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In the analysis of the interior region of both stationary and rotating black holes, it is

customary to switch to a set of in-falling coordinates to avoid problems posed by the

coordinate singularity at the event horizon. I take the view here that to understand the

physics of black holes, we need to restrict ourselves to bookkeeper or Schwarzschild

coordinates of a distant observer if we are to derive measurable properties. I show

that one can derive interesting properties of black holes that might explain some of

the observational evidence available without the necessity of introducing further ad hoc

conjectures.

1 The Schwarzschild black hole

Birkhoff’s theorem [1] assures us that for any non-rotating

spherically symmetric distribution of matter, the gravitational

effect on any test mass is solely due to whatever mass lies

closer to the center of symmetry. This allows us to infer what

happens inside the event horizon, by comparing a hypothet-

ical distribution of matter that is identical but with all mass

outside the point of interest removed, with that of (say) a col-

lapsing star. Making no further assumptions, let the density

at any point inside the event horizon be ρinitial(r) where r is

the reduced distance from the center of symmetry. Now con-

sider a test mass m at a distance rp from the center of a black

hole, but inside an event horizon of radius reh. Now com-

pare this in a thought experiment with a similar test mass m

with an identical distribution of mass but with all mass at a

distance greater than rp set to zero. Clearly, our test mass in

both cases will head towards the origin, but so too will every

other particle that makes up the mass distribution ρinitial but

is not yet at the origin. In our thought experiment, the spher-

ical mass distribution will become increasingly compressed

with our test particle riding on the collapsing surface. A point

in time will be reached in our thought experiment where the

mass enclosed by the collapsing surface becomes a black hole

in its own right. To a distant observer, the test mass can then

never in a finite time cross the event horizon formed by this

newly created black hole. This will be true in our thought ex-

periment, and thus must be equally true in the original black

hole. At this point in time, to have formed a black hole, we

must have

r′ =
2Gm′

c2
,

where m′ is the total mass enveloped by a surface with a ra-

dius of r′. As the test mass was at an arbitrary distance from

the origin, this will become equally true for every point within

the event horizon of the original black hole. As a conse-

quence, the eventual distribution of mass must be such that

for all r less than reh

r =
2G

c2

∫ r

0

4πr2
ρ(r)dr

with ρ(r) being the eventual mass distribution function. This

relation is satisfied by

ρ(r) =
c2

8πGr2
.

The black hole has a density inside its outer event horizon

that is inversely proportional to the square of the (reduced)

distance from the origin.

2 The Kerr black hole

In Boyer-Lindquist coordinates [2], there is a spherical in-

ner event horizon for a Kerr black hole [3]; also in the limit

of zero rotation, these coordinates, not surprisingly, reduce

to Schwarzschild coordinates. The curvature tensors at the

surfaces of the (inner) event horizons seem very different but

are in fact identical. To understand this, see section 3, be-

low. Therefore, in Boyer-Lindquist coordinates, both the Kerr

black hole and the Schwarzschild black hole, have identi-

cal gravitational fields at their respective event horizons and

therefore identical internal structure as a consequence of the

holographic principal [4]. Let us clarify this: they are iden-

tical in Boyer-Lindquist coordinates but not from a viewing

platform here on earth. From here, the spinning black hole

will have an event horizon that appears as an oblate spheroid.

3 Comparing infinities

Consider two men with infinite piles of money, but with one

having additional small piles of money. Which is the richer?

Clearly they are equal. This was an example using scalar

quantities, but let us extend this to vectors. Two vectors each

have an infinite component but one of them has additional

non-zero components at right angles. Which is the larger?

Convert to polar coordinates to see that again they are equal.

The same is true for tensors. Consider first two tensors each

with one large and equal (but not infinite) component, but

one tensor having small non-zero additional components (the

other having all other components at zero). Now scale all

components to the size of the largest by dividing through by

the largest component. Then let the largest component in-

crease without limit. The largest component remains at unity

David Proffitt. Black Hole Structure 169



Volume 10 (2014) PROGRESS IN PHYSICS Issue 3 (July)

whilst all other components approach zero. Thus we are left

with two identical tensors.

4 Consequences

With this solution, every point inside a black hole is sitting on

a local event horizon, where, to a distant observer, time stands

still, and so no two points inside a black hole will ever move

closer together. Consequently, the black hole must be truly

rigid in a way that no other physical object can be; it then fol-

lows directly from consideration of the Ehrenfest paradox [5]

that the angular velocity of a black hole can never increase

— it is fixed at birth. When a black hole increases in mass,

it must also increase in angular momentum in order to keep

the angular velocity constant up to the maximum speed of ro-

tation set by the periphery being unable to exceed the speed

of light, which thus limits the ultimate size a black hole can

grow to. We thus formulate a new fifth law of black hole

dynamics: it is never possible to change the angular ve-

locity of a black hole. Rigidity means that black holes can-

not be deformed by any outside processes, so it is difficult to

comprehend a process that will allow black holes to coalesce.

Ignoring this problem, it can be seen that the limitations of

the laws of black hole dynamics severely restrict the possible

outcomes whenever two black holes meet.

5 Observational justification

No definitive experimental evidence to confirm these results

is produced at this time, but observe that with stellar black

holes we would expect that at creation they would have to

have a typical mass range of 3–30 solar masses. One would

also expect them to be created with high spin due to the con-

servation of the angular momentum of the collapsing (spin-

ning) star. This limits the maximum mass that a stellar mass

black hole could ever grow to. This may apparently be justi-

fied by current observations but leaves the unanswered ques-

tion of how supermassive black holes are ever formed. I sug-

gest that although black holes may never merge, neutron stars

can, and with counter-rotating neutron stars, this can give

rise to a stellar mass black hole with exceptionally low spin.

These black holes are not so limited in growth as normal stel-

lar mass black holes and could grow to become supermas-

sive. All measurements to date suggest that the spin rates for

supermassive black holes are extremely high; that is they are

approaching the end of their growth phase.

6 Counterarguments

In general relativity, any convenient system of coordinates

can be used and is valid [6]. I suggest that as far as obser-

vational data goes, Schwarzschild coordinates are the most

appropriate as these alone can correlate with observations.

Two different coordinate systems — Schwarzschild and in-

falling coordinates — give very different results in the vicin-

ity of a black hole horizon and yet we know that they must

describe the same reality for different observers. Understand-

ing the relation between these two results is therefore cru-

cial to accepting the validity of this result. Consider twins,

one of whom descends towards the event horizon of a black

hole. We accept that one, the traveler, will appear to be slow-

ing down due the gravitational effect on the passage of time.

However, the traveler sees the opposite: time for the stay at

home twin seems to speed up. There is nothing fictitious or

illusory about this — if the traveler returns home, he will cer-

tainly be younger than his twin. Depending upon how close to

the event horizon he travels, he could be many days or years

younger. In principal, he could be 100,000 years younger and

still not have crossed the event horizon. (Apart from the tech-

nical difficulties, we are assuming eternal life.) So when does

the traveler cross the event horizon. By his own watch, it may

be just a few hours but for the stay at home twin it will be

eternity. So the traveler does arrive at the real singularity at

the center, but for the stay at home twin, this is after the Uni-

verse has ceased to exist. Both are real but only one produces

a measurable outcome.
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