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Paulo Roberto Silva
Departmento de Fı́sica (Retired Associate Professor), ICEx, Universidade Federal de Minas Gerais,

Belo Horizonte, MG, Brazil. E-mail: prsilvafis@gmail.com

Various parameters tied to the electrical conductivity of typical metals are estimated
and are expressed in terms of universal constants. It happens that they are close to
those found in metallic copper at room temperature. The fact that the realization of
the model occurs at room temperature is explained by using the Landauer’s erasure
principle. The averaged collision time of the electron of conduction is also thought as a
particle lifetime. Finally an analogy is established between the motion of the electron of
conduction and the cosmological constant problem, where a spherical surface of radius
equal to the electron mean free path has been thought as a surface horizon for the charge
carriers.

1 Introduction

Highly purified water is a bad electrical conductor. However,
the addition of small amounts of sodium chloride (NaCl) to
this liquid, can increase its electrical conductivity in a sub-
stantial way. At the ambient temperature (295K), the wa-
ter’s dielectric constant of 80, permits the Na+ and Cl- ions
to move freely through the liquid and this feature can ac-
count for the change in its conductive behavior. It seems
that the concentration of free charge carriers has the most
relevant role in determining the electrical conductivity of the
substances. But what to say about electrical conductivity in
metals? Isolated metallic atoms have their inner electrons
belonging to closed shells and hence tightly bound to their
corresponding atomic nucleus. However the electrons of the
outer most shell are weakly bonded to its respective nucleus.
When arranged in a crystal lattice structure, the bond weak-
ness of these outer electrons is enhanced due to the interac-
tions among neighbor atoms of the lattice, so that the elec-
trons of conduction are free to travel through the whole crys-
tal. Resistance to their motion is due to the thermal vibrations
(phonons) and defects provoked by the presence of impurities
and lattice dislocations. In a perfect crystal at zero absolute
temperature, these free electrons can be described by using
the quantum mechanical formalism of the Bloch waves [1,2].
The concentration of free electrons plays an important role in
the description of the electrical conductivity in metals.

2 Evaluation of typical parameters tied to the electrical

conductivity of metals

A possible way to estimate the concentration of conduction
electrons in a typical good metal will be next presented. An
alternative form to estimate the Casimir force between two
parallel uncharged metallic plates separated by a close dis-
tance d was developed in reference [3]. There, we considered
the cutting of a cubic cavity of edge d in a metallic block.
We imagined that the free electrons in metal as a gas of non-
relativistic particles confined by the vacuum pressure in the
interior of a cubic box of edge equal to d. On the other hand

as was pointed out by Jaffe [12], the Casimir force can be
calculated without reference to the vacuum fluctuations, and
like other observable effects in QED, it vanishes as the fine
structure constant α goes to zero.

In reference [3], we treated a non-relativistic Fermi gas
confined by the vacuum pressure B and found the relation

Bd3 =
2
5

Eav , (1)

where Eav stands for the average energy of the gas. Mean-
while it is convenient to consider that an equivalent way to
treat the problem is by taking in account the electromagnetic
interaction through the dependence of the energy levels of the
system on the fine structure constant α. We reproduce here
some steps of the reasons outlined in reference [3]. One of
the simplest models which exhibits energy levels dependence
on the fine structure α is the Bohr atom, namely

En = −
α2mc2

2n2
= −

E1

n2
. (2)

By taking the maximum occupied energy level equal to N
2 , we

get the maximum energy EM of the system

EM = −
4E1

N2
. (3)

The average energy could be estimated as

EF =
2
N

∫ N
2

1
(−) E1 n−2dn =

2
N

E1
2 − N

N
. (4)

In the limit, as N ≫ 1, we have

Eav = − 2
E1

N
. (5)

Now let us estimate the vacuum pressure. We have

Bd3 = −
2
5
α2mc2

N
=

2
5

Eav . (6)
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By taking p0 =
αmc

2 and λ0 =
h
p0
= 2h
αmc

, it is possible to
make the choice

N =
d

λ0
=
αmcd

2h
. (7)

Inserting equation (7) into equation (6), we obtain

B = −
8

5π
απ2
~c

d4
. (8)

Therefore we notice that by making the choice indicated by
equation (7), the explicit dependence of B on the electron
mass m and on the maximum quantum number N has dis-
appeared. The alternative way we have used in order to treat
the Casimir force problem, permit us to calculate a typical
density of charge carriers in good metals. Let us write

nd3 =
4π
3

N3 3! = 8πN3 . (9)

In equation (9), we have considered the volume of a sphere in
the N-space, and the possible number of permutations among
the Nx, Ny and Nz quantum numbers. Putting equation (7)
into equation (9) we obtain

n = π

(

αmc

h

)3
. (10)

Numerical evaluation of equation (10) gives n = 8.56 ×
1028 m−3, which could be compared with 8.45×1028 m−3, the
density of charge carriers in metallic copper [1, 2]. Mean-
while the Fermi energy of metals could be expressed as [1,4]

EF =
h2

8m

(

3n

π

)
2
3

. (11)

Inserting equation (10) into equation (11), we get

EF =
3

2
3

8
α2mc2. (12)

Numerical estimate of equation (12) gives EF = 7.07 eV,
which naturally is very close to the value found in metallic
copper.

In order to proceed further, let us compute the electrical
conductivity of a typical good metal. To do this we first sup-
pose that we have n scatters per unit of volume and by con-
sidering a prism shaped tube having longitudinal size equal
to the electron mean free path ℓ, width ℓF equal to half of
the Fermi wavelength of the electron, and thickness ℓC equal
to half of its Compton wavelength. If we consider that the
electrical conductivity always happens in a regime of charge
neutrality, the number of scatters per unit of volume will be
equal to the number density of charge carriers, and we can
write

nℓFℓCℓ = n
h

2mvF

h

2mc
vFτ = 1. (13)

In equation (13), ℓC stands for the wavelength of a pho-
ton with a momentum related to the creation of a electron-
positron pair and this corresponds to a minimum thickness of
the prism, which also implies in a maximum τ, the average
time between collisions. From equation (13) we obtain the
relation

nτ =
m2c

π2~2
. (14)

Now, Drude formula for the electrical conductivityσ is given
by ( Kittel [1])

σ =
e2nτ

m
. (15)

Inserting nτ of equation (14) into equation (15), we obtain

σ =
e2mc

π2~2
. (16)

Numerical estimate of the electrical resistivity ρ, gives ρ =
1
σ
= 1.57 × 10−8Ωm which can be compared with the resis-

tivity of the metallic copper measured at the temperature of
295 K, namely ρcopper = 1.70 × 10−8Ωm. From equation (10)
and equation (14) we also obtain the averaged time between
collisions

τ =
1
α3

4h

πmc2
. (17)

Numerical estimate of equation (17) gives τ = 2.65× 10−14s.
This umber must be compared with the value estimated of
τcopper = 2.5 × 10−14s, for copper at the room temperature as
quoted by Allen [2]. It is also interesting to write formulas
for the Fermi velocity vF and the electron mean free path ℓ.
We have

vF =

(

2EF

m

)
1
2

=
3

1
3

2
αc, (18)

and

ℓ = vFτ =
3

1
3 2h

α2πmc
. (19)

These relations for the quantities associated to the electrical
conduction in typical metals are exhibited in table 1, as well
their respective numerical estimates and are also compared
with the corresponding ones quoted for copper at the room
temperature.

3 Realization at the room temperature: a possible expla-

nation

It is an intriguing question why a model describing the elec-
trical conductivity of a typical good metal just realizes itself
in copper crystals at room temperature. The answer to this
question could be elaborated through these reasons.

• As was pointed out by Jacobs [9], Landauer’s era-
sure principle [8] states that: whenever a single bit of
information is erased, the entropy in the environment
to which the information storing system is connected
must increase at least kB ln 2, where kB is the Boltz-
mann’s constant;
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• A free electron in a metal travels in average a distance
equal to its mean free path, with a constant velocity vF ,
until to collide with the ionic vibrations (phonons). In
the collision process, the free electron looses its mem-
ory.

We think that we may associate to the Fermi energy EF , a
string of length equal to its Fermi wavelength, composed by
unit cells having a length equal to the Compton wavelength
of the electron. Let us to introduce a quasi-particle with a
mass-energy µc2 defined as

µc2 = EF

vF

c
. (20)

As we can see from equation (20), this quasi-particle has a
mass-energy equal to the Fermi energy divided by the number
of cells in the string. Defining

∆F = ∆U − T∆S =
1
2
µc2
− kB ln 2 . (21)

And after making the requirement that

∆F |T=T⋆ = 0 , (22)

we obtain the relation

E3
F =

(

kBT⋆
)2

2 (ln 2)2 mc2 . (23)

Putting EF = 7.1eV (table 1) and mc2 = 0.511MeV in equa-
tion (23) and solving for kBT⋆, we find

kBT⋆ = 26 meV (24)

The above number for the characteristic temperature T⋆ must
be compared with kBTRoom = 25 meV. Therefore the ob-
tained result for the characteristic temperature given by equa-
tion (24) seems to make sense to the fact that the realization
of the model for the electrical conductivity of good metals to
happen for copper crystals at the room temperature.

4 Three characteristic lenghts and the grow of a poly-

mer chain

In a paper dealing with the cosmological constant problem
[6], the time evolution of the universe world line was com-
pared with the growing of a polymer chain by making use
of a Flory-like free energy. It is possible to think the electron
mean free path as the length of a polymer chain, composed by
monomers of size equal to the Compton wavelength of elec-
tron. Within this analogy, the radius of gyration of the chain is
identified with the Fermi wavelength of electron. We consider
as in the de Gennes derivation [7] two contributions for the
Flory’s free energy. The first term which goes proportional
to N2

Rd , corresponds to a repulsive-like monomer-monomer in-
teraction. A second term which comes from an entropic con-
tribution, namely a logarithm of a Gaussian distribution (a

signature of a random walk process) goes as R2

(NλC )2 . We write

F =
N2λd

C

Rd
+

R2

Nλ2
C

, (25)

where F is a Flory-like free energy, λC is the Compton length,
N is the number of monomers in the chain, and d is the space-
time dimension. Setting ℓ = NλC and minimizing equation
(25) relative to R, we obtain for the radius of gyration Rg the
relation

Rg = ℓ
3

2+d λ
d−1
2+d

C
. (26)

We identify Rg(d = 4) with the Fermi length of the electron,
λF . We have

λF = (ℓλC)
1
2 . (27)

We observe that equation (27) , relating the three charac-
teristics lengths of the problem, agrees with the upper bound
to the electron mean free path found in reference [13]. Please
see equation (21) of the cited reference. It is worth to no-
tice that the agreement between both calculations occurs just
when the radius of gyration is evaluated in the space-time di-
mension d = 4.

5 High temperature behaviour of the collision time

It would be interesting to evaluate a relation expressing the
high temperature behavior of the collision time appearing in
the Drude formula for the electrical conductivity. By consid-
ering a viscous force which depends linearly on the velocity,
the power dissipated by this force can be written as

dE

dt
= −Fviscousv = −

1
τ

pv . (28)

The power dissipated by this viscous force acting on the
charge carrier will appear as an increasing in the internal en-
ergy of the lattice and we write

dU

dt
= −

dE

dt
=

1
τ

pv . (29)

By taking

p =
~

2R
and vdt = dR , (30)

where the first relation in equation (30) comes from the un-
certainty principle, we get

dU =
~

2τ
dR

R
. (31)

Performing the integration of equation (31) between the limits
R0 =

~

mc
and R1 =

~

mvF
, we obtain

∆U =
~

2τ
ln

c

vF
. (32)

Now, let us consider an entropy variation given by

∆S = kB ln 2D = DkB ln 2 . (33)
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In equation (33), we have written an entropy variation similar
to that considered in applying the Landauer’s erasure princi-
ple [8], but here putting D = 4, by taking in account the four
dimensions of the space-time. Taking the extremum of the
free energy, namely writing

∆F = ∆U − T∆S = 0 , (34)

and solving for τ, we have

τ =
~

8kBT
ln

c

vF
. (35)

In the case of copper
(

vF = 1.57 × 106m s−1
)

at the room tem-
perature (T = 300 K), we find

τcopper (300 K) = 2.4 × 10−14s. (36)

As we can see in table 1, the result of equation (36) is very
close to the room temperature mean collision time of the elec-
trons of conduction in copper, as quoted in the literature.

6 Average collision time as a particle lifetime

There are two characteristics linear momenta that we can as-
sociate to the free electrons responsible for the electrical con-
ductivity in good metals. They are: the Fermi momentum
mvF and the Compton momentum mc. By taking into account
that the free electron has a fermionic character, we will write
a non-linear Dirac-like equation describing the “motion” of
this particle. We have

∂Ψ

∂x
−

1
c

∂Ψ

∂t
=

mvF

~
Ψ −

mc

~
|Ψ⋆Ψ| Ψ . (37)

We see that equation (37) contains only first order derivatives
of the field Ψ. Besides this, the field Ψ has not a spinorial
character. Making the two sides of equation (37) equal to
zero and solving for |Ψ⋆Ψ|, we get

|Ψ⋆Ψ| =
vF

c
=

3
1
3

2
α . (38)

In obtaining equation (38), we also used the result for vF
shown in table 1. On the other hand in the collision process,
the free electron loss its memory. We may think that this fea-
ture looks similar to the annihilation of a particle- antiparticle
pair, each of mass-energy equal to EF . Putting this thing in a
form of the uncertainty principle yields

2EF∆t =
h

2
or

hν

2
= 2EF . (39)

Solving equation (39) for ν, we get

ν =
1
∆t
= 4

EF

h
=

3
2
3

2h
α2mc2. (40)

By combining the results of equation (38) and equation(40)
we obtain the line width Γ tied to the “particle” decay

Γ = ν |Ψ⋆Ψ| =
3

4h
α3mc2 . (41)

Finally the “particle” lifetime τ is given by

τ =
1
Γ
=

4h

3α3mc2
. (42)

Comparing τ giving by equation (42) with the time between
collisions shown in table 1, we verify that the present result
displays the number 3 in the denominator, instead of the num-
ber π which appears in table 1.

Table 1: Formulas related to the electrical conductivity of typical
metals, in terms of universal constants (this work). Numerical esti-
mates of them are compared with those quoted for Copper at room
temperature.

Formula Numerical
estimates

Copper at room tem-
peratures

n = π
(

αmc
h

)3
8.56× 1028 m−3 8.45×1028 m−3 [1,2]

EF =
3

2
3

8 α
2mc2 7.07 eV 7.0 eV [1]

ρ = 1
σ
= π

2
~

2

e2mc
1.57× 10−8Ωm 1.70×10−8Ωm [1,2]

τ = 1
α3

4h
πmc2 2.65 × 10−14 s 2.5×10−14 s [2,5]

vF =
3

1
3

2 αc 1.6× 106 m s−1 1.6 × 106 m s−1 [1]

ℓ = 3
1
3 2h
α2πmc

419Å 400Å [5]

7 Analogy with the cosmological constant problem

In this section we assume, for simplicity, that ~ = c = kB = 1.
One worth point we can consider now is the analogy that can
be made with the cosmological constant problem. Hsu and
Zee [10] have proposed an effective action Ae f f as a means to
deal with the cosmological constant problem. They wrote

Ae f f = −













ΛL4 +
M4

P

Λ













+ independent of Λ-terms, (43)

where MP is the Planck mass, L is the radius of the event
horizon of the universe and Λ is the cosmological constant.
Taking the extremum of this action they got

Λ =

(

MP

L

)2

. (44)
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We could think Ae f f above as a four-dimensional representa-
tion of a kind of free energy, where the first term plays the
role of the internal energy and the second one is related to the
entropy S . The absolute temperature is taken to be equal to
one. We propose that

Ω ∼ exp













M4
P

Λ













(45)

with
S = lnΩ. (46)

On the other hand, there is a proposal [11] that the universe
can be considered as a black hole with its entropy being eval-
uated by counting the number of cells contained in the area
of its event horizon (the holographic principle), namely

S universe ∼

(

L

LP

)2

= L2 M2
P . (47)

By considering the two equivalent ways of the entropy evalu-
ation, from equation (46) and equation (47) relations, we can
write

L2 M2
P =

M4
P

Λ
, (48)

which reproduces the results of Hsu and Zee [10], please see
equation (44). Turning to the problem of the electrical con-
ductivity in good metals, let us consider for instance in a cop-
per crystal an electron of the conduction band which just suf-
fered a collision. In the absence of an external electric field,
all the directions in the space have equal probability to be cho-
sen in a starting new free flight. Therefore if we take a sphere
centered at the point where the electron has been scattered,
with a radius equal to the electron mean free path, the surface
of this sphere may be considered as an event horizon for the
phenomena. Any electron starting from this center will be on
average scattered when striking the event horizon, loosing the
memory of its previous free flight. Besides this, all the lattice
sites of the metallic crystal are treated on equal footing, due
to the translational symmetry of the system. Based on the
previous discussion and inspired on the black hole physics,
let us to define the entropy related on the event horizon for
the electron of conduction in metals. We write

S Metal = π

(

ℓ

w

)2

, (49)

where ℓ is the electron mean free path and w is the equivalent
to the Planck length of the problem. It is possible to write
an action analogous to that of Hsu and Zee [10], in order to
describe the electrical conductivity in metals. We have

AMetal ∼

(

ΛMℓ
4 +

1
Λw4

)

. (50)

Making the equality between the two ways of writing the en-
tropy, namely equaling the entropy of a surface horizon of

radius ℓ and ultra-violet cutoff w with the last term of equa-
tion(50), we get

π

(

ℓ

w

)2

=
1
ΛMw4

, (51)

which leads to
Λ

(− 1
4 )

M
= π

1
4 (ℓw)

1
2 . (52)

Upon to identifyΛ(− 1
4 )

M
with the Fermi wavelength of the elec-

tron λF and w with its Compton wavelength λC , we obtain

λF = π
1
4 (ℓλC)

1
2 . (53)

Relation (53) must be compared with equation (27).
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