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A remarkable achievement of theoretical

physics is theaqgiion of magneticféects,

described by the Lorentz force, to be corollaries of changariance, Coulombs Law
and the Lorentz transformation. The relativistic explaratof magnetism is based
essentially on the calculation of Coulomb forces betweeringocharges in the labo-
ratory reference system. We will show presently that thasdesed for the relativistic
explanation of magnetism also lead to a force on a chargesibyemoving charges,
which we dub “Lorentzian type force on a charge at rest”.

1 Introduction
1.1 Miscellaneous

1.2 The charge and the mass of moving charged part-
icles

We will follow very closely the chain of thought taken by Ed'_l'he conclusion of the experimental findings is that charge is

ward Mills Purcellin [1]. We will use the Gaussian CGS uni

tguantized and invariant in all stages of relative motiord an

in order to underline the close relationship between atectf@n Pe calculated by Gauss's Law [1]

field E(x, y, z t) and magnetic fieldB(x, y, z t). We will use
as our reference frameE[x, y, z t], the idealized laboratory
inertial frame, abbreviated to lab, to describe the locatd

q=q. 1)

Mass changes with velocity, charge does not. The fact

particles and fields at time We will use other reference systhat mass changes with velocity finds its mathematical fermu

tems likeF’[X,y’, Z, t'] with axes parallel with respect @,
with the origins of these systems coinciding att’ = 0 and
with F’ being in uniform relative motion with respect Eoin
either the positive or negativedirection.

Table 1: Definition of symbols
symbol  description

inertial framgsystem
also for force
momentum
charge
magnetic field
electric field
surface
surface

,y,2) space coordinates
time
speed of light in vacuum
velocity
current
length
v

1

Vip
rest mass
unit vector in the indicated direction
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lation through the introduction of relativistic momentuj [

p =mvy )

and relativistic energf = mc?y. Eq. 2 is the starting point
for the derivation of forces in inertial systems connectgd b
the Lorentz transformation.

1.3 The electric fields E in F arising from a point
chargeq at restin F’ and moving with v in F

The electric field= in F of a charge moving uniformly ift, at
a given instant of time, is generally directed radially oartd/
from its instantaneous position and given by [1]

W) a

3
2

E(R, ) =

®3)
Re(1-p2sir? 9)

Ris the length oR, the radius vector from the instantaneous
position of the charge to the point of observatighis the
angle between the direction of motion of the chaggeAt
andR. Eq. 3, multiplied byQ, tells us the force on a charge
Q at rest inF caused by a charggmoving inF (qis at rest

in F").

1.4 The relativistic explanation of magnetism

In Fig. 1 we have sketched the model given in [1] to explain
magnetic &ects by relativistic arguments. The calculation of
the force on q gives

dp] 2
_ p./ _ E/ q

(4)
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Fig. 1: We show a positive line charge distribution stationary in [—

4., moving inF in the positive x-direction withy, ~ Fig-2 (@)
and a negative line charge distributian at rest inF/_, moving in
F in the negative x-direction withy. A positive chargey, at rest in Fig. 2: (a) (b) (c): We show in Fig. 2(a) the two wires carryihg
F’, moves withv in F in the positive x-direction IrF the electric current | extended along theaxis of F from x=—ato x=aand the
fields sum up td because by definition, + - = 0. InF’, the chargeQ atrestinF at (0, 0, h). Additionally on the right-hand side
rest frame of chargg, there is an electric fiel@®’ # 0 due to fields a magnification of a small elemeni containing the two wires and
transformed from the rest frame af andA_ to F’. The resulting labeled Fig. 2(b) can be seen. Fig. 2(b) shows some movimyg ele
force in F” on g, dp’/dt’, is then transformed t&, thelab frame, trons and for each of these the nearest neighboring protoatsd
where we observe the charge in the tiny element. We calculate the force Qrby precisely these
pairs of charges. Theffects of the other immobile electrons and
protons of elemenix sum up to0. On the left-hand side another
The resulting forcelp’/dt’ on chargeyin F’ is transferred magnification of elementx labeled Fig. 2(c) can be seen, showing
to F, thelab system, where we do the experiments, givirgpme geometrical relations useful for integration.

F,= % = STP{ and has the value [1]

reference framé/

49Avvy . 2qul qu2l .
= 2 = 2 -y (5) A .

rc rc cr due to the electrons of currehtand their nearest stationary
with A = [, = |A_]. protons. _

As was discovered well before the advent of relativity, the The two wires are electrically neutral b_efore_ the current
overall gfect of currents on a moving charge can also be g switched on. Therefore after the currentis swﬂch_ed on we
scribed completely by introducing the magnetic fiBldh the ave an equal number & electrons andN protons n the
lab frame F and equating the Lorentz force tp/dt. The system — the same numbi as w_|th the current. switched
magnetic fieldB is calculated with Biot-Savart’s Law. TheOff- We Iook.at th? system at one mstgnt of lab tm_ea.fter
main purpose of the derivation, which results in Eq. 5, is EB_e cu_rreml IS _SW'tChed. on and is stationary. We divide the
explain how nature works, and to demonstrate how the ph res mtp sections having lengtis;. In each such element
ical entity “magnetic field” can be revealed using more fur‘° consider the; electrons that make up the currdntFor

damental physical laws, specifically Coulomb’s law and tf?@Ch of the_s& eIectrops_e.j with | =1, 22 -k, having veloc-
laws of special relativity [1]. ity +uvx, which are defining the currehtin Ax, we select the

nearest neighboring stationary protgnwith j = 1,2,...k;,
with the restriction that the proton must lie &x;. “Station-
ary” means that the charges retain their mean position over
We consider now two very narrow wires isolated along thaime. The éfects onQ by the residuak; stationary protons
length, but connected at the ends, each having length 2a andK; stationary electrons present in this elemArt sum
lying in lab coaxial to the x-axis df fromx = —atox = a. up to0. The number of electrons and protons in the system
In addition the system has a source of electromotive forisegiven byN = Y; (K + kj). For each charge of the mo-
applied so that a currehis flowing through the wires: in onebile electron-stationary proton pairs presentAin, we use
of the wiresl flows in the positivex direction and in the otherthe same; as the vector from each of the charge€toWe
wire | flows in the negative direction. We also have in mindused; = arcsinr—*:, the angle between the x-axis and for
two wires forming a thermocouple or two superconductirgach charge of the pairs of charges presemtn In Fig.3
wires. On the z-axis of fixed (at rest) at (0, 0, h) a testwe have sketched the situation for one pair of charges.
chargeQ is located. Referring to Fig. 2 we conclude that the line charge den-
The system is sketched in Fig. 2. We will now calculatgty 2 andk;, the number of current electrons moving with
the forceF; on the stationary test char@gfixed at (0, 0, h) vy in AX, and the line charge densifyand thek; immobile

F

2 Lorentzian type force on a test chargeQ at rest
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The force orQ, — the “Lorentzian type force on a charge

_ d(mvoyo) _ at rest” — is then

Q dt

Q 2l vy COSYmin SIN? rmin 5.

hc? ' (10)

Fie=-

—Q [<1_7ﬁ2)3 - 1]F + Fepring =0
" (21-psito)?
g.e.d.
The force described by Eq. 10 is of the same order (e.g.
for ¥min = 3) of magnitude as magnetic forces, as can be seen

q v=0 atrestinlaboratory
—-gq Vv+#0 moving in laboratory
Q vo=0 atrestinlaboratory

2 0?2\ 2 by comparing it to Eq. 5 (repeated below), but it acts on a
F=g = (1_ c_z) chargeQ which has zero velocity. Find Eg. 5 written again

below

Fig. 3: We show a positive immobile charge q at reskaimand a

negative moving chargeqmoving inlab and the resulting electrical 49dvvg . 20vl . qQv2l

force on a positive charg® at rest inlab. g and—q are one of the F= rc2 y= rc2 y= crc y (S repeated)  (11)

pairs of charges that we select at titpén Ax to calculate thefects

of the currentl on chargeQ at rest inlab. for easier comparison with Eq. 10.
Discussion

protons ofAx; are both related by Whenever new concepts and ideas are introduced in physics,

[AAX it is to be expected that they not only adequately explain the
= (6) existing findings, but also enable new predictions thatalre f
sifiable by experimental means. The Lorentz force leaves no

with e = 4.803%esu]. By doing so we replace the use ofoom for aforce on a charge at rest caused by moving charges,
the relativistic length contraction by counting chargese Wecause the velocity of the charge at rest is, of course, zero
use the same distancgto) from Q to thek; moving electrons But the ideas and methods of special relativity, when used
and fromQ to thek; immobile protons. We now calculatelo €xplain magnetism, show that such a force — a force of
the force onQ from exactly these charges, i.& electrons moving charges which are part of a neutral piece of matter
moving with|v, andk; immobile protons. In Figure 2(c) wecontaining the same number of electrons and protons — ex-

sketched the model and some geometrical relations which @f€d on a charge at rest, a certain distance away of the above
used below. mentioned piece of matter, is possible. We have shown this by

With reproducing the derivation of magnetism by relativistiglar
rAg ments given in [1] step-by-step and applying it to our system
X=—Sing () of wires and charges. We could have calculated the fields and
forces onQ in a reference syster’ whereQ is at rest and
h transformed the result 6 or lab to formally and completely
r=— (8) reproduce the derivation of magnetism using relativityuie
ing in Eg. 5 as shown in [1] and section 1.4. But@sgs at
we get restin lab, and therefore at rest in reference fr&mee have
calculated the fects onQ due to moving charges directly in
/1(1 —.32) siNGAD 3 singAY F using Eg. 3. Of course we then no longer need to transfer
h(1-g2sin’ v)

ki

e

and with

AR, = 3 h ©) the rate of change of momentum Eobecause it is directly

given in the frame- in which Q is at rest. In addition we

have replaced the line charge variations ifietent reference
Now we have to sum up over all elememts; (or A%). grames due to the Lorentz-Fitzgerald length contracticdus

We do this by muItlpIylnrg]:] EQ. 9 by 4 and by integrating fron}, 117 by defining pairs of moving current electrons and their

¢ = 310 dmn = arctan;. For the first term we substitute, g, rest neighbor immobile protons to calculate tiieats on

u = gcosd and usef ( Zduz)g T — 7 and finally obtain the chargeQ. In other words we have replaced the use of

a T the Lorentz-Fitzgerald contraction by counting chargesl a

counting is relativistically invariant. The basic idea tbe

E - 42 cosBin 1 1 ~ calculation ofF; manifestations is the use of pairs of mov-
z h 2 sir? 3 ing and immobile charges. If the Lorentzian type force on a
charge at rest cannot be found by experiment, and we have
21 v, COSPrin SIMP Frin no hint that it exists, at least the derivation leading to Bq.

h? written down in [1], should be subject to a revision.
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