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It is suggested herein a test able to reveal the physical evidence of the homogeneous
electromagnetic vector potential field in relation to quantum theory. We take into con-
sideration three reliable entities as main pieces of the test: (i) influence of a potential
vector of the de Broglie wavelength (ii) a G. P. Thomson-like experimental arrangement
and (iii) a special coil designed to create a homogeneous vector potential. The alluded
evidence is not connected with magnetic fluxes surrounded by the vector potential field
lines, rather it depends on the fluxes which are outside of the respective lines. Also the
same evidence shows that the tested vector potential field is a uniquely defined phys-
ical quantity, free of any adjusting gauge. So the phenomenology of the suggested
quantum test differs from that of the macroscopic theory where the vector potential is
not uniquely defined and allows a gauge adjustment. Of course, we contend that this
proposal has to be subsequently subjected to adequate experimental validation.

1 Introduction

The physical evidence of the vector potential A⃗ field, dis-
tinctly of electric and/or magnetic local actions, is known as
Aharonov-Bohm-effect (A-B-eff). It aroused scientific dis-
cussions for more than half a century (see [1–8] and refer-
ences). As a rule in the A-B-eff context, the vector potential
is curl-free field, but it is non-homogeneous (n-h) i.e. spa-
tially non-uniform. In the same context, the alluded evidence
is connected quantitatively with magnetic fluxes surrounded
by the lines of A⃗ field. In the present paper we try to sug-
gest a test intended to reveal the possible physical evidence
of a homogeneous (h) A⃗ field. Note that in both n-h and h
cases herein, we take into consideration only fields which are
constant in time.

The announced test has as constitutive pieces three reli-
able entities (E) namely:

E1: The fact that a vector potential A⃗ field changes the values
of the de Broglie wavelength λdB for electrons. ■

E2: An experimental arrangement of the G. P. Thomson type,
able to monitor the mentioned λdB values. ■

E3: A feasible special coil designed so as to create a h-A⃗
field. ■

Accordingly, on the whole, the test has to put together the
mentioned entities and, consequently, to synthesize a clear
verdict regarding the alluded evidence of a h-A⃗ field.

Experimental setup of the suggested test is detailed in the
next Section 2. Essential theoretical considerations concern-
ing the action of a h-A⃗ field are given in Section 3. The above-
noted considerations are fortified in Section 4 by a set of nu-
merical estimations for the quantities aimed to be measured
through the test. Some concluding thoughts regarding a pos-

sible positive result of the suggested test close the main body
of the paper in Section 5. Constructive and computational
details regarding the special coil designed to generate a h-A⃗
field are presented in the Appendix.

2 Setup details of the experimental arrangement

The setup of the suggested experimental test is pictured and
detailed below in Fig. 1. It consists primarily of a G. P.
Thomson-like arrangement partially located in an area with
a h-A⃗ field. The alluded arrangement is inspired by some
illustrative images [9, 10] about G. P. Thomson’s original ex-
periment and it disposes in a straight line of the following
elements: electron source, electron beam, crystalline grating,
and detecting screen. An area with a h-A⃗ field can be obtained
through a certain special coil whose constructive and compu-
tational details are given in the above-mentioned Appendix at
the end of this paper.

The following notes have to be added to the explanatory
records accompanying Fig. 1.

Note 1: If in Fig. 1 the elements 7 and 8 are omitted (i.e.
the sections in special coil and the lines of h-A⃗ field)
one obtains a G. P. Thomson-like arrangement as it is
illustrated in the said references [9, 10]. ■

Note 2: Surely the above mentioned G. P. Thomson-like ar-
rangement is so designed and constructed that it can be
placed inside of a vacuum glass container. The respec-
tive container is not shown in Fig. 1 and it will leave
out the special coil. ■

Note 3: When incident on the crystalline foil, the electron
beam must ensure a coherent and plane front of de
Broglie waves. Similar ensuring is required [11] for
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Fig. 1: Plane section in the image of suggested experimental setup,
accompanied by the following explanatory records. 1 – Source for a
beam of mono-energetic and parallel moving electrons; 2 –Beam of
electrons in parallel movements; 3 – Thin crystalline foil as diffrac-
tion grating; 4 – Diffracted electrons; 5 – Detecting screen; 6 –
Fringes in the plane section of the diffraction pattern; 7 – Sections
in the special coil able to create a h-A⃗ field; 8 – h-A⃗ field ; ϕ = the
width of the electron beam with ϕ ≫ a (a = interatomic spacing in
the crystal lattice of the foil -3); θk = diffraction angle for the k-th
order fringe (k = 0, 1, 2, 3, . . .); yk = displacement from the center
line of the k-th order fringe; i = interfringe width = yk+1 − yk; D =
distance between crystalline foil and screen (D ≫ ϕ); L = length of
the special coil (L ≫ D) ; I = intensity of current in wires of the
coil.

optical diffracting waves at a classical diffraction
grating. ■

Note 4: In Fig. 1 the detail 6 displays only the linear projec-
tions of the fringes from the diffraction pattern. On the
whole, the respective pattern consists in a set of con-
centric circular fringes (diffraction rings). ■

3 Theoretical considerations concerning action of a h-A⃗
field

The leading idea of the above-suggested test is to search for
possible changes caused by a h-A⃗ field in the diffraction of
quantum (de Broglie) electronic waves. That is why we begin
by recalling some quantitative characteristics of the diffrac-
tion phenomenon.

The most known scientific domain wherein the respective
phenomenon is studied regards optical light waves [11]. In
the respective domain, one uses as the main element the so-
called diffraction grating i.e. a piece with a periodic structure
having slits separated each by a distance a and which diffracts
the light into beams in different directions. For a light nor-
mally incident on such an element, the grating equation (con-
dition for intensity maximums) has the form: a · sin θk = kλ,
where k = 0, 1, 2, . . . In the respective equation, λ denotes the
light’s wavelength and θk is the angle at which the diffracted

light has the k-th order maximum. If the diffraction pattern is
received on a detecting screen, the k-th order maximum ap-
pears on the screen in the position yk given by the relation
tan θk = (yk/D), where D denotes the distance between the
screen and the grating. For the distant screen assumption,
when D ≫ yk, the following relation holds: sinθk ≈ tan θk ≈
(yk/D). Then, with regard to the mentioned assumption, one
observes that the diffraction pattern on the screen is charac-
terized by an interfringe distance i = yk+1 − yk given through
the relation

i = λ
D
a
. (1)

Note the fact that the above quantitative aspects of diffrac-
tion have a generic character, i.e. they are valid for all kinds of
waves including de Broglie ones. The respective fact is pre-
sumed as a main element of the experimental test suggested
in the previous section. Another main element of the alluded
test is the largely agreed upon idea [1–8] that the de Broglie
electronic wavelength λdB is influenced by the presence of a
A⃗ field. Based on the two afore-mentioned main elements the
considered test can be detailed as follows.

In the experimental setup depicted in Fig. 1 the crystalline
foil 3 having interatomic spacing a plays the role of a diffrac-
tion grating. In the same experiment, on the detecting screen
5 it is expected to appear a diffraction pattern of the elec-
trons. The respective pattern would be characterized by an
interfringe distance idB definable through the formula idB =

λdB · (D/a). In that formula, D denotes the distance between
the crystalline foil and the screen, supposed to satisfy the con-
dition D ≫ ϕ), where ϕ represents the width of the incident
electron beam. In the absence of a h-A⃗ field, the λdB of a
non-relativistic electron is known to satisfy the following ex-
pression:

λdB =
h

pkin
=

h
mv
=

h
√

2mE
. (2)

In the above expression, h is Planck’s constant while pkin,
m, v and E denote respectively the kinetic momentum, mass,
velocity, and kinetic energy of the electron. If the alluded en-
ergy is obtained in the source of the electron beam (i.e. piece
1 in Fig. 1) under the influence of an accelerating voltage U,
one can write E = e · U and pkin = mv =

√
2meU.

Now, in connection with the situation depicted in Fig. 1,
let us look for the expression of the electrons’ characteristic
λdB and respectively of idB = λdB · (D/a) in the presence of a
h-A⃗ field. Firstly, we note the known fact [6] that a particle
with the electric charge q and the kinetic momentum p⃗kin =

mv⃗ in a potential vector A⃗ field acquires an additional (add)
momentum, p⃗add = qA⃗, so that its effective (eff) momentum
is P⃗e f f = p⃗kin + p⃗add = mv⃗ + qA⃗. Then for the electrons (with
q = −e) supposed to be implied in the experiment depicted in
Fig. 1, one obtains the effective (eff) quantities

λdB
e f f (A) =

h
mv + eA

; idB
e f f (A) =

hD
a (mv + eA)

. (3)
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Further on, we have to take into account the fact that the h-A⃗
field acting in the experiment presented before is generated
by a special coil whose plane section is depicted by the ele-
ments 7 from Fig. 1. Then from the relation (10) established
in the Appendix, we have A = K · I, where K = µ0N

2π · ln
(

R2
R1

)
.

Add here the fact that in this experiment mv =
√

2meU. Then
for the effective interfringe distance idB

e f f of the diffracted elec-
trons, one finds

idB
e f f (A) = idB

e f f (U, I) =
hD

a
(√

2meU + eK I
) , (4)

respectively

1
idB
e f f (U, I)

= f (U, I) =
a
√

2me
hD

√
U +

aeK
hD

I . (5)

4 A set of numerical estimations

The verisimilitude of the above-suggested test can be forti-
fied to some extent by transposing several of the previous for-
mulas into their corresponding numerical values. For such a
transposing, we firstly will appeal to numerical values known
from G. P. Thomson-like experiments. So, as regarding the
elements from Fig. 1, we quote the values a = 2.55×10−10 m
(for a crystalline foil of copper) and D = 0.1 m. As regard-
ing U, we take the often quoted value: U = 30 kV. Then
the kinetic momentum of the electrons will be pkin = mv =√

2meU = 9.351 × 10−23 kg m/s. The additional (add) mo-
mentum of the electron, induced by the special coil, is of
the form padd = eK × I where K = µ0N

2π × ln
(

R2
R1

)
. In or-

der to estimate the value of K , we propose the following
practically workable values: R1 = 0.1 m, R2 = 0.12 m,
N = 2πR1 × n with n = 2 × 103 m−1 = number of wires
(of 1 mm in diameter) per unit length, arranged into two lay-
ers. With the well known values for e and µ0 one obtains
padd = 7.331 × 10−24(kg m C−1) · I (with C = Coulomb).

For wires of 1 mm in diameter, by changing the polarity
of the voltage powering the coil, the current I can be adjusted
in the range I ∈ (−10 to + 10)A. Then the effective momen-
tum P⃗e f f = p⃗kin + p⃗add of the electrons shall have the values
within the interval (2.040 to 16.662) × 10−23 kg m/s. Con-
sequently, due to the above mentioned values of a and D, the
effective interfringe distance idB

e f f defined in (4) changes in the
range (1.558 to 12.725) mm, respectively its inverse from (5)
has values within the interval (78.58 to 641.84) m−1. Then
it results that in this test the h-A⃗ field takes its magnitude
within the interval A ∈ (−4.5 , +4.5) × 10−4 kg m C−1, (C =
Coulomb).

Now note that in the absence of the h-A⃗ field (i.e. when
I = 0) the interfange distance idB specific to a simple
G. P. Thomson experiment has the value idB = hD

a
√

2meU
=

2.776 mm. Such a value is within the range of values of idB
e f f

characterizing the presence of the h-A⃗ field. This means that
the quantitative evaluation of the mutual relationship of idB

e f f

versus I, and therefore the testing evidence of a h-A⃗ field can
be done with techniques and accuracies similar to those of the
G. P. Thomson experiment.

5 Some concluding remarks

The aim of the experimental test suggested above is to verify
a possible physical evidence for the h-A⃗ field. Such a test can
be done by comparative measurements of the interfringe dis-
tance idB

e f f and of the current I. Additionally it must examine
whether the results of the mentioned measurements verify the
relations (4) and (5) (particularly according to (5) the quantity
(idB

e f f )
−1 is expected to show a linear dependence of I). If the

above outcomes are positive, one can notice the fact that a h-A⃗
field has its own characteristics of physical evidence. Such a
fact leads in one way or another to the following remarks (R):

R1: The physical evidence of the h-A⃗ field differs from the
one of the n-h- A⃗ field which appears in the A-B-eff.
This happens because, by comparison to the illustra-
tions from [12], one can see that: (i) by changing the
values of n-h- A⃗, the diffraction pattern undergoes a
simple translation on the screen, without any modifi-
cation of interfringe distance, while (ii) according to
the relations (4) and (5) a change of h-A⃗ (by means of
current I) does not translate the diffraction pattern but
varies the value of associated interfringe distance idB

e f f .
The mentioned variation is similar to that induced [12]
by changing (through accelerating the voltage U) the
values of kinetic momentum p⃗kin = mv⃗ for electrons. ■

R2: There is a difference between the physical evidence (ob-
jectification) of the h-A⃗ and the n-h-A⃗ fields in relation
with the magnetic fluxes surrounded or not by the field
lines. The difference is pointed out by the following
subsequent aspects:
(i) On the one hand, as it is known from the A-B-eff,
in case of the n-h-A⃗ field, the corresponding evidence
depends directly on magnetic fluxes surrounded by the
A⃗ field lines.
(ii) On the other hand, the physical evidence of the
h-A⃗ field is not connected to magnetic fluxes sur-
rounded by the field lines. But note that due to the rela-
tions (4) and (5), the respective evidence appears to be
dependent (through the current I) on magnetic fluxes
not surrounded by the field lines of the h-A⃗. ■

R3: A particular characteristic of the physical evidence fore-
casted above for the h-A⃗ regards the macroscopic ver-
sus quantum difference concerning the uniqueness
(gauge freedom) of the vector potential field. As is
known, in macroscopic situations [13, 14] the vector
potential A⃗ field is not uniquely defined (i.e. it has a
gauge freedom). In such situations, an arbitrary A⃗ field
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allows a gauge fixing (adjustment), without any alter-
ation of macroscopic relevant variables/equations (par-
ticularly of those involving the magnetic field B⃗). So
two distinct vector potential fields A⃗ and A⃗1 have the
same macroscopic actions (effects) if A⃗1 = A⃗ + ∇ f ,
where f is an arbitrary gauge functions. On the other
hand, in a quantum context, a h-A⃗ has not any gauge
freedom. This is because if this test has positive results,
two fields like h − A⃗ = A · k⃗ and h − A⃗1= h − A⃗ + ∇ f
are completely distinct if f = (−z · A · k⃗), where k⃗
denotes the unit vector of the Oz axis. So we can con-
clude that, with respect to the h-A⃗ field, the quantum
aspects differ fundamentally from those aspects orig-
inating in a macroscopic consideration. Surely, such
a fact (difference) and its profound implications have
to be approached in subsequently more elaborated
studies. ■

Postscript

As presented above, the suggested test and its positive results
appear as purely hypothetical things, despite the fact that they
are based on essentially reliable entities (constitutive pieces)
presented in the Introduction. Of course, we hold that a true
confirmation of the alluded results can be done by the action
of putting in practice the whole test. Unfortunately, at the
moment I do not have access to material logistics able to al-
low me an effective practical approach of the test in question.
Thus I warmly appeal to the concerned experimentalists and
researchers who have adequate logistics to put in practice the
suggested test and to verify its validity.

Appendix: Constructive and computational details for a
special coil able to create a h-A⃗ field

The case of an ideal coil

An experimental area of macroscopic size with the h-A⃗ field
can be realized with the aid of a special coil whose construc-
tive and computational details are presented below. The an-
nounced details are improvements of the ideas promoted by
us in an early preprint [15].

The basic element in designing the mentioned coil is the
h-A⃗ field generated by a rectilinear infinite conductor carrying
a direct current. If the conductor is located along the axis Oz
and the current has the intensity I, the Cartesian components
(written in SI units) of the mentioned h-A⃗ field are given [16]
by the following formulas:

Ax (1) = 0 , Ay (1) = 0 , Az (1) = −µ0
I

2π
ln r . (6)

Here r denotes the distance from the conductor of the point
where the hct-A⃗ is evaluated and where µ0 is the vacuum per-
meability.

Fig. 2: Schemes for an annular special coil.

Note that formulas (6) are of ideal essence because they
describe the h-A⃗ field generated by an infinite (ideal) recti-
linear conductor. Further onwards, we firstly use the respec-
tive formulas in order to obtain the h-A⃗ field generated by an
ideal annular coil. Later on we will specify the conditions
in which the results obtained for the ideal coil can be used
with fairly good approximation in the characterization of a
real (non-ideal) coil of practical interest for the experimental
test suggested and detailed in Sections 2,3 and 4.

The mentioned special coil has the shape depicted in
Fig. 2-(a) (i.e. it is a toroidal coil with a rectangular cross sec-
tion). In the respective figure the finite quantities R1 and R2
represent the inside and outside finite radii of the coil while
L → ∞ is the length of the coil. For evaluation of the h-A⃗
generated inside of the mentioned coil let us now consider an
array of infinite rectilinear conductors carrying direct currents
of the same intensity I. The conductors are mutually paral-
lel and uniformly disposed on the circular cylindrical surface
with the radius R. The conductors are also parallel with Oz
as the symmetry axis. In a cross section, the considered array
is disposed on a circle of radius R as can be seen in Fig. 2b.
On the respective circle, the azimuthal angle φ locates the in-
finitesimal arc element whose length is Rdφ. On the respec-
tive arc there was placed a set of conductors whose number
is dN =

(
N
2π

)
dφ, where N represents the total number of con-

ductors in the whole considered array. Let there be an obser-
vation point P situated at distances r and ρ from the center
O of the circle respectively from the infinitesimal arc (see the
Fig. 2b). Then, by taking into account (6), the z-component
of the h-A⃗ field generated in P by the dN conductors is given
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by relation

Az (dN) = Az (1) dN = −µ0
NI
4π2 ln ρ · dφ , (7)

where ρ =
√(

R2 + r2 − 2Rr cosφ
)
. Then all N conductors

will generate in the point P a h-A⃗ field whose value A is

A = Az (N) = −µ0
NI
8π2

2π∫
0

ln
(
R2 + r2 − 2Rr cosφ

)
· dφ . (8)

In calculating the above integral, the formula (4.224-14) from
[17] can be used. So, one obtains

A = −µ0
NI
2π

ln R . (9)

This relation shows that the value of A does not depend on
r, i.e. on the position of P inside the circle of radius R. Ac-
cordingly this means that inside the respective circle, the po-
tential vector is homogeneous. Then starting from (9), one
obtains that the inside space of an ideal annular coil depicted
in Fig. 2a is characterized by the h-A⃗ field whose value is

A = µ0
NI
2π

ln
(

R2

R1

)
. (10)

From the ideal coil to a real one

The above-presented coil is of ideal essence because their
characteristics were evaluated on the basis of an ideal for-
mula (6). But in practical matters, such as the experimental
test proposed in Sections 2 and 3, one requires a real coil
which may be effectively constructed in a laboratory. That is
why it is important to specify the main conditions in which
the above ideal results can be used in real situations. The
mentioned conditions are displayed here below.

On the geometrical sizes: In a laboratory, it is not possible
to operate with objects of infinite size. Thus we must
take into account the restrictive conditions so that the
characteristics of the ideal coil discussed above to re-
main as good approximations for a real coil of simi-
lar geometric form. In the case of a finite coil having
the form depicted in the Fig. 2a, the alluded restrictive
conditions impose the relations L ≫ R1, L ≫ R2 and
L ≫ (R2 − R1). If the respective coil is regarded as a
piece in the test experiment from Fig. 1, indispensable
are the relations L ≫ D and L ≫ ϕ.

About the marginal fragments: On the whole, the mar-
ginal fragments of coil (of width (R2 − R1)) can have
disturbing effects on the Cartesian components of A⃗ in-
side the the space of practical interest. Note that, on the
one hand, in the above-mentioned conditions L ≫ R1,
L ≫ R2 and L ≫ (R2−R1) the alluded effects can be ne-
glected in general practical affairs. On the other hand,

in the particular case of the proposed coil the alluded
effects are also diminished by the symmetrical flows of
currents in the respective marginal fragments.

As concerns the helicity: The discussed annular coil is sup-
posed to be realized by winding a single piece of wire.
The spirals of the respective wire are not strictly par-
allel to the symmetry axis of the coil (the Oz axis) but
they have a certain helicity (corkscrew-like path). Of
course, the alluded helicity has disturbing effects on the
components of A⃗ inside the coils. Note that the men-
tioned helicity-effects can be diminished (and practi-
cally eliminated) by using an idea noted in another con-
text in [18]. The respective idea proposes to arrange the
spirals of the coil in an even number of layers, with the
spirals from adjacent layers having equal helicity but of
opposite sense.
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