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Geometrical Derivation of the Lepton PMNS Matrix Values
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The linear superposition of generators of the 3 discrete binary rotational subgroups
[332], [432], [532] of the Standard Model determine the PMNS matrix elements. The 6
leptons are 3-D entities representing these 3 groups, one group for each lepton family.

1 Introduction

Numerous attempts to derive the neutrino PMNS matrix from
various discrete group horizontal symmetries have led to par-
tial success. Herein I determine the true source of the PMNS
matrix elements by using the linear superposition of the gen-
erators for 3 discrete binary rotational subgroups of the Stan-
dard Model (SM) electroweak gauge group SU(2)L x U(1)Y .

In a series of articles [1–4] I have proposed 3 discrete bi-
nary rotational subgroups of the SM gauge group for 3 lepton
families in R3 and the related 4 discrete binary rotational sub-
groups in R4 for 4 quark families, one binary group for each
family. The generators for these 7 binary groups are quater-
nions operating in R3, in R4, and in C2. I use these binary
group quaternion generators to calculate the matrix elements
for the PMNS mixing matrix for the leptons.

In another article under preparation I use the same ap-
proach, with an important modification, to calculate the stan-
dard CKM mixing matrix for the quarks as well as a proposed
CKM4 mixing matrix for four quark families.

The SM local gauge group SU(2)L x U(1)Y x SU(3)C de-
fines an electroweak(EW) interaction part and a color inter-
action part. The EW isospin states define the flavor of the
fundamental lepton and quark states. However, experiments
have determined that these left-handed flavor states are linear
superpositions of mass eigenstates.

For the 3 lepton families, one has the neutrino flavor states
νe, νµ, ντ and the mass states ν1, ν2, ν3 related by the PMNS
matrix Ui j 

νe

νµ

ντ

 =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3



ν1

ν2

ν3


From experiments [5], the PMNS angles have been estimated
to be

θ12 = 32.6◦ − 34.8◦, θ13 = 8.5◦ − 9.4◦,

θ23 = 37.2◦ − 39.8◦, δ = (0.77 − 1.36)π.

Consequently, for the normal hierarchy of neutrino masses,
one has the empirically determined PMNS matrix

0.822 0.547 −0.150 + 0.038i

−0.356 + 0.0198i 0.704 + 0.0131i 0.614
0.442 + 0.0248i −0.452 + 0.0166i 0.774



which can be compared to my resultant derived PMNS matrix
in the standard parametrization

0.817 0.557 −0.149e−iδ

−0.413 − 0.084eiδ 0.605 − 0.057eiδ −0.673
−0.383 + 0.090eiδ 0.562 + 0.061eiδ 0.725


In the SM the EW isospin symmetry group that defines

the lepton and quark flavor states is assumed to be the Lie
group SU(2) with its two flavor eigenstates per family. In
this context there is no fundamental reason for Nature to have
more than one fermion family, and certainly no reason for
having 3 lepton families and at least 3 quark families. As far
as I know, this normal interpretation of the SM provides no
answer that dictates the actual number of families, although
the upper limit of 3 lepton families with low mass neutrinos
is well established via Z0 decays and via analysis of the CMB
background. There are claims also that one cannot have more
than 15 fundamental fermions (plus 15 antifermions) without
violating certain cosmological constraints.

My geometrical approach makes a different choice, for I
utilize discrete binary rotational subgroups of SU(2) instead,
a different subgroup for each family. Each discrete binary
group has two eigenstates and three group generators, just like
SU(2). Whereas the three generators for the SU(2) Lie group
are essentially the 2 x 2 Pauli matrices, the three generators
for each of the 3 lepton discrete binary groups [332], [432],
[532], (also labeled 2T, 2O, 2I) in R3 and the 4 quark discrete
groups [333], [433], [343], [533], (also labeled 5-cell, 16-cell,
24-cell, 600-cell) in R4 are not exactly the Pauli matrices.

I propose that this difference between the discrete sub-
group generators and the Pauli matrices is the fundamental
source of the lepton and the quark mixing matrices, and the
calculated results verify this conjecture. In other words, one
requires the mixing of the different family discrete groups in
order to have a complete set of three generators equivalent to
the three SU(2) generators, separately for the leptons and for
the quarks. The mixing matrices, PMNS and CKM4, express
this linear superposition of the discrete group generators.

2 The PMNS calculation

In order to calculate the PMNS values one can use either
unit quaternions or unitary 2x2 complex matrices. The unit
quaternion generators are equivalent to the SU(2) generators.
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The unit quaternion q = a + bi + cj + dk, where the coef-
ficients a, b, c, d are real numbers for the one real and three
imaginary axes. The unit quaternion spans the space R4 while
the imaginary prime part spans the subspace R3. With i2 = j2

= k2 = -1, the quaternion can be expressed as an SU(2) matrix a + bi c + di

−c + di a − bi


Both the quaternions and the SU(2) matrices operate in the
unitary plane C2 with its two orthogonal complex axes, so the
quaternion can be written also as q = u + vj, with u = a + bi
and v = c + di. The three Pauli matrices σx, σy, σz, are the
simple quaternions k, j, and i, respectively.

For the three lepton families, each family representing its
own binary rotational group, [332], [432], and [532], two of
the three generators Ri, i = 1, 2, 3, in each group are equiv-
alent to two of the three Pauli matrices. Therefore, only the
remaining generator for each lepton family contributes to the
mixing that produces the PMNS matrix. That is, in the nota-
tion of H.M.S. Coxeter [6], R1 = j, R3 = i, and

R2 = −i cos
π

q
− j cos

π

p
+ k sin

π

h
(1)

for the three binary groups [p q r] and the h values 4, 6, and
10, respectively.

Defining the golden ratio ϕ = (
√

5+1)/2, the appropriate
generators R2 are listed in the table. The sum of all three R2
generators should be k, so one has three equations for three
unknowns, thereby determining the listed multiplicative fac-
tor for each R2 generator’s contribution to k after overall nor-
malization.

Table 1: Lepton Family Discrete Group Assignments

Family Group R2 Factor Angle◦

νe, e [332] − 1
2 i − 1

2 j + 1√
2
k -0.2645 105.337

νµ, µ [432] − 1
2 i − 1√

2
j + 1

2 k 0.8012 36.755

ντ, τ [532] − 1
2 i − ϕ2 j + ϕ

−1

2 k -0.5367 122.459

The resulting angles in the table are determined by the
arccosines of the factors, but they are twice the rotation angles
required in R3, a property of quaternion rotations. Using one-
half these angles produces

θ1 = 52.67◦, θ2 = 18.38◦, θ3 = 61.23◦, (2)

resulting in

θ12 = 34.29◦, θ13 = −8.56◦, θ23 = −42.85◦. (3)

Note that | θ12 - θ13 | = | θ23 | because of normalization.
Products of the sines and cosines of these angles in the

standard parameterization are the PMNS entries, producing

matrix values which compare favorably with the empirical
estimates, as shown earlier. One has sin2 θ12 = 0.3176 and
sin2 θ13 = 0.0221, both within 1σ of the empirically deter-
mined values from the neutrino experiments, according to the
Particle Data Group in 2012. However, sin2 θ23 = 0.4625 is
outside the PDG 1σ range but agrees with the recent T2K [7]
estimate sin2 2θ23 = 1.0, making | θ23 | = 45◦ with δ ≃ 0.

3 Conclusions

This fit of the PMNS mixing matrix derived from the three
separate R2 generators indicates that the lepton families faith-
fully represent the discrete binary rotational groups [332],
[432], and [532] in R3 that were introduced first in my ge-
ometrical approach back in 1986 and expanded in detail over
the past two decades. In particular, the 6 lepton states are
linear superpositions of the two degenerate basis states in
each of the 3 groups. My approach within the realm of the
Standard Model local gauge group makes the ultimate unique
connection to the discrete group Weyl E8 x Weyl E8 in 10-D
spacetime and to the Golay-24 code in information theory [1].

One can conclude that leptons are 3-dimensional objects,
geometrically different from the quarks which require a 4-
dimensional space for their existence. Their mass ratios de-
rive from a mathematical syzygy relation to the j-invariant of
elliptic modular functions associated with these specific bi-
nary groups. In addition, one can predict that no more lepton
families exist because the appropriate binary rotational sym-
metry groups in 3-D space have been exhausted. However,
sterile neutrinos remain viable [1, 4].
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