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The derivation of the Heisenberg Uncertainty Principle (HUP) from the Uncertainty
Theorem of Fourier Transform theory demonstrates that the HUP arises from the de-
pendency of momentum on wave number that exists at the quantum level. It also es-
tablishes that the HUP is purely a relationship between the effective widths of Fourier
transform pairs of variables (i.e. conjugate variables). We note that the HUP is not a
quantum mechanical measurement principleper se. We introduce the Quantum Me-
chanical equivalent of the Nyquist-Shannon Sampling Theorem of Fourier Transform
theory, and show that it is a better principle to describe themeasurement limitations of
Quantum Mechanics. We show that Brillouin zones in Solid State Physics are a manifes-
tation of the Nyquist-Shannon Sampling Theorem at the quantum level. By comparison
with other fields where Fourier Transform theory is used, we propose that we need to
discern between measurement limitations and inherent limitations when interpreting the
impact of the HUP on the nature of the quantum level. We further propose that while
measurement limitations result in our perception of indeterminism at the quantum level,
there is no evidence that there are any inherent limitationsat the quantum level, based
on the Nyquist-Shannon Sampling Theorem.

1 Introduction

The Heisenberg Uncertainty Principle is a cornerstone of qua-
ntum mechanics. As noted by Hughes [1, see pp. 265–266],
the interpretation of the Principle varies

• from expressing a limitation on measurement as orig-
inally derived by Heisenberg [2] (Heisenberg’s micro-
scope),

• to being the variance of a measurement carried out on
an ensemble of particles [3] [4],

• to being inherent to a microsystem [5], meaning essen-
tially that there is an indeterminism to the natural world
which is a basic characteristic of the quantum level.

Greenstein retains only the first and last alternatives [6, see
p. 51].

However, the Heisenberg Uncertainty Principle can be de-
rived from considerations which clearly demonstate that these
interpretations of the principle are not required by its mathe-
matical formulation. This derivation, based on the application
of Fourier methods, is given in various mathematical and en-
gineering textbooks, for example [7, see p. 141].

2 Consistent derivation of the Heisenberg Uncertainty
Principle

In the Fourier transform literature, the Heisenberg Uncertain-
ty Principle is derived from a general theorem of Fourier the-
ory called the Uncertainty Theorem [7]. This theorem states
that the effective width of a function times the effective width
of its transform cannot be less than a minimum value given
by

W( f ) W( f̃ ) > 1/2 (1)

where f is the function of interest and̃f is its Fourier trans-
form. W( f ) is the effective width of functionf , defined by

|W( f )|2 =

∫ ∞
−∞ | f (u)|2[u− M( f )]2du

∫ ∞
−∞ | f (u)|2du

(2)

andM( f ) is the mean ordinate defined by

M( f ) =

∫ ∞
−∞ | f (u)|2udu
∫ ∞
−∞ | f (u)|2du

. (3)

There are several points that must be noted with respect
to this derivation:

Eq.(1) applies to a Fourier transform pair of variables.
Taking the simple case of timet and frequencyν to illustrate
the point: If we consider the functionf to be the function that
describes a time functiont, then the width of the function,
W( f ), can be denoted asW( f ) = ∆t. The Fourier transform
of functiont is the frequency functionν and the width of this
function can be denoted asW(t̃) = W(ν) = ∆ν. Substituting
in (1), the Uncertainty Theorem then yields

∆t∆ν > 1/2. (4)

However, if one wishes to use the circular frequencyω =
2πν instead, (4) becomes

∆t∆ω > π. (5)

It is thus necessary to take special care to clearly identifythe
Fourier transform variable used as it impacts the R.H.S. of
the resulting Uncertainty relation (see for example [8] and[9,
pp. 21–22]).
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Equations (4) and (5) above correspond to the following
definitions of the Fourier transform respectively [8]:

Equation (4):

f (t) =
∫ ∞

−∞
f̃ (ν) exp(2πiνt)dν (6)

f̃ (ν) =
∫ ∞

−∞
f (t) exp(−2πiνt)dt (7)

Equation (5):

f (t) =
1
2π

∫ ∞

−∞
f̃ (ω) exp(iωt)dω (8)

f̃ (ω) =
∫ ∞

−∞
f (t) exp(−iωt)dt (9)

Sometimes the factor 1/2π is distributed between the two
integrals (the Fourier and the Inverse Fourier Transform In-
tegrals) as 1/

√
2π. In Physics, (8) and (9) are preferred, as

this eliminates the cumbersome factor of 2π in the exponen-
tial (see for example [10, p. 12]), but care must then be taken
to ensure the resulting factor of 1/2π in (8) is propagated for-
ward in derivations using that definition.

Using the relationE = hν, whereh is Planck’s constant,
in (4) above, or the relationE = ~ω, where~ = h/2π, in
(5) above, one obtains the same statement of the Heisenberg
Uncertainty Principle namely

∆E∆t > h/2 (10)

in both cases.
Similarly for the positionx, if we consider the function

f to be the function that describes the positionx of a parti-
cle, then the width of the function,W( f ), can be denoted as
W( f ) = ∆x. The Fourier transform of functionx is the func-
tion x̃ = λ−1 and the width of this function can be denoted as
W(x̃) =W(λ−1) = ∆(λ−1) which we write as∆λ−1 for brevity.
You will note that we have not used the wavenumber function
k, as this is usually defined ask = 2π/λ (see for example [11]
and references). Substituting in (1), we obtain the relation

∆x∆λ−1
> 1/2. (11)

In terms of the wavenumberk, (11) becomes

∆x∆k > π. (12)

Given that the momentum of a quantum particle is given
by p = h/λ or by p = ~k, both (11) and (12) can be expressed
as

∆x∆p > h/2. (13)

Equations (10) and (13) are both different statements of the
Heisenberg Uncertainty Principle.

The R.H.S. of these equations is different from the usual
statement of the Heisenberg Uncertainty Principle where the

value~/2 is used instead of the valueh/2 obtained in this
analysis. The application of (4) to circular variables (i.e. us-
ing ω in (4) instead of (5)) would result in the (incorrect)
expression

∆t∆ω > 1/2 (14)

and the more commonly encountered (incorrect) expression

∆E∆t > ~/2. (15)

However, Heisenberg’s original derivation [2] had the R.
H.S. of (13) approximately equal toh, and Greenstein’s re-
derivation [6, see p. 47] of Heisenberg’s principle resultsin
the valueh/2. Kennard’s formal derivation [12] using stan-
dard deviations established the value of~/2 used today. This
would thus seem to be the reason for the use of the value~/2
in the formulation of the Heisenberg Uncertainty Principle.

Recently, Schürmann et al [13] have shown that in the
case of a single slit diffraction experiment, the standard devi-
ation of the momentum typically does not exist. They derive
the conditions under which the standard deviation of the mo-
mentum is finite, and show that the R.H.S. of the resulting
inequality satisfies (13). It thus seems that (13) is the more
general formulation of the Heisenberg Uncertainty Principle,
while the expression with the value~/2 derived using stan-
dard deviations is a more specific case.

Whether one uses~/2 orh/2 has little impact on the Hei-
senberg Uncertainty Principle as the R.H.S. is used to provide
an order of magnitude estimate of the effect considered. How-
ever, the difference becomes evident when we apply our re-
sults to the Brillouin zone formulation of Solid State Physics
(as will be seen in Section 5) since this now impacts calcula-
tions resulting from models that can be compared with exper-
imental values.

3 Interpretation of the Heisenberg Uncertainty Princi-
ple

This derivation demonstrates that the Heisenberg Uncertainty
Principle arises becausex andp form a Fourier transform pair
of variables. It is a characteristic of Quantum Mechanics that
conjugate variables are Fourier transform pairs of variables.
Thus the Heisenberg Uncertainty Principle arises because the
momentump of a quantum particle is proportional to the de
Broglie wave numberk of the particle. If momentum was
not proportional to wave number, the Heisenberg Uncertainty
Principle would not exist for those variables.

This argument elucidates why the Heisenberg Uncertainty
Principle exists. Can it shed light on the meaning of the
Heisenberg Uncertainty Principle in relation to the basic na-
ture of the quantum level? First, we note that the Uncertainty
Principle, according to Fourier transform theory, relatesthe
effective width of Fourier transform pairs of functions or vari-
ables. It is not a measurement theoremper se. It does not
describe what happens when Fourier transform variables are
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measured, only that their effective widths must satisfy the Un-
certainty Principle.

Indeed, as pointed out by Omnès [14, see p. 57], ”it is
quite legitimate to write down an eigenstate of energy at a
well-defined time”. Omnès ascribes this seeming violationof
the Heisenberg Uncertainty Principle to the fact that time is
not an observable obtained from an operator like momentum,
but rather a parameter. Greenstein [6, see p. 65] makes the
same argument. However, timet multiplied by the speed of
light c is a component of the 4-vectorxµ and energyE divided
by c is a component of the energy-momentum 4-vectorPµ.
The time component of these 4-vectors should not be treated
differently than the space component. The operator versus
parameter argument is weak.

What Omnès’ example shows is that the impact of the ef-
fective widths∆t and∆E of the Heisenberg Uncertainty Prin-
ciple depends on the observation of the time functiont and
of the energy functionE that is performed. A time interval
∆t can be associated with the time functiont during which is
measured the energy eigenstate functionE which itself has a
certain width∆E, with both widths (∆) satisfying (10). This
example demonstrates that the Heisenberg Uncertainty Prin-
ciple is not a measurement theorem as often used. Rather,
it is a relationship between the effective widths of Fourier
transform pairs of variables that can have an impact on the
observation of those variables.

A more stringent scenario for the impact of the energy-
time Heisenberg Uncertainty Principle is one where the time
and energy functions are small quantities. For example, we
consider the impact of∆t on the observation ofτn, the lifetime
of an atom in energy eigenstaten, and the impact of∆E on
the transition energyEmn, for a transition between statesn and
m during spectral line emission. The conditions to be able to
observeτn andEmn are:

τn > ∆t (16)

Emn > ∆E. (17)

Using (10) in (16),

τn > ∆t > h/(2∆E). (18)

Hence

∆E >
h
2

1
τn
. (19)

As staten increases, the lifetimeτn decreases. Eq.(19) is thus
more constrained in the limit of largen. Using the following
hydrogenic asymptotic expression forτn from Millette et al
[15]

τn ∼
n5

ln(n)
(20)

into (19), (17) becomes

Emn > ∆E &
h
2

k
ln(n)
n5

(21)

where 1/k is the constant of proportionality of (20) given by

k =
26

3

√

π

3
Z2α3cRH (22)

whereZ is the nuclear charge of the hydrogenic ion,α is the
fine-structure constant, andRH is the hydrogen Rydberg con-
stant. Eliminating the middle term, (21) becomes

Emn &
h
2

k
ln(n)
n5
. (23)

Applying L’Hôpital’s rule, the R.H.S. of the above equation
is of order

R.H.S. ∼ O

(

1
n5

)

asn→ ∞ (24)

while the L.H.S. is of order [16, see p. 9]

L.H.S. ∼ O

(

1
n2

)

asn→ ∞. (25)

Given that (24) tends to zero faster than (25), (23) is satisfied.
Both τn, the lifetime of the atom in energy eigenstaten, and
the transition energyEmn for the transition between statesn
andm satisfy the conditions for observation of the spectral
line emission. Thus for the time interval∆t, given by (16),
associated with the time functionτn for the transition energy
function Emn which itself has a certain width∆E, given by
(17), both∆’s satisfy (10) as expected, given the observation
of spectral line emission.

4 Quantum measurements and the Nyquist-Shannon
Sampling Theorem

At the quantum level, one must interact to some degree with a
quantum system to perform a measurement. When describing
the action of measurements of Fourier transform variables,
one can consider two limiting measurement cases: 1) trunca-
tion of the variable time series as a result of a fully interacting
measurement or 2) sampling of the variable time series at in-
tervals which we consider to be regular in this analysis, in
the case of minimally interacting measurements. As we will
see, the action of sampling allows for measurements that oth-
erwise would not be possible in the case of a single minimal
interaction.

It should be noted that the intermediate case of a partial
measurement interaction resulting for example in a transfer
of energy or momentum to a particle can be considered as
the truncation of the original time series and the initiation
of a new time series after the interaction. The advantage
of decomposing measurement actions in this fashion is that
their impact on Fourier transform variables can be described
by the Nyquist-Shannon Sampling Theorem of Fourier trans-
form theory. This theorem is a measurement theorem for
Fourier transform variables based on sampling and truncation
operations.
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The Nyquist-Shannon Sampling Theorem is fundamental
to the field of information theory, and is well known in digital
signal processing and remote sensing [17]. In its most basic
form, the theorem states that the rate of sampling of a signal
(or variable) fs must be greater than or equal to the Nyquist
sampling ratefS to avoid loss of information in the sampled
signal, where the Nyquist sampling rate is equal to twice that
of the highest frequency component,fmax, present in the sig-
nal:

fs > fS = 2 fmax. (26)

If the sampling rate is less than that of (26), aliasing occurs,
which results in a loss of information.

In general, natural signals are not infinite in duration and,
during measurement, sampling is also accompanied by trun-
cation of the signal. There is thus loss of information during
a typical measurement process. The Nyquist-Shannon Sam-
pling theorem elucidates the relationship between the process
of sampling and truncating a variable and the effect this ac-
tion has on its Fourier transform [18, see p. 83]. In effect, it
explains what happens to the information content of a vari-
able when its conjugate is measured.

Sampling a variablex at a rateδx will result in the mea-
surement of its conjugate variable ˜x being limited to its max-
imum Nyquist range value ˜xN as given by the Nyquist-Shan-
non Sampling theorem:

x̃ 6 x̃N (27)

where
x̃N = 1/(2δx). (28)

Combining these two equations, we get the relation

x̃δx 6 1/2, for x̃ 6 x̃N. (29)

Conversely, truncating a variablex at a maximum valuexN

(x 6 xN) will result in its conjugate variable ˜x being sampled
at a rateδx̃ given by the Nyquist-Shannon Sampling theorem
δx̃ = 1/(2xN) resulting in the relation

δx̃ x6 1/2, for x 6 xN. (30)

The impact of the Nyquist-Shannon Sampling theorem is
now considered for a particle’s positionx and momentump.
Applying the theorem to the case where a particle’s trajectory
is truncated toxN, we can write from (30), forx 6 xN,

xδλ−1
6 1/2, for x 6 xN (31)

or
xδk 6 π, for x 6 xN (32)

which becomes

xδp 6 h/2, for x 6 xN (33)

whereδp is thep-domain sampling rate and thex values can
be measured up toxN (corresponding to the equality in the
equations above).

Conversely, applying the theorem to the case where a par-
ticle’s trajectory is sampled at a rateδx, one can also write
from (29), for x̃ 6 x̃N, wherex̃ stands for either ofλ−1, k, or
p,

δxλ−1
6 1/2, forλ−1

6 λ−1
N (34)

or
δx k6 π, for k 6 kN (35)

which becomes

δx p6 h/2, for p 6 pN (36)

whereδx is the x-domain sampling rate andkN is the wave
number range that can be measured. For the case where the
equality holds, we havekN = π/δx wherekN is the Nyquist
wave number, the maximum wave number that can be mea-
sured with aδx sampling interval.

Sampling in one domain leads to truncation in the other.
Sampling (δx) and truncation (xN) in one domain leads to
truncation (kN) and sampling (δk) respectively in the other.
As x andk form a Fourier transform pair in quantum mechan-
ics, the Nyquist-Shannon Sampling theorem must also apply
to this pair of conjugate variables. Similar relations can be
derived for theE andν pair of conjugate variables.

5 Implications of the Nyquist-Shannon Sampling Theo-
rem at the quantum level

Equations (32) and (35) lead to the following measurement
behaviors at the quantum level:

Lower-bound limit: If the position of a particle is mea-
sured over an intervalxN, its wave number cannot be resolved
with a resolution better than sampling rateδk as given by (32)
with x = xN. If the momentum of a particle is measured over
an intervalkN, its position cannot be resolved with a resolu-
tion better than sampling rateδx as given by (35) withk = kN.

Upper-bound limit:If the position of a particle is sampled
at a rateδx, wave numbers up tokN can be resolved, while
wave numbers larger thankN cannot be resolved as given by
(35). If the momentum of a particle is sampled at a rateδk,
lengths up toxN can be resolved, while lengths longer than
xN cannot be resolved as given by (32).

The lower-bound limit is similar to how the Heisenberg
Uncertainty Principle is usually expressed when it is used as
a measurement principle, although it is not strictly equiva-
lent. The Nyquist-Shannon Sampling Theorem provides the
proper formulation and limitations of this type of measure-
ment.

The upper-bound limit suggests a different type of quan-
tum measurement: regular sampling of a particle’s position
or momentum. In this case, one can obtain as accurate a mea-
surement of the Fourier transform variable as desired, up to
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the Nyquist-Shannon Sampling limit ofh/2 (i.e. in the inter-
val [0, h/2]).

An example of this phenomenon occurs in Solid State
Physics where the translational symmetry of atoms in a solid
resulting from the regular lattice spacing, is equivalent to an
effective sampling of the atoms of the solid and gives rise to
the Brillouin zone for which the valid values ofk are governed
by (35). Settingδx = a, the lattice spacing, and extending
by symmetry thek values to include the symmetric negative
values, one obtains [19, see p. 34], [20, see p. 100], [10, see
p. 21]:

−π/a 6 k 6 π/a (37)

or alternatively

k 6 |π/a|. (38)

This is called the reduced zone scheme andπ/a is called the
Brillouin zone boundary [21, see p. 307]. The Brillouin zones
of Solid State Physics are thus a manifestation of the Nyquist-
Shannon Sampling theorem at the quantum level.

In essence, this is a theory of measurement for variables
that are Fourier transform pairs. The resolution of our mea-
surements is governed by limitations that arise from the Ny-
quist-Shannon Sampling theorem. Equations (32) and (35)
are recognized as measurement relationships for quantum-
mechanical conjugate variables. Currently, Quantum Mecha-
nics only considers the Uncertainty Theorem but not the Sam-
pling Theorem. The two theorems are applicable to Quantum
Mechanics and have different interpretations: the Uncertainty
Theorem defines a relationship between the widths of conju-
gate variables, while the Sampling Theorem establishes sam-
pling and truncation measurement relationships for conjugate
variables.

The valueδx is a sampled measurement and as a result
can resolve values ofp up to its Nyquist valuepN given by
the Nyquist-Shannon Sampling theorem, (36). This is a sur-
prising result as the momentum can be resolved up to its
Nyquist value, in apparent contradiction to the Heisenberg
Uncertainty Principle. Yet this result is known to be correct
as demonstrated by the Brillouin zones formulation of Solid
State Physics. Physically this result can be understood from
the sampling measurement operation which builds up the mo-
mentum information during the sampling process, up to the
Nyquist limit pN. It must be remembered that the Nyquist
limit depends on the sampling rateδx as per the Nyquist-
Shannon Sampling theorem, (36). The Nyquist value must
also satisfy (26) to avoid loss of information in the sampling
process, due to aliasing.

This improved understanding of the Heisenberg Uncer-
tainty Principle and its sampling counterpart allows us to clar-
ify its interpretation. This is based on our understanding of
the behavior of the Uncertainty Theorem and the Nyquist-
Shannon Sampling Theorem in other applications such as, for
example, Digital Signal Processing.

6 Measurement limitations and inherent limitations

It is important to differentiate between the measurement lim-
itations that arise from the properties of Fourier transform
pairs previously considered, and any inherent limitationsthat
may or may not exist for those same variables independently
of the measurement process. Quantum theory currently as-
sumes that the inherent limitations are the same as the mea-
surement limitations. This assumption needs to be re-exami-
ned based on the improved understanding obtained from the
effect of the Uncertainty and Sampling Theorems in other ap-
plications.

The properties of Fourier transform pairs considered in
the previous sections do not mean that the underlying quanti-
ties we are measuring are inherently limited by our measure-
ment limitations. On the contrary, we know from experience
in other applications that our measurement limitations do not
represent an inherent limitation on the measured quantities in
Fourier Transform theory: for example, in Digital Signal Pro-
cessing, a signal is continuous even though our measurement
of the signal results in discrete and aliased values of limited
resolution subject to the Nyquist-Shannon Sampling Theo-
rem (analog and digital representation of the signal). The ef-
fective width of the signal and its transform are related by the
Uncertainty theorem. Even though the time and frequency
evolution of a signal that we measure is limited by our mea-
surement limitations, the time domain and frequency domain
signals are both continuous, independently of how we mea-
sure them.

The measurement limitations apply equally to the macro-
scopic level and to the quantum level as they are derived from
the properties of Fourier transform pairs of variables which
are the same at all scales. However, at the quantum level, con-
trary to our macroscopic environment, we cannot perceive the
underlying quantities other than by instrumented measure-
ments. Hence during a measurement process, the quantum
level is limited by our measurement limitations. However,
assuming that these measurement limitations represent inher-
ent limitations and form a basic characteristic of the quantum
level is an assumption that is not justified based on the preced-
ing considerations. Indeed, the Nyquist-Shannon Sampling
Theorem of Fourier Transform theory shows that the range of
values of variables below the Heisenberg Uncertainty Princi-
ple value ofh/2 is accessible under sampling measurement
conditions, as demonstrated by the Brillouin zones formula-
tion of Solid State Physics.

7 Overlap of the Heisenberg Uncertainty Principle and
the Nyquist-Shannon Sampling Theorem

Brillouin zone analysis in Solid State Physics demonstrates
that one can arbitrarily measurek from 0 up to its Nyquist
limit, as long as the variablex is sampled at a constant rate
(rather than performing a singlex measurement). The Ny-
quist-Shannon Sampling Theorem can thus be considered to
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cover the range that the Heisenberg Uncertainty Principle ex-
cludes.

However, one should recognize that the coverage results
from two disparate theorems, and one should be careful not
to try to tie the two Theorems at their value of overlapπ. The
reason is that one expression involves the widths of conjugate
variables as determined by (1) to (3), while the other involves
sampling a variable and truncating its conjugate, or vice versa
as determined by (32) and (35). The equations are not contin-
uous at the point of overlapπ. Indeed, any relation obtained
would apply only at the overlapπ and would have no appli-
cability or physical validity on either side of the overlap.

8 Discussion and conclusion

In this paper, we have shown that a consistent application of
Fourier Transform theory to the derivation of the Heisenberg
Uncertainty Principle requires that the R.H.S. of the Heisen-
berg inequality beh/2, not ~/2. This is confirmed when
extending the analysis to the Brillouin zones formulation of
Solid State Physics.

We have noted that the Heisenberg Uncertainty Principle,
obtained from the Uncertainty Theorem of Fourier Transform
theory, arises because of the dependency of momentum on
wave number that exists at the quantum level. Quantum me-
chanical conjugate variables are Fourier Transform pairs of
variables.

We have shown from Fourier Transform theory that the
Nyquist-Shannon Sampling Theorem affects the nature of-
measurements of quantum mechanical conjugate variables.
We have shown that Brillouin zones in Solid State Physics
are a manifestation of the Nyquist-Shannon Sampling Theo-
rem at the quantum level.

We have noted that both the Sampling Theorem and the
Uncertainty Theorem are required to fully describe quantum
mechanical conjugate variables. The Nyquist-Shannon Sam-
pling Theorem complements the Heisenberg Uncertainty Pri-
nciple. The overlap of these Theorems at theh/2 equality
value is a mathematical artifact and has no physical signifi-
cance.

We have noted that the Uncertainty Theorem and the Ny-
quist-Shannon Sampling Theorem apply to Fourier Transf-
orm pairs of variables independently of the level at which
the theorems are applied (macroscopic or microscopic). Con-
jugate variable measurement limitations due to these Theo-
rems affect how we perceive quantum level events as these
can only be perceived by instrumented measurements at that
level. However, based on our analysis, quantum measurement
limitations affect our perception of the quantum environment
only, and are not inherent limitations of the quantum level,
as demonstrated by the Brillouin zones formulation of Solid
State Physics.

The application of the Nyquist-Shannon Sampling Theo-
rem to the quantum level offers the possibility of investigat-

ing new experimental conditions beyond the Brillouin zone
example from Solid State Physics considered in this paper,
allowing a unique vista into a range of variable values previ-
ously considered unreachable due to the Heisenberg Uncer-
tainty Principle. Regular sampling of position allows us to
determine momentum below its Nyquist limit, and similarly
the regular sampling of momentum will allow us to determine
position below its Nyquist limit.
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