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The negative parity states of octupole vibrational bands in Tungsten and Osmium nuclei
have perturbed structure. To explore the ∆I = 1 staggering, we plotted the gamma
transitional energy over spin (EGOS) versus I2. Such a plot exhibit large deviation from
a linear I(I+1) dependence E(I) = A[I(I+1)]+B[I(I+1)]2 and effectively splits into two
different curves for odd and even spin states and a staggering pattern is found. The odd-
spin members Iπ = 1−, 3−, 5−, . . . were displaced relatively to the even-spin members
Iπ = 2−, 4−, 6−, . . . i.e. the odd levels do not lie at the energies predicted by the pure
rotator fit to the even levels, but all of them lie systematically above or all of them lie
systematically below the predicted energies because the odd-spin states can be aligned
completely, while the even-spin states can only be aligned partially. Also the ∆I = 1
staggering effect has been clearly investigated by examining the usual backbeding plot.

1 Introduction

The properties of nuclear rotational bands built on octupole
degrees of freedom have been extensively studied within var-
ious microscopic as will as macroscopic model approaches
in nuclear structure [1–6]. It is will known that heavy nuclei
have low-lying Kπ = 0− octupole deformed bands [7,8]. The-
oretical works of such bands have been presented in frame-
work of cranked random phase approximation (RPA) [9, 10],
the collective model [5], the interacting boson model (IBM)
[3, 11], the variable moment of inertia (VMI) model [12] and
the alpha particle cluster model [4, 13]. The IBM and the ex-
otic cluster models address the existence of negative parity
bands with Kπ , 0−.

Several staggering effects are known in nuclear spectros-
copy. The ∆I = 2 staggering has been observed and inter-
preted in superdeformed (SD) nuclei [14–22], where the lev-
els with I = I0 + 2, I0 + 6, I0 + 10, . . . are displaced relatively
to the levels with I = I0, I0 + 4, I0 + 8, . . ., i.e. the level with
angular momentum I is displaced relatively to its neighbors
with angular momentum I ± 2. There is another kind of stag-
gering happening in SD odd-A nuclei, the ∆I = 1 signature
splitting in signature partners pairs [23].

The ∆I = 1 Staggering in odd normal deformed (ND) nu-
clei is familiar for a long time [24–28], where the rotational
bands with K = 1/2 separate into signature partners, i.e. the
levels with I = 3/2, 7/2, 11/2, . . . are displaced relatively to
the levels with I = 1/2, 5/2, 9/2, . . .. In this paper, we will
investigate another type of ∆I = 1 energy staggering occur-
ring in the negative parity octupole bands of even-even nu-
clei, where the levels with odd spin Iπ = 1−, 3−, 5−, . . . are
displaced relatively to the levels with even spin Iπ = 2−, 4−,
6−, . . .. This is more strikingly revealed when one makes the
usual backbending plot of the energies in which the kine-
matic moment of inertia is plotted against the square of ro-
tational frequency. The negative parity octupole band breaks

into even and odd-spin bands with, however, very little back-
bending tendency.

2 Outline of the Theory of ∆I = 1 Energy Staggering

To analyze the ∆I = 1 energy staggering in collective bands,
several tests have been considered in the literature. In our
analysis, the basic staggering parameter is the gamma tran-
sitional energy over spin (EGOS=Eγ(I)/I) of the transitional
energies in a ∆I = 1, where E(I) is the energy of the state of
the spin I, and Eγ(I) denotes the dipole transition energy

Eγ(I) = E(I) − E(I − 1). (1)

The level energies in a band can be more realistic parameter-
ize by two-term rotational formula as a reference

E(I) = A[I(I + 1)] + B[I(I + 1)]2. (2)

The first two-term represents the perfect purely collective
rigid rotational energy, where A denotes the inertial param-
eter A = ℏ/2J (where J is the kinematic moment of inertia).
The introduction of the second term is based on the assump-
tion that, on rotation, the moment of inertia of the nucleus
increases as does the quadratic function of the square of the
angular velocity of rotation of the nucleus.

It is interesting to discuss the energy levels by plotting
EGOS against spin. This is not helpful to identify the struc-
ture of the nucleus, but also to see clearly changes as a func-
tion of spin. For pure rotator, the energies of the yrast states
are:

E(I) = A[I(I + 1)]. (3)

Then the E2 γ-ray energies are given by

Eγ(I) = A[4I − 2] (4)

which yield

EGOS = A
(
4 − 2

I

)
. (5)
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Table 1: The adopted best model parameters A and B for our selected octupole vibrational bands.

178W 180W 176Os 178Os 180Os 182Os
A (keV) 13.637 13.027 9.665 10.083 11.796 9.491
B (eV) -13.821 -8.517 -2.223 -3.032 -8.607 0.140

In units of A, EGOS evolves from 3 for I = 2 up to 4 for high
I, and so gradually increasing and asymptotic function of I.

EGOS for our proposed reference formula (2) is given by

EGOS = 2A + 4BI2. (6)

The EGOS when plotted against I2, it represent a straight line
of intercept 2A and slope 4B. Practically, the plot splits into
two different curves for the odd and even spin states respec-
tively. To see fine variation in the plot (EGOS & I2), we use
the staggering parameter

e(I) = EGOS −
(
2A + 4BI2

)
ref

(7)

where the unknown A and B are determined by minimizing
the function F

F(I, A, B) =
∑

I

|e(I)|2. (8)

The summation over spin in equation (8) is taken in step of
∆I = 1. The function F has a minimum value when all its
partial derivatives with respect to A and B vanish (∂F/∂A =
0, ∂F/∂B = 0), this leads to

2nA + 4
∑

I

I2B =
∑

I

EGOS (I) (9)

2
∑

I

I2A + 4
∑

I

I4B =
∑

I

I2EGOS (I) (10)

where n is the number of data points.
The behavior of the octupole band is most clearly illus-

trated by a conventional backbending plot. For each ∆I = 2
value, the effective nuclear kinematic moment of inertia is
plotted versus the square of the rotational frequency. If we
consider the variation of the kinematic moment of inertia J(1)

with angular momentum I, we can write

2J(1)

ℏ2 =
4I − 2

E(I) − E(I − 2)
. (11)

Lets us define the rotational frequency ℏω as a derivative
of the energy E(I) with respect to the angular momentum
[I(I + 1)]1/2,

ℏω =
dE

d[I(I + 1)]1/2 (12)

usually we adopt the relation

(ℏω)2 =
4(I2 − I + 1)
(2J(1)/ℏ2)2 . (13)

3 Numerical Calculation and Discusion

Our selected octupole bands are namely: 178W, 180W, 176Os,
178Os, 180Os and 182Os. The optimized model parameters A
and B for each nucleus have been adjusted by using a com-
puer simulation search program to fit the calculated theoret-
ical energies Ecal(Ii), with the corresponding experimental
ones Eexp(Ii). The procedure of fitting is repeated for sev-
eral trail values A and B to minimize the standard quantity χ
which represent the root mean square deviation

χ =

 1
N

N∑
i=1

(
Eexp(Ii) − ECal(Ii)
△Eexp(Ii)

)21/2

where N is the number of data points and ∆Eexp(Ii) are the
experimental errors. The best optimized parameters are listed
in table (1). The negative parity octupole bands have sev-
eral interesting characteristics, the most obvious of which is
the staggering effect. In this paper the ∆I = 1 staggering
is evident on a plot of staggering parameter e(I) against I2

and illustrated in figure (1), the band effectively splits into an
odd- and even-spin sequence with a slight favoring in energy
for the odd-spin states. In terms of an alignment of the an-
gular momentum of the octupole vibration, the odd energy
favoring can be understood since the odd-spin states can be
aligned completely (I ∼ R + 3, where R = 0, 2, 4, . . . is the
collective rotation), while the even spins can only be aligned
partially (I ∼ R + 2). As expected from a good rotor model,
the γ-ray transition energy Eγ(I) increases with increasing the
angular momentum I. It is found in some rotational deformed
nuclei that the transition energy decreases with increasing I,
this anomalous behavior is called nuclear backbending. In
order to represent this backbending, one prefers to plot twice
the kinematic moment of inertia 2J(1)/ℏ2 versus the square of
the rotational frequency (ℏω)2. Figure (2) shows the back-
bending plot for our selected octupole bands. It is seen that
the bands are essentially separate into odd and even spin se-
quences which shows the effects of rotation alignment. The
increase in Coriolis effects is due to the lowering of the Fermi
level, then these effects depress the odd spin states relative
to the even spin states. When the Coriolis effects are large
compered with the octupole correlations effected through the
residual interaction, it becomes inappropriate to identify these
bands as octupole bands (decoupled two quasiparticle bands).
These are bands in which the intrinsic spin has been aligned
with the rotational spin through the decoupling action of the
Coriolis force.
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Fig. 1: The odd-even ∆I = 1 energy staggering parameters e(I)
versus I2 for negative parity states of octupole vibrational bands in
doubly even nuclei 178,180W and 176,178,180,182Os.

Fig. 2: Plot of twice Kinematic moment of inertia 2J(1) against the
square of the rotational frequency (ℏω)2 for the negative parity bands
in 178,180W and 176,178,180,182Os isotopes.

4 Conclusion

In negative parity octupole bands of even-even W/Os nuclei,
the levels with odd spins Iπ = 1−, 3−, 5−, ... are displaced rel-
atively to the levels with even spins Iπ = 2−, 4−, 6−, .... The
effect is called ∆I = 1 staggering and its magnitude is clearly
larger than the experimental errors. The phase and amplitude
of the splitting is due to rotation particle Corialis coupling.
Our proposed two terms formula provided us with informa-
tion about the effective moment of inertia.
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