variables as determined by (1) to (3), while the other ingslvthe regular sampling of momentum will allow us to determine
sampling a variable and truncating its conjugate, or vigsare position below its Nyquist limit.
as determined by (32) and (35). The equations are not contin- Submitted on February 21, 2012ccepted on March 04, 2013
uous at the point of overlagp. Indeed, any relation obtained
would apply only at the overlap and would have no appli-
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