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The critical points of potential energy surface (PES’s) of the limits of nuclear struc-
ture harmonic oscillator, axially symmetric rotor and deformed γ-soft and discussed
in framework of the general geometric collective model (GCM). Also the shape phase
transitions linking the three dynamical symmetries are studied taking into account only
three parameters in the PES’s. The model is tested for the case of 238

92 U , which shows
a more prolate behavior. The optimized model parameters have been adjusted by fit-
ting procedure using a simulated search program in order to reproduce the experimental
excitation energies in the ground state band up to 6+ and the two neutron separation
energies.

1 Introduction

Shape phase transitions from one nuclear shape to another
were first discussed in framework of the interacting boson
model (IBM) [1]. The algebraic structure of this model is
based upon U(6) and three dynamical symmetries arise in-
volving the sub algebras U(5), SU(3) and O(6). There have
been numerous recent studies of shape phase transitions be-
tween the three dynamical symmetries in IBM [2–9]. The
three different phases are separated by lines of first-order
phase transition, with a singular point in the transition from
spherical to deformed γ-unstable shapes, which is second or-
der. In the usual IBM-1 no triaxial shape appears.

Over the years, studies of collective properties in the
framework of geometric collective model (GCM) [3, 10–12]
have focused on lanthanide and actinide nuclei. In GCM the
collective variables β (the ellipsoidal deformation) and γ (a
measure of axial asymmetry) are used. The characteristic nu-
clear shapes occuring in the GCM are shown in three shapes
which are spherical, axially symmetric prolate deformed (ro-
tational) and axial asymmetry (γ -unstable). The shape phase
transitions between the three shapes have been considered by
the introduction of the critical point symmetries E(5) [13] and
X(5) [14]. The dynamical symmetry E(5) describe the phase
transition between a spherical vibrator (U(5)) and γ-soft rotor
(O(6)) and the X(5) for the critical point of the spherical to
axially deformed (SU(3)) transition. Also the critical point in
the phase transition from axially deformed to triaxial nuclei,
called Y(5) has been analyzed [15].

The main objective of this study is to analyze the impor-
tance of the critical points in nuclear shapes changes. The
paper is organized as follows. In sec. 2 we survey the frame-
work of the GCM and the method to analyze the PES’s in
terms of the deformation variables β and γ. In section 3
we study the behavior of the critical point. In section 4 we
present the numerical result for realistic case to even-even

238U nucleus and give some discussions. Finally in section 5,
the conclusions of this work are made.

2 Potential Energy Surfaces in Geometric Collective
Model

We start by writing the GCM Hamiltonian in terms of ir-
reducible tensor operators of collective coordinates α’s and
conjugate momenta π as:

H =
1

2B2
[π × π](0) +C2[α × α](2)

+C3[[α × α](2) × α](0)

+C4[α × α](0)[α × α](0)

(1)

where B2 is the common mass parameter of the kinetic energy
term and C2,C3 and C4 are the three stiffness parameters of
collective potential energy. They are treated as adjustable pa-
rameters which have to be determined from the best fit to the
experimental data, level energies, B(E2) transition strengths
and two-neutron separation energy. The corresponding col-
lective potential energy surface (PES) is obtained by trans-
forming the collective coordinate a2ν into the intrinsic coor-
dinate a2ν. To separate the three rotational degree of freedom
one only has to set

α2µ =
∑
ν

D∗2µν(ω)a2ν. (2)

Since the body axes are principle axes, the products of
inertia are zero, which implies that a21 = a2−1 = 0 and
a22 = a2−2. The two remaining variables a20 and a22, to
gather with Eulerian angles ω, would completely describe the
system replacing the five α2µ. However, there is rather more
direct physical significance in the variables β and γ defined
by

a20 = β cos γ (3)
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a22 =
1
√

2
β sin γ (4)

where β is a measure of the total deformation of the nucleus
and γ indicate the deviations from axial symmetry. In terms
of such intrinsic parameters, we have

[α × α](0) =
β2

√
5

(5)

[[α × α](2) × α](0) = −
√

2
35
β3 cos 3γ. (6)

The PES belonging to the Hamiltonian (1) then reads

E(β, γ) = C2
1
√

5
β2 −C3

√
2
35
β3 cos 3γ +C4

1
5
β4. (7)

The values of β and γ are restricted to the intervals
0 ≤ β ≤ ∞, 0 ≤ γ ≤ π/3. In other words the π/3 sector of
the βγ plane is sufficient for the study of the collective PES’s.

3 Critical Point Symmetries

Minimization of the PES with respect to β gives the equi-
librium value βm defining the phase of the system. βm = 0
corresponding to the symmetric phase and βm , 0 to the bro-
ken symmetry phase. Since γ enters the potential (7) only
through the cos 3γ dependence in the cubic term, the mini-
mization in this variable can be performed separately. The
global minimum is either at γm = 0(2π/3, 4π/3) for C3 > 0
or at γm = π/3(π, 5π/3) for C3 < 0. The second possibility
can be expected via changing the sign of the corresponding
βm and simultaneously setting γm = 0. The phase can be de-
scribed as follows:

1. For C2
3 <

14C2 |C4 |√
5

, phase with βm = 0 interpreted as
spherical shape.

2. For C2
3 <

14C2 |C4 |√
5
,C3 > 0, phase with βm > 0, γm = 0

interpreted as prolate deformed shape.

3. For C2
3 <

14C2 |C4 |√
5
,C3 < 0, phase with βm > 0, γm = π/3

interpreted as oblate deformed shape.

For β non-zero the first derivative of equation (7) must be
zero and the second derivative positive. This gives

4
5

C4β
2 − 3

√
2
35

C3β
3 cos 3γ +

2
√

5
C2 = 0

12
5

C4β
2 − 6

√
2
35

C3β
3 cos 3γ +

2
√

5
C2 > 0 (8)

The solution of equation (8), yields β± = 3
4

√
5
14 (1 ± r)e

with r =
√

1 − d, d = 112
9
√

5
C2C4

C2
3

and e = C3
C4

.

The minimum values of the potential are

E(β) = − 135
50176

(r ± 1)3(3r ∓ 1) f (9)

with f = C4
3

C3
4
.

For d > 1 there is only one minimum located at β = 0.
For 0 < d < 1, minima are present both at non-zero β and at
β = 0, with the deformed minimum lower 0 < d < 8/9 and
the undeformed minimum lower for 8/9 < d < 1. For d < 0,
the potential has both a global minimum and a saddle point at
non-zero β. For harmonic vibrator shape C3 = C4 = 0, this
yields

E(β) =
C2√

5
β2, C2 > 0. (10)

For γ-unstable shape, the solution forβ , 0 are obtained
if we set C3 = 0 in equation (8). Then equation (8) gives

4
5

C4 β
2 +

2
√

5
C2 = 0

or

β = ±

√
−
√

5
2

C2

C4
≃ ±1.057

√
−C2

C4
;

this requires C4 and C2 to have opposite sign. Since C4 must
be positive for bound solutions C2 must be negative in de-
formed γ-unstable shape. That is the spherical — deformed
phase transition is generated by a change in sign of C2, while
the prolate-oblate phase is corresponding to changing the sign
of C3. For symmetric rotor one needs with both a deformed
minimum in β and a minimum in γ, at γ = 0 for prolate or
γ = π/3 for oblate. For prolate shape this requires C3 >
0, such a potential has a minimum in β at β± equation (7).
For γ = 0 ( to study the β-dependence), and providing that
C2 > 0 and C3 > 0, then the critical point is located at
C2

3 < 14C2|C4|/
√

5.
In Fig. (1a) a typical vibrator is given, the minimum of the

PES is at β = 0 and therefore the ground state is spherical. In

Table 1: The GCM parameters for shape-phase transition (a) from
vibrator to rotor (b) from rotor to γ-soft.

C2 C3 C4

set (a) 1 0 0
-0.25 0.7 10

-1 1 20
-2.5 1.7 29

set (b) -3 2 40
-4.2 1.5 80
-4.5 1 120
-5 0 170
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Fig. (1b) a typical axially deformed prolate is given, where
the minimum it as β , 0 and the ground state is deformed.
In Fig. (1c) a case of γ-unstable shape is illustrated. Fig. (2a)
gives the PES’s calculated with GCM as a function of the
shape poor rotor β for shape phase transition from spherical
to prolate deformed and in Fig. (2b) from rotor to γ-soft. The
model parameters are listed in Table (1).

For simplicity we write equation (7) when γ = 0 in form

E(β) = A2β
2 + A3β

3 + A4β
4. (11)

The extremism structure of the PES depends only upon the
value A2 as summarized in Table (2) and Fig. (3). For A2 < 0
the potential has both a global minimum and a saddle point at
non-zero β. For A2 > 0, minima are present at both β , 0 and
β = 0 with the deformed minimum lower for A2 = 109.066
and the undeformed minimum lower for A2 = 161.265. For
A2 = 22.6 there is only one minimum located at β = 0.

4 Application to 238
92 U

We applied the GCM to the doubly even actinide nucleus
238U. The optimized model parameter was adjusted by fit-

Fig. 1: Potential energy surface (PES’s) in framework of GCM for
three different shapes (a) harmonic vibrator shape (C2 = 1, C3 = 0,
C4 = 0) (b) strongly axially deformed prolate shape (C2 = −2.5,
C3 = 1.7, C4 = 29) (c) γ-unstable shape (C2 = −5, C3 = 0, C4 = 17).

Fig. 2: Potential energy surface (PES’s) in framework of GCM for
two different shape transitions (a) from vibrator to rotor (b) from
rotor to γ-soft rotor the set of parameters are listed in Table (1).

Table 2: Set of control parameters of the GCM to describe the nature
of the critical points.

A2 A3 A4

22.600 -1.120 0.234
66.412 -294.869 368.217
161.265 -935.148 1148.890
85.714 -573.709 960.000

109.066 -881.661 1603.589
0.000 -152.991 387.884

-15.581 -48.791 214.854
-22.098 -3.286 137.500

ting procedure using a computer simulated search program
in order to reproduce some selected experimental excitation
energies (2+1 , 4

+
1 , 6

+
1 ) and the two neutron separation energies.

The PES versus the deformation parameter β for 238U is il-
lustrated in Fig. (4). The figure show that 238U exhibit a
deformed prolate shape.

5 Conclusion

In this study we used the GCM to produce the PES’s to inves-
tigate the occurrence of shape phase transitions. The critical
point symmetries are obtained. The validity of the model is
examined for 238U. A fitting procedure was proposed to de-
forming the parameters of the geometric collective Hamilto-
nian for the axially symmetric deformed rotor.
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