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This paper deals with the problem of steady laminar flow of viscous incompressible
fluid between two parallel porous plates with bottom injection and top suction. The

op

flow is driven by a pressure gradient 3

and uniform vertical flow is generated i.e. the

vertical velocity is constant everywhere in the field flow i.e. v = v, = constant. Also a
solution for the small and large Reynold number is discussed and the graph of velocity
profile for flow between parallel plates with the bottom injection and top suction for
different values of Reynold numbers is drawn.

1 Introduction

The two dimensional steady laminar flow in channels with
porous walls has numerous application in field of Science
and Engineering through boundary layer control, transpira-
tion cooling and biomedical enginering.

Berman (1953) was the first reasercher who studied the
problem of steady flow in an incompressible viscous fluid
through a porous channel with rectangular cross section,
when the Reynold number is low and the pertubation solution
assuming normal wall velocity to be equal was obtained [1].

Sellars (1955), extended problem studied by Berman by
using very high Reynold numbers [2].

Yuan (1956) [3] and Terill (1964) [4] analysed the same
problem assuming different normal velocity at the wall.

Terrill and Shrestha (1965) analysed the problem for a
flow in a channel with walls of different permeabilities [5].

Green (1979) studied the flow in a channel with one
porous wall [7].

In this paper, we considered the flow of an incompressible
viscous fluid between two parallel porous plates with bottom
injection and top suction and assume that the wall velocity is
uniform.

2 Formulation of the problem

The study laminar flow of an incompressible viscous fluid be-

tween two parallel porous plates with bottom injection and

top suction at walls and uniform cross flow velocity is con-

sidered. The well known governing equations of the flow are:
Continuity equation:
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Momentum equations (without body force):
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The flow between two porous plates at y=+h and y=-h,
respectively is considered. THe flow is deriven by a pressure
gradient ‘;—’;. It is assumeed that a uniform vertical flow is
generated i.e the vertical velocity component is constant ev-
erywhere in the flow field i.e v = v, = constant. Again the
continuity equation shows that # = u(y) only, the momentum
equation (2) becomes:
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Re-arranging eqn. (4), we have
du  vydu ldp
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Homogeneous part of eqn. (5) becomes
dPu v, du
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Eqn. (6) is differential equation, with auxiliary equation of
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The solution of eqn. (6) is of the form
u(y) = Ae?" + Be??,

where A and B are constant.

u(y) = A+ BeV (7)
For particular integral of eqn. (5), we set
u(y) = ay® + by + ¢, (8)

where a, b, and ¢ are constants.
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Substituting eqn. (9) in eqn. (5) we get
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Comparing the co-efficients, we get

1
a=0=p=-21dP
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Now, eqn. (8) becomes

v 1d
u(y) = ————py+c.
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The final solution formes by adding eqn. (7) and eqn. (11)
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Since v, is constant, the equation is linear. We retain the
no-slip condition for the main flow.

u(+h) =u(-h) =0
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Subtracting eqn. (14) from eqn. (13), we get
oy hdp v hdp v hdp
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Substituting eqn. (15) into eqn. (13), we get
vy hdp,tp
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Eqn. (12) reduces to
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Re-arranging eqn. (17), we get
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The final solution of eqn. (5),
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Where 4, = %(—Z—Z) is the centerline velocity for imporous
or poiseuille.

For very small Re (or small vertical velocity), then the last
terms in the parentheses of of eqn. (19) can be expanded in a
power series and sinh Re ~ Re i.e.
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Eqn. (20) shows that, the poiseuille solution recovered.
For very large Re (or large vertical velocity), eqn. (19)
can be written as
) :3 2_14_2% ,
Umay Re|h eRe — g=Re
_ ,—Re(1-%
“y _ 20y g,
Upax Re|h 1 — e 2Re
For Re — oo and % > 1, except for y = +h, we get
2
) _ 2 [y 1+ 2],
Umax Re Lh
uy) 2 [ y]
— = — |1+ =], 21
Unax  Re h @b

so that a straight line variation which suddenly drops to zero
at the upper wall.

3 Discussion

The velocity profiles have been drawn for different values of
Reynold numbers (i.e. Re =0, 3, 5, 10). From Fig. (1), its ob-
served that for Re > 0 in the region —1 < y* < 1, the shapes
change smoothly with Reynold numbers and the average ve-
locity is decreasing and Reynold number increases; i.e. the
friction factor increases as we apply more cross flow through
the wall.

4 Conclussion

In the above analysis a class of solution of flow of viscous
fluid between two parallel porous plates with bottom injection
and top suction is presented when a cross flow velocity along
the boundary is uniform, the convective acceleration is linear
and the flow is deriven from pressure gradient.
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Fig. 1: Velocity profiles for flow between parallel plates with bottom
injection and top suction for different values of Re.

Nomenclature

A,B,C,D: Constants

h: Height of the channel

P: Pressure

x: Axial distance

y:Lateral distance

v, Lateral wall velocity

u(x,y): Axial velocity component
v(x,y): Lateral velocity component

Yy = %: Dimensionless lateral distance

Re = % Wall Reynold number

Greek Symbols

w: Shear viscosity
v: Kinematic viscosity
p: Fluid density
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