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Each vector of state has its own corresponing element of the CayleyDickson algebra.

Properties of a state vector require that this algebra was a normalized division algebra.

By the Hurwitz and Frobenius theorems maximal dimension of such algebra is 8. Con-

sequently, a dimension of corresponding complex state vectors is 4, and a dimension

of the Clifford set elements is 4×4. Such set contains 5 matrices — among them —

3-diagonal. Hence, a dimension of the dot events space is equal to 3+1.

Further I use CayleyDickson algebras [1, 2]:

Let

1, i, j, k,E, I, J,K

be basis elements of a 8-dimensional algebra Cayley (the oc-

tavians algebra) [1, 2]. A product of this algebra is defined

the following way [1]:

1) For every basic element e:

ee = −1;

2) If u1, u2, v1, v2 are real number then

(u1 + u2i) (v1 + v2i) = (u1v1 − v2u2) + (v2u1 + u2v1) i.

3) If u1, u2, v1, v2 are numbers of shape w = w1 + w2i (ws,

and s ∈ {1, 2} are real numbers, and w = w1 − w2i) then

(

u1 + u2j
) (

v1 + v2j
)

= (u1v1 − v2u2) + (v2u1 + u2v1) j (1)

and ij = k.

4) If u1, u2, v1, v2 are number of shape w = w1 + w2i +

w3j + w4k (ws, and s ∈ {1, 2, 3, 4} are real numbers, and w =

w1 − w2i − w3j − w4k) then

(u1 + u2E) (v1 + v2E) = (u1v1 − v2u2) + (v2u1 + u2v1) E (2)

and
iE = I,

jE = J,

kE = K.

Therefore, in accordance with point 2) the real numbers

field (R) is extended to the complex numbers field (R), and

in accordance with point 3) the complex numbers field is ex-

panded to the quaternions field (K), and point 4) expands the

quaternions fields to the octavians field (O). This method

of expanding of fields is called a Dickson doubling proce-

dure [1].

If

u = a + bi + cj + dk + AE + BI +CJ + K

with real a, b, c, d, A, B,C,D then a real number

‖u‖ :=
√

uu =
(

a2 + b2 + c2 + d2 + A2 + B2 +C2 + D2
)0.5

is called a norm of octavian u [1].

For each octavians u and v:

‖uv‖ = ‖u‖ ‖v‖ . (3)

Algebras with this conditions are called normalized alge-

bras [1, 2].

Any 3+1-vector of a probability density can be repre-

sented by the following equations in matrix form [4, 5]

ρ = ϕ†ϕ ,

jk = ϕ
†β[k]ϕ

with k ∈ {1, 2, 3}.
There β[k] are complex 2-diagonal 4 × 4-matrices of Clif-

ford’s set of rank 4, and ϕ is matrix columns with four com-

plex components. The light and colored pentads of Clifford’s

set of such rank contain in threes 2-diagonal matrices, corre-

sponding to 3 space coordinates in accordance with Dirac’s

equation. Hence, a space of these events is 3-dimensional.

Let ρ(t, x) be a probability density of event A (t, x), and

ρc(t, x|t0, x0)

be a probability density of event A (t, x) on condition that

event B (t0, x0).

In that case if function q(t, x|t0, x0) is fulfilled to condi-

tion:

ρc(t, x|t0, x0) = q(t, x|t0, x0)ρ(t, x), (4)

then one is called a disturbance function B to A.

If q = 1 then B does not disturbance to A.

A conditional probability density of event A (t, x) on con-

dition that event B (t0, x0) is presented as:

ρc = ϕ
†
cϕc

like to a probability density of event A (t, x).
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and
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(all ϕr,s and ϕc,r,s are real numbers).

In that case octavian

u = ϕ1,1 + ϕ1,2i + ϕ2,1j + ϕ2,2k + ϕ3,1E+

+ ϕ3,2I + ϕ4,1J + ϕ4,2K

is called a Caylean of ϕ. Therefore, octavian

uc = ϕc,1,1 + ϕc,1,2i + ϕc,2,1j + ϕc,2,2k + ϕc,3,1E+

+ ϕc,3,2I + ϕc,4,1J + ϕc,4,2K

is Caylean of ϕc.

In accordance with the octavian norm definition:

‖uc‖2 = ρc ,

‖u‖2 = ρ .
(5)

Because the octavian algebra is a division algebra [1, 2]

then for each octavians u and uc there exists an octavian w

such that

uc = wu.

Because the octavians algebra is normalized then

‖uc‖2 = ‖w‖2 ‖u‖2 .

Hence, from (4) and (5):

q = ‖w‖2 .

Therefore, in a 3+1-dimensional space-time there exists

an octavian-Caylean for a disturbance function of any event

to any event.

In order to increase a space dimensionality the octavian

algebra can be expanded by a Dickson doubling procedure:

Another 8 elements should be added to basic octavians:

z1, z2, z3, z4, z5, z6, z7, z8

such that:
z2 = iz1,

z3 = jz1,

z4 = kz1,

z5 = Ez1,

z6 = Iz1,

z7 = Jz1,

z8 = Kz1,

and for every octavians u1, u2, v1, v2:

(u1 + u2z1) (v1 + v2z1) = (u1v1 − v2u2) + (v2u1 + u2v1) z1

(here: if w = w1+w2i+w3j+w4k+w5E+w6I+w7J+w8K with

real ws then w = w1−w2i−w3j−w4k−w5E−w6I−w7J−w8K).

It is a 16-dimensional Cayley-Dickson algebra.

In accordance with [3], for any natural number z there

exists a Clifford set of rank 2z. In considering case for z = 3

there is Clifford’s seven:

β[1] =

[

β[1] 04

04 −β[1]

]

, β[2] =

[

β[2] 04

04 −β[2]

]

, (6)

β[3] =

[

β[3] 04

04 −β[3]

]

, β[4] =

[

β[4] 04

04 −β[4]

]

, (7)

β[5] =

[

γ[0] 04

04 −γ[0]

]

, (8)

β[6] =

[

04 14

14 04

]

, β[7] = i

[

04 −14

14 04

]

. (9)

Therefore, in this seven five 4-diagonal matrices (7) de-

fine a 5-dimensional space of events, and two 4-antidiagonal

matrices (9) defined a 2-dimensional space for the electro-

weak transformations.

It is evident that such procedure of dimensions building

up can be continued endlessly. But in accordance with the

Hurwitz theorem∗ and with the generalized Frobenius the-

orem† a more than 8-dimensional Cayley-Dickson algebra

does not a division algebra. Hence, there in a more than 3-

dimensional space exist events such that a disturbance func-

tion between these events does not hold a Caylean. I call such

disturbance supernatural.

Therefore, supernatural disturbance do not exist in a 3-

dimensional space, but in a more than 3-dimensional space

such supernatural disturbance act.
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∗Every normalized algebra with unit is isomorphous to one of the fol-

lowing: the real numbers algebra R, the complex numbers algebra C, the

quaternions algebra K, the octavians algebra O [1].
†A division algebra can be only either 1 or 2 or 4 or 8-dimensional [2].
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