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In this paper, we consider the Einstein field equations viighcosmological term. If we

assume that this termis slightly varying, it induces a vactackground field filling the

space. In this case, inspection shows that the gravitdtii@héis no longer represented
by a pseudo-tensor, but appears on the right hand side ofaldecfijuations as a true
tensor together with the bare mass tensor thus restorirgathe conservation condition
as obeyed by the Einstein tensor.

Introduction although we restrict our study to neutral massive flow.

: - : . In this respect, it is shown that the gravitational field of a
Soon after his theory of General Relativity was published in_ . ) .
1916, Einstein rapidly turned to the unifying of the grawitamasswe body is no Ionger dgscrlbed bp%udo—.tensolbut
' pears as @ue tensorin the field equations as it should be,

tional field with electromagnetism (which at that time Wa%porderto balance the conceptually conserved propertyef t
considered as the second fundamental field). ) . P y prop
. . %Esteln tensor.
The quest for such an universal scheme ended in 1 To achieve this qoal we do:
with the Einstein-Schrodinger theory (see for examplé [1] _ 9 h _ _ _
definitely abandoned since as the quantum field theories® We first formulate the field equations with a massive
gained the increasing successes and have been long substan- source in density notation;

tiated by numerous experimental confirmations. e We write the conservation law for the Einstein tensor
Basically, the unified principle adopted by the successive  density derived from the Bianchi identities, which
authors (Kaluza-Klein, Weyl, Eddington, et al.) reliecheit cannot apply to the energy-momentum tensor density

on extra dimensions, or on an extension of the Riemannian as a source;
theory with additional space-time curvatures introduced t
yield the electromagnetic field characteristics, and wiieze
stress-energy tensor regarded as provisional, will betaven
ally absent [2, 3, 4].

Total geometrization of matter and electromagnetism was
anyhow the original focus. ¢

To understand this long period of research, one should re-
member that Einstein always claimed that the energy-
momentum tensoisf which can appear in the right hand side
of his field equations, was “clumsy”; in short, he considered
this form as an unsatisfactory solution which had to fifett
ently in his equations.

Einstein’s argument is actually strongly supported by t
following fact: while his tensor exhibits eonceptuallycon- 1.1 The tensor representation
ii;v\?vf“g:]olzzcg’s"’}[% ?ﬁ;:)er‘:‘/pvsgg'Q%S;jrsrsisnggsg?;:?? In the General Theory of Relativity (GR), it is well known

) " that by varying the action

When pure matter is the source, the problem has been
“cured” by introducing the so-called “pseudo-tensor” that S = Lgd*x,
“conveniently” describes the gravitational field of this ssa
so that the four-momentum of both matter and its gravity fiejghere theLagrangian densitys given by
is conserved.

e We then include a variable term that supersedes the so-
called cosmological termgay, in the field equations,
still complying with the conservation property of the
Einstein tensor density in GR;

Under this latter assumption, we will then formally
show that the gravity field of a massive source is no
longer described by a vanishinggeudo tensobut it
reduces to a true tensor describingersistentvac-
uum background field resulting from the existence of
the variable term.

Hle The field equations in General Relativity

Unfortunately by essence this pseudo-tensor cannot ap- Le = v=9 G*({%} {8e) + {3} {5} - (1.1)
pear in the field equations, and so the obvious physical tefec
emphasized by Einstein, still remains to-day as a stumbling g = det||gapll (1.2)
block.

In this paper, we tackle this problems by proceeding gue infers thesymmetric Einstein tensor
follows: in contrast to the previous theories, the energy- 1
momentum tensor of the source is here strengthened, Gab = Rap — > gabR, (1.3)
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where 2 The conservation identities

2.1 Tensor version for the Einstein tensor
Roc = a {pef — Oc{fa) + {bef {3a) — {bal (& (1.4)
{bc} {ba} {bC} {da} {ba} {dc} From the Bianchi identities applied to the Riemann tensor

is theRicci tensomvith its contractiorR, thecurvature scalay . . .
while {,} denote the Christel Symbols of the second kind. ;i + Rl + Rigip = 0 (2.1)

The 10source free field equatiorsse we infer the conservation conditions which apply to the Ein-

Gap = 0. (1.5) stein tensor withoug, and hereinafter denoted by
The second rank Einstein tengdgy, is symmetric and is G =R - % giR. (2.2)
only function of the metric tensor componeptg and their
first and second order derivatives. The Einstein tensor thus satisfies intrinsically the conser
The relation vation law:
VaGi=0 (1.6) Va°Gp =0. (2.3)

is the conservation identities provided that the tetizgrhas 2.2 Tensor density version for the Einstein tensor

the form [5] In the same way, we start with the Einstein tensor density

1 without the cosmological term
Gab = K|Ran — > gan(R—2A) |, (1.7)
"G = R I R (2.4)

. _ . 2
k is a constant, which is here taken 1, is usually named cos-

mological constanA. With (2.3), let us write down
When a source is present, the field equations become

3:.°Gp
) e T R R ARSI = B NEC R
Gab = Rab — 5 gabR — gabA = # Ta, (1.8)
which is easily found to be
whereTy, is the energy-momentum tensor of the source. a
3°G2 1 G gea = 0 (2.5)
1.2 The tensor density representation V-9 2 * '
We first set b b usingdgai = — gangicdg*® anddg @ = — gy °dgy. the formula
9% =+-g99 (1.9) (2.5) can be also written as
and the Einstein tensor density is 1
02°GE - > G®20p gea = O. (2.6)
G®= y=gG®, Gf=+-gGg, (1.10)

The latter equation is the conservation condition’®2°
R = =g R (1.11) which is equivalent to (2.3).

In density notations, the field equations with the sourge3 Conservation of the energy-momentum tensor

(1.8) will read 2.3.1 Problem statement

Ga = Ravb _ 1 gPR = g = % T2, (1.12) Letus consider the energy-momentum tensor for neutral mat-
2 ter densityp:
Here in place of the constant cosmological terin Tab = pUalp (2.7)

which should be here represented/by/~g, we have intro- as the right hand side of the field equations
duced ascalar densitydenoted as

1
OG = - = R = T . 28
N (1.13) ab = Rab 5 9abR = #Tap (2.8)
Unlike A, the scalag is slightly variable and represents The conservation condition for this tensor are written
the Lagrangiancharacterizing a specifimcuum background 1 1

VaTg = aaTg - = Tacab gac = O (2.9)

field as will be shown below. 2

=
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with the tensor density 2.3.2 The gravity pseudo-tensor

In order to follow this way, Landau and Lifshitz [6] started

a_ [—Ta
To= V=9 Tp. (2.10) from the unsuitable tensor equation (2.9)

However, across a given hypersurf , the integral 1 1
g yp A g ViTK = —— 3T = 2 T3 g = O.

Ve T2
P = fTab V-9 dSy (2.11) They thus consider a special choice of a set of the coor-
dinates which cancels out all first derivatives of theat a
is conserved only when given 4-space-time point.
In this system, the energy-momentum tensor expression
8aT2 =0, (2.12) isgiven by
. 1 . .
ik _ -1 ik ed ie kd
From (2.6) inspection still shows that =2, de(~9) [ad (-9) (g 9 -99 )] (2.17)
1_q As {Le} are postulated to be zero at the considered point,
daTp = =T Jcd (2.13) -1 ativa i
2 we may extract the factor¢) -+ from the derivative in the

. o o latter equation, so
but here, unlike the Einstein tens®B,, which is conceptu-

ally conservedV,°G] = 0), the conditions (—g) T = geHke = % e (adHiked)_
VaTg =0 The quantity
Hiked = (_g) (g g®d = giegkd (2.18)
of 9.TE=0 ( )

can be regarded as a “double tensor density” and is often
are thus never satisfied in a general coordinates system. referred to, as the “superpotential of Landau-Lifshitz].[7
Therefore, the Einstein tenséG,, which intrinsically Now, in any other arbitrary system, generally
obeys a conservation condition, is related with a massive te ke iK
sor Tap(p) which obviouslyfails to satisfy the same require- 9eH™ ~(-g) T" # 0,

ment and so, we will have to bring a small tensor correctifjn
°Gab = % Tab. (2.14) (Landau-Lifshitz pseudo-tensor) which is accepted aserepr
senting the gravitational field of matter:

As a matter of fact, a correct formulation would consist e Kk
of explicitly writing down the mass density with its gravity 9eH™ = (~9) (T + tLL)'
field, i.e. with a pseudo-tensdgg) fieid-

As is known, the hampseudo-tensas chosen since this
quantity can be transformed away by a suitable choice of co- o [(-g) (TH+t¥)] =0, (2.19)
ordinates.

Hence, we should write

This equation implies the condition

which is the conservation law for the classical total four-
momentum vector density of both matter and gravitational
field written as

P = f (-9) (T* +t¥)| dS, (2.20)
This is classically interpreted by requiring that tiogal [ ( LL)]
4-momentum vectoP? of matterwith its gravitational field (compare with (2.11)).

Gap = [(Tab)matter+ (tab)field] . (2.15)

After a tedious calculation, the final form of the symmet-

P? = [(T®)matter + t*) ieta| V=g dSs (2.16) ric tensort as a function of they, is found to be
o1 _ 1
must be together conserved (—g)tk = = [9"79"21 _ .‘l!|| g|fnrrq]+ 5 glkglmg!npg?]m _

*Some authors [8] state that integrati\ﬁTik = Qyields a conservation

law for a vectorP2 = TaPK, when the metric admits a Killing vectds:
P2 = TabK, + TaKyp, and sinceT2 is symmetric, we have for the Lie 1 ) )

; ; ' ! il _km ik Im nr Pq
derivativeKpa = 1Lkgap = 0, thenP3, = 0. + 8 (29 g —99g )(29npgqr - gpqgnr) g g,m]- (2.21)

- (g"gmng'fgyrp + gk'gmngi,?)yTp) + 9im g”pgi,'n gkg' +
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Therefore, the Einstein field equations can be eventuallg obtain
written in the form:

; oLg dLe |
_ o — (T dgi = Ok —~ - —dg" =
H*ed | = 2 (~g) (T +£2). (2.22) T T o™ 9T
L dLe dg’

Unfortunately, the quantity} which now appears on the = Ok W —OLE,
right hand side of the field equations as it should be, is not a
true tensor that is

Hence, we are once more faced with a contradiction: the _ OLedn(0g™)
left hand side of the field equations for a massive source is a — x(T")matterdmgil = Ik L"g — oK Lg| =
true tensor, while the right hand side is not, which reveals a (kg")
major inconsistency within the theory. = 22Ok (tfy) fiela (3.4)
2.4 Introduction of a background field tensor where () iels denotes the field tensor density extracted from
Let us now try to remove this ambiguity. ILedm(dg")

We start by writing the global energy-momentum tensor 25¢(th) fiela = g okLe (3.5)
density of the massive source splitting up bare matter and kg
pure field: so, that we have the explicit canonical form

T2 = (Ta) + (ta)f' Id- (2.23) )
. b b r-natter b |fe ’ 1 6LE6m(6g'|) ;

The field tensor densitytd)fieiq is in turn composed of (th) fietd = 2| o0 omLe (3.6)

two parts:gravity field+ vacuum background field kg
and where
(t2) field = (t8)gravity + (t3)backgroundfield (2.24) L

with ak(-r:()matter = z (TEk)matterakgei = —ak(tr)field-

Ev-g (2.25) that is, the required conservation relation

(tab)backyround field = = Jab = Jab .-
2 2 . )
According to the standard theory, we next re-formulate O [(T‘ Jmatter + (ti)”e'd] =0. (3.7)
the field equations with baremassive source Then, re-instating the terrs according to (2.24) and

1 (2.25), the gravitational field tensor density now reads:
G*=R"- 2 gabR - gabS' = %(Tab)matter (2.26) i
1 [0Ledm(0g")
K ot EUm _ <k _
under the form (tm)orauity = 2%[ FIEYD) on(le =2 (3:8)
G - R _ 1 g%R = (T matter + ¢ . (2.27) The presence of the scalar densjtycharacterizing the
2 background field is here of central importance, as it means
o . . _ . . that (tﬁq)gravity can never be zero in contrast to the classical the-
3 Expliciting the field equations in density notation ory, and as a result, it constitutesrae tensor Such a grav-
3.1 Taking account of the Lagrangian= ity field never completely cancels out, but far from its matte

source, it sharply decreases down to the level of the back-
ground field described by the tensor densif?)()adgmundﬁe.d.
1 In addition, we clearly see thgtrepresents thiagrang-
Aa(TE)matter = > (T°d)matte,6b Jcd- (3.1) ian densitycharacterizing the background field, thus lending
support to our initial hypothesis regarding the lagran@an
In this picture, the vacuum is permanently filled with this

Reverting to (2.13), we now write for tHeare matter tensor
density

Inspection then shows that

| 1 homogeneous background energy field ensuring a smooth
Ridg" = V=g [—R'e + 3 Q'ER] dgie = continuity with the gravitational field of a neighbouring ssa
= —2(T*)matterdgie. (3.2) 3.2 Classical formulation
Taking now into account the Lagrangian formulation fof/hen the ternE is kept constant like the cosmological term
Ry, which is A, the tensor density (3.8) reduces to
_oLe ole  OLe 1 [OLedm(0g")

~sSLel.  (3.9)

i — = O0k———c — —, 3.3 tk ity = 5 i
R|I 69" ka(akg") 69" ( ) ( m)pseudgra ity 2 5(6kg'l)
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which is just the classicaravity pseudo-tensor densitiyat whereTZ are the skew components of the energy-momentum
may now vanish in a given space-time point. tensor (3.17), which implicitly contains the gravity fiett].

In this case, expressed with the explicit form of the La- Now, we formulate (3.18) under the equivalent form:
grangian density g written in (1.1), the expression (3.9) be-

comes: PO = Py = f (TE+ T2+ T2-TY)aV. (3.19)

1 -
() pseudorasity= — |1} Omg" — {i | omg™ — % Le|. (3.10)
PSR 2 [{”} " {”} ; K ] In the immediate vicinity of the mass, it is easy, to show
This is themixed Einstein-Dirac pseudo-tensor densityat generalizing (3.19) leads to the 4-momentum vectdr tha

[9] which is not symmetric ok andm, and is therefore notincludes the right hand side of (3.12):
suitable for basing a definition of angular momentum on.

3.3 Field equations Pa = f[(Tg)matter+ (tg)grauity] dsb- (3-20)

The field equations with a massive source, which are Far from the source, we have obviously

1
Gab — Rab _ =
2 9
may be now eventually re-written

PR- g% = u(T¥)maen (3.11) X
(Pa)baclyround field = f [(ta)bactgroundfield]dsb, (3.21)

where ([g)bac,@,,oundﬁe.d is a true tensor density, and the con-
servation law applied t®? holds for all configurations, in
gecordance with (3.7) and (3.16).

. 1
G® = R~ 5 g™R = [ (T)matter + (t*)yrauy| (3.12)

with the explicit appearance of the gravity field as defined

(3.8) and which is now represented byrae tensor density.
Like we emphasized above, far from the mass, the "source

free” field equations should always retain a non zero rigintthis short paper, we have sketched here a possible way out

Conclusions and outlook

hand side of the gravitational field pseudo-tensor.
ab b ab ab From the beginning of General Relativity, the cosmologi-
G™=R"- 29 R = #(t™)backround ield (3.13) cal constant has played an unsavory role. Einstein included

this constant in his theory, because he wanted to have a cos-
mological model of the Universe which he wrongly thought
static.

But to-day, a cosmological term seems to be badly needed

In this case, the conservation law applied to the right halftfxplain some astronomical observed clues, within thizbas

which are the analogue of (1.7):

G =R® - % 9*R-g*, = 0. (3.14)

side of the tensor field equations is straightforward: dynamical expanding model of Robertson-Walker [11], even
though its occurrence was never clearly explained.
Va(t)background field = Va(E 6@) -0, (3.15) Hoyvever, there is no rease@npriori to consider this cos-
‘ 2x mological term as constant everywhere.
from which readily follows In this respect, the background field hypothesis is reward-

ing in terms of several physical advantages:

Aa(td)baclground field = 6a(% 53) =0. (3.16) e The ill-defined gravitational pseudo-tensor is now
a true tensor, and it appears explicitly in the field equa-
tions with a massive source;

We would like now to give a simple but instructive picture o The background persistent homogeneous energy field
of the situation where a static mass is placed in the vacuum s then formally shown to be a consequence of the
background energy field. Let us write the energy-momentum  apove derivation and it is actually regarded as the
tensor for matter and its graVitational field as in (312) (Sharp|y decreasing) continuation of any mass gravity

Tab = (pUaUp)matter + (tab)gravity- (3.17) field tensor;

In virtue of the principle of equivalence, atpare mass
of volumeV together with its gravitational fieldcan be ex-
pressed through the time component of a 4-momer&m
according to

3.4 Physical description

e The inferred global energy-momentum tensor intrinsi-
cally satisfies the conservation law as well as the back-
ground field alone in the source free field equations,
without introducing any other arbitrary ingredients or
modification of the General Theory of Relativity.

PO = f(T1l + T22 + Tg3 - T(())) V-g adV, (3.18) Submitted on: May 04, 2013Accepted on: May 18, 2013
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