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This addendum to the article [1] is crucial for understanding how the complex effective

action, despite its derivation based on classical concepts, prevents quantal particles to

move along extreme action trajectories. The reason relates to homogenous, isotropic

and unpredictable impulses received from the environment. These random impulses al-

lied to natural obedience to the dynamical principle imply that such particles are perma-

nently and randomly passing from an extreme action trajectory to another; all of them

belonging to the ensemble given by the stochastic Hamilton-Jacobi-Bohm equation.

Also, to correct a wrong interpretation concerning energy conservation, it is shown that

the remaining energy due to these permanent particle-medium interactions (absorption-

emission phenomena) is the so-called quantum potential.

1 Introduction

The central subject of the article [1] is: Quantal particles

(such as electrons), due to its interactions with the environ-

ment, move in accordance with the complex effective action

S e f f = S + i
~

2
ln P (1)

which was obtained following the classical Hamilton’s dy-

namical principle but considering the motion as a whole, that

is, taking averages. The resulting canonical equations coin-

cide with those extracted from the Schrödinger equation writ-

ing ψ=
√

P exp (iS/~), namely:
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is the quantum potential which, visibly, is the remaining en-

ergy of two distinct concurrent phenomena.

The main motivation for writing this addendum concerns

the result
∫
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d3r = 0 (5)

which is not the expression of energy conservation, as argued

in connection with Eg. 23 of the article. In true, the null value

of this average means that the involved energy (the enclosed

quantity) does not remain in the particle; it is radiation, as will

be shown. In doing this, it is necessary to explain how Q — as

an energy resulting from the particle-medium interactions —

agrees with the energy conservation required by the so-called

quantum equilibrium.

Also, in the mentioned article the meaning of the effec-

tive action (1) is not so clear. It was derived supposing a

particle over a possible trajectory; what, in view of the re-

sults, must be true. On the other hand, a continuous trajec-

tory of elementary particles is an experimentally discredited

concept. So, there must be a link between these two oppos-

ing points of view. In true, there is, as will be seen. Indeed,

it will be shown that quantal particles occupies, sequentially

and instantly, just one point over different trajectories which

are randomically chosen in the ensemble (2). This means that

quantal particles don’t move along extreme action trajectories

but occupy trajectories (permited by the dynamical principle)

just for a moment.

The interacting medium — primarily responsible for

quantum effects — is the zero-point field (ZPF) which, ac-

cording to the classical description of the Casimir’s experi-

ment, is viewed as a homogeneous and isotropic distribution

of electromagnetic waves pervading all space. As the phases

of these waves are randomically distributed in the range

[0, 2π], then electrical charged particles (balanced or not) are

permanently receiving unpredictable impulses. This has two

main consequences: First, the accelerated charged particles

radiate all the absorbed energy. Second, the unpredictable im-

pulses prevent quantal particles to follow predictable paths.

Even so, the overall motion obeys the Hamilton’s principle

which is founded on trajectories. How can all this happen?

2 The quantum potential and the ensemble of virtual

trajectories

The answer to the above question lay in the fact that the nat-

ural behavior of any moving particle, at any time, is obeying

the classical dynamical principle. This must be interpreted as

follows: In the absence of random forces, they move along

extreme action trajectories. However, in the case of parti-

cles which are significantly affected by the ZPF the situation

is drastically modified. Indeed, homogeneous, isotropic and

random forces (including beck reaction forces) are not part of

the traditional classical description of the motion.

Here, it will be proved that the quantal motion occurs as

follows: Immediately before any particle-field random inter-

108 Fernando Ogiba. Addendum to “Phenomenological Derivation of the Schrödinger Equation”



Issue 2 (April) PROGRESS IN PHYSICS Volume 10 (2014)

action the particle is over a given trajectory (obedience to

the dynamical principle), but upon receiving an unpredictable

impulse it is withdrawing from this trajectory to an unpre-

dictable place. Again, in the new position it continues obey-

ing the dynamical principle; that is, the particle is over an-

other trajectory. As this is a permanent process, then the parti-

cle occupies these possible trajectories only instantly (virtual

trajectories). In a sense, we can say that the unpredictable

impulse has created initial conditions (arbitrary) for a new

trajectory.

In the light of the foregoing, at each position actually oc-

cupied by the particle pass an infinite number of such virtual

trajectories. This assumption is in agreement with the fol-

lowing facts: First, Eq. (2) represents an ensemble of unpre-

dictable trajectories; P(x, t) — preserving its uniqueness —

can take any value at x. Moreover, ∇P is not deterministic.

Second, energy and momentum in quantum mechanics are in-

dependent of coordinates. This means that everywhere there

are equivalent ensembles of partial derivatives ∂S/∂t and ∇S

— requiring continuous virtual functions S — which on av-

erage give the corresponding observed quantities. This state-

ment implies the same uncertainty everywhere (non locality).

Thirty, Probability density, classically, is defined over trajec-

tories; it is canonically conjugate to the action function S (this

remains valid in the equations above). Over extreme action

trajectories ∂P/∂t = 0 (we know where the particle is at the

time t). Therefore, if ∂P/∂t , 0, then it means that the particle

was “banned” from its trajectory.

To formally prove that the trajectories represented by the

virtual ensemble (2) are instantly visited by the particle, it is

necessary finding a valid expression which leads to the idea

that such trajectories (or momenta ∇S ) are randomly chosen

(or induced) where the particle is. This is better made after

knowing the meaning of the quantum potential.

If a moving particle is not actuated by random forces,

then, given the potential V and the initial conditions, we can

predict its extreme action trajectory. However, the presence

of random forces — exactly like that found in the ZPF —

modify this classical way to see the motion. This rupture re-

lates to the fact that now there is only a probability of finding

the particle at a given position at the time t.

Whenever a particle is removed from a given position by

random forces, the probability of find it there is diminished.

Consequently, as probability is a conserved quantity, this de-

crease of probability leads to the emergence of an outgoing

compensatory probability current. Formally, following stan-

dard techniques and considering the ZPF properties, at each

position there is a diffusion of probability density currents

(Pv), in such a way that

∂P

∂t
+ ∇ · (Pv) = 0 . (6)

In true, Pv represents all possible local outflows of mat-

ter whose velocities v have the directions of the vectors ∇P.

Therefore, all currents obey

Pv = α∇P, (7)

where α is a proportionality factor, to be determined.

Being the matter-field interaction conservative, then there

is no net momentum transfer to the particle. This implies that

the average probability density current is zero, i.e.

∫

P (Pv) d3r =

∫

P (α∇P) d3r = 0 . (8)

Integrating the second form by parts and considering that

P → 0 at infinity, we find that its null value is plenty satis-

fied if α is a constant. In true, it is an imaginary diffusion

constant because there is no effective dislocation of matter in

all directions (this is a single-particle description). In fact, in

accordance with the imaginary part of the effective action (1),

the unpredictable impulses received by the particle are given

by

mv = ∇
(

i
~

2
ln P

)

= i
~

2

∇P

P
, (9)

which, compared with (7), implies that α = i~/2m.

The consequent average kinetic energy induced by the

ZPF on the particle is

〈TZPF〉 =
∫

P

(

1

2
m |v|2

)

d3r , (10)

which considering (9), reads

〈TZPF〉 =
~

2

8m

∫

(∇P)2

P
d3r. (11)

However, the implicated acceleration makes the electrical

charge radiates. So, we must appeal to the general rule con-

cerning accelerated charged particles, namely: The change in

the kinetic energy in the absorption-emission process is equal

to the work done by the field minus the radiated energy. This

is the energy conservation implicit in the determination of the

Abraham-Lorentz back reaction force.

Therefore, varying the average kinetic energy, that is, tak-

ing the functional derivative of (11) with respect to P, we find

that the remaining energy due to particle-field interactions is

δ〈TZPF〉 =
~

2

8m

(

∇P · ∇P

P2
− 2
∇ · ∇P

P

)

, (12)

where, therefore, the first term relates to absorption of radia-

tion, and the second to emission.

Coincidentally, this remaining energy is the quantum po-

tential (4) which, therefore, is the expression of the required

energy conservation implied in the so-called quantum equi-

librium.

At this point we have sufficient valid information to prove

that extreme action trajectories are randomly chosen at each

position actually occupied by the particle.
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Indeed, the probability density conservation (6), consid-

ering (9), reads

∂P

∂t
+ i
~

2m
∇2P = 0 , (13)

which has the shape of a diffusion equation; local diffusion

of probability density currents or virtual outflows of matter at

the actual particle position.

The validity of this equation is unquestionable. In fact, it

is absolutely equivalent to Eq. (3), or

∂(ψ∗ψ)

∂t
+ i
~

2m
∇ · (ψ∗ ∇ψ − ψ∇ψ∗) = 0 , (14)

as can be proven from |∇ψ|2 = −ψ∗∇ψ and the parameterized

forms of S and P in terms of ψ.

Very important, the equations (13) and (3) represent the

same diffusion at each position x actually occupied. Equiv-

alently, these two ways of expressing probability conserva-

tion contain implicitly all possibilities for the particle flow at

x. As Eq. (3) expresses this in terms of ∇S , then ∇S must

represent all possible momenta at x. However, as these par-

tial derivatives require continuous action functions, then there

pass multiple virtual trajectories. One of them infallibly will

be occupied, but only for a moment because in the next posi-

tion the same phenomenon is repeated.

In this sence, the obedience to the dynamical principle,

implicit in the effective action (1), is traduced as follows: At

a given time the particle is over a trajectory represented by the

action S (real part), but at this very moment there is a choice

for the next motion, which is dictated by the probability de-

pendent local action (imaginary part). In other words, the

imaginary part chose the next action function (S ) represent-

ing another trajectory to be occupied during an infinitesimal

time; and so on.

Now, it is possible to correct the interpretation given to

(5) in the article [1]. Just rewrite Eq. (13) in the energy form

i
~

2

1

P
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~

2

4m
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P
, (15)

which implies that
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Being the second member of (15) the emitted energy of

the balance (12), then the result (5) means that the involved

energy doesn’t remain in the particle.

3 Conslusion

The subsequent particle’s positions, randomly chosen in the

interactions, are on different trajectories. Therefore, there are

continuous trajectories, but never followed by quantal parti-

cles. They simply represent the obedience to the mechanical

principle, regardless of where the particle is. Nevertheless, as

these virtual trajectories are inherent to the Schrödinger pic-

ture, then it is expected that they — properly determined and

used as statistical tools - can give the same predictions. How-

ever, the convenience of such procedure needs to be better

discussed.

On the other hand, were highlighted permanent emissions

and absorptions of radiation, meaning that particles are actu-

ated by forces and back reaction forces, which, on average,

are zero. This explains why the interactions become trans-

parent in the quantum description. Nevertheless, speculating,

these permanent absorptions and emissions of electromag-

netic waves (a delicate asymmetry accompanying particles

everywhere) may be important to interpret certain properties

of matter.
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