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The paper concerns a theoretical model on the transport mechanisms occurring when
the charge carriers generated during the working conditions of a fuel cell interact with
point and line defects in a real lattice of solid oxide electrolyte. The results of a model
previously published on this topic are here extended to include the tunnelling of carriers
within the stretched zone of edge dislocations. It is shown that at temperatures appro-
priately low the charge transport turns into a frictionless and diffusionless mechanism,
which prospects the chance of solid oxide fuel cells working via a superconductive
effect.

1 Introduction

The electric conductivity of ceramic electrolytes for solid ox-
ide fuel cells (SOFC) has crucial importance for the science
and technology of the next generation of electric power sour-
ces. Most of the recent literature on solid oxide electrolytes
concerns the effort to increase the ion conductivity at temper-
atures as low as possible to reduce the costs and enhance the
portability of the power cell. The efficiency of the ion and
electron transport play a key role in this respect.

In general different charge transfer mechanisms are active
during the working conditions of a fuel cell, depending on
the kind of microstructure and temperature of the electrolyte.
The ion migration in the electrolyte is consequence of the
chemical reactions at the electrodes, whose global free energy
change governs the charge flow inside the electrolyte and the
related electron flow in the external circuit of the cell. Alio-
valent and homovalent chemical doping of the oxides affects
the enthalpy of defect formation, whose kind and amount in
turn control the diffusivity of the charge carriers and thus their
conductivity. Particularly interesting are for instance multi-
ion [1] and super-ion [2] conduction mechanisms.

Yet in solid oxide electrolytes several reasons allow also
the electronic conduction; are important in this respect the
non-stoichiometric structures originated by appropriate heat
treatments and chemical doping. In general an oxygen va-
cancy acts as a charge donor, because the two electrons re-
lated to O−2 can be excited and transferred throughout the
lattice. Oxygen deficient oxides have better conductivity than
stoichiometric oxides. Typical case is that of oxygen defi-
cient oxides doped with lower valence cations, e.g. ZrO2
with Y or Ca. As a possible alternative, even oxide doping
with higher valence cations enables an increased amount of
electrons while reducing the concentration of oxygen vacan-
cies. Besides, an oxide in equilibrium with an atmosphere of
gas containing hydrogen, e.g. H2O, can dissolve neutral H
or hydride H− or proton H+; consequently the reaction of hy-
drogen and hydrogen ions dissolved in the oxide with oxygen
ions releases electrons to the lattice in addition to the proton
conduction.

Mixed ionic–electronic conductors (MIECs) concern in

general both ion, σi, and hole/electron, σel,conductivities of
the charge carriers. Usually the acronym indicates materi-
als in which σi and σel do not differ by more than 2 orders of
magnitude [3] or are not too low (e.g. σi, σel ≥ 10−5 S cm−1).
According to I. Riess [4], this definition can be extended to
intend that MIEC is a material that conducts both ionic and
electronic charges. A review of the main conduction mech-
anisms of interest for the SOFC science is reported in [5].
Anyway, regardless of the specific transport mechanism ac-
tually active in the electrolyte, during the work conditions of
the cell the concentration profiles of the charges generated by
the chemical reactions at the electrodes look like that qualita-
tively sketched in the figure 1.

It is intuitive that the concentration of each species is
maximal at the electrode where it is generated. The con-

Fig. 1: Qualitative sketch of the concentration profiles of two car-
riers with opposite charges in the electrolyte as a function of their
distance from the electrode where either of them was generated. The
profiles represent average diffusion paths, regardless of the local mi-
croscopic lattice jumps around the average paths.
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centration gradients are sustained by the free energy change
of the global reaction in progress; so the charges are sub-
jected to a diffusive driving force Fc and electric potential
gradient driving force Fϕ, the latter being related to the non-
uniform distribution of charges at the electrodes. In general
both forces control the dynamics of all charge carriers.

This picture is however too naive to be realistic. Dopant
induced and native defects in the lattice of the electrolyte can
interact together and merge to form more complex defects,
in particular when the former and the latter have opposite
charges, until an equilibrium concentration ratio of single to
complex defects is attained in the lattice. Moreover, in addi-
tion to the vacancies and clusters of vacancies, at least two
further crystal features are to be taken into account in a real
material: the line defects and the grain boundaries, which act
as potential barriers to be overcome in order that the ions per-
form their path between the electrodes. The former include
edge and screw dislocations that perturb the motion of the
charge carriers because of their stress field; the latter have a
very complex local configuration because of the pile up of
dislocations, which can result in a tangled dislocation struc-
ture that can even trap the incoming ions and polygonized dis-
location structure via appropriate annealing heat treatments.
For instance hydrogen trapping in tangled dislocations is re-
ported in [6]. Modelling these effects is a hard task; exists in
the literature a huge amount of microscopic [7] and macro-
scopic [8] models attempting to describe the transport mech-
anisms of the charge carriers through the electrolyte.

The former kind of models implements often quantum ap-
proaches to get detailed information on a short range scale of
phenomena; their main problem is the difficulty of theoreti-
cal approach that often requires drastic approximations, with
results hardly extrapolable to the macroscopic behaviour of a
massive body and scarcely generalizable because of assump-
tions often too specific.

The latter kind of models regards the electrolyte as a con-
tinuous medium whose properties are described by statisti-
cal parameters like temperature, diffusion coefficient, electri-
cal conductivity and so on, which average and summarize a
great variety of microscopic phenomena; they typically have
thermodynamic character that concerns by definition a whole
body of material, and just for this reason are more easily gen-
eralized to various kinds of electrolytes and transport mecha-
nisms.

A paper has been published to model realistically the elec-
trical conductivity in ceramic lattices used as electrolytes for
SOFCs [9]; the essential feature of the model was to intro-
duce the interaction between charge carriers and lattice de-
fects, in particular as concerns the presence of dislocations. It
is known that the diffusion coefficient D of ions moving in a
diffusion medium is affected not only by the intrinsic lattice
properties, e.g. crystal spacing and orientation, presence of
impurities and so on, but also by the interaction with point
and line defects. The vacancies increase the lattice jump rate

and decrease the related activation energy, thus enhancing the
diffusion coefficient; this effect is modelled by increasing pur-
posely the value of D, as the mechanism of displacement of
the charge carriers by lattice jumps is simply enhanced but re-
mains roughly the same. More complex is instead the interac-
tion with the dislocation; thinking for simplicity one edge dis-
location, for instance, the local lattice distortion due to stress
field of the extra-plane affects the path of the ions between the
electrodes depending on the orientation of the Burgers vector
with respect to the applied electric field. Apart from the grain
boundaries, where several dislocations pile up after having
moved through the core grain along preferential crystal slip
planes, the problem of the line defects deserves a simulation
model that extends some relevant concepts of the dislocation
science: are known in solid state physics phenomena like dis-
location climb and jog, polygonization structures and so on.

From a theoretical point of view, the problem of ion dif-
fusion in real lattices is so complex that simplifying assump-
tions are necessary. The most typical one introduces a homo-
geneous and isotropic ceramic lattice at constant and uniform
temperature T ; in this way D is given by a unique scalar value
instead of a tensor matrix. Also, the dependence of D and re-
lated conductivity σ upon T are described regardless of their
microscopic correlation to the microstructure, e.g. orienta-
tion and spacing of the crystal planes with respect to the av-
erage direction of drift speed of the charge carriers. Since the
present paper represents an extension of the previous results,
a short reminder of [9] is useful at this point. The starting
points were the mass flow equations

J = −D∇c = cv : (1)

the first equality is a phenomenological law that introduces
the proportionality factor D, the latter is instead a definition
consistent with the physical dimensions of matter flow i.e.
mass/(sur f ace × time). The second Fick law is straightfor-
ward consequence of the first one under the additional conti-
nuity condition, i.e. the absence of mass sinks or sources in
the diffusion medium. Strictly speaking one should replace
the concentration with the activity, yet for simplicity the sym-
bol of concentration will be used in the following. The model
focuses on a solid lattice of ceramic electrolyte, assumed for
simplicity homogeneous and isotropic, where charge carriers
are allowed to travel under concentration gradient and electric
potential field. It is interesting in this respect the well known
Nernst-Einstein equation linking σ to D/kBT , which has gen-
eral valence being inferred through elementary and straight-
forward thermodynamic considerations shortly commented
below; so, in the case of mixed electronic-ionic conduction, it
holds for ions and expectedly for electrons too, being in effect
direct consequence of the Ohm law. Is known the dependence
of D on T ; the Arrhenius-like form D = D0 exp(−∆G/kT )
via the activation free energy ∆G is due not only to the direct
T -dependence of the frequency of lattice jumps inherent D0,
but also to the fact that the temperature controls the amount
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and kind of point defects that affect ∆G. The Nernst-Einstein
equation has conceptual and practical importance, as it allows
calculating how the electrolytes of SOFCs conduct at differ-
ent temperatures; yet it also stimulates further considerations
about the chance of describing the interactions of charges in a
crystal lattice via the concept of “effective mass” and the con-
cept of diffusion coefficient in agreement with the Fick laws.
This point is shortly highlighted as follows.

It is known that the effective mass meff of an electron with
energy E moving in a crystal lattice is defined by meff =

ℏ2
(
∂2E(k)/∂k2

)−1
, being k = 2π/λ and λ the wavelength of

its De Broglie momentum p = h/λ = ℏk. The reason of
this position is shortly justified considering the classical en-
ergy E = p2/2m + U, which reads E = ℏ2k2/2m + U from
the quantum standpoint; U = U(k) is the electron interac-
tion potential with the lattice. If in particular U = 0, then
meff coincides with the ordinary free electron rest mass m.
Instead the interacting electron is described by an effective
mass meff , m; putting U = ℏ2u(k)/m and replacing in E,
one finds instead meff = m(1 + ∂2u/∂k2)−1. In fact the de-
viation of meff from m measures the interaction strength of
the electron with the lattice; it is also known that by intro-
ducing the effective mass, the electron can be regarded as a
free particle with good approximation. Owing to the physical
dimensions length2 × time−1 of ℏ/m, the same as the diffu-
sion coefficient, it is formally possible to put D = ℏqm/m and
Deff = ℏqmeff/meff via appropriate coefficients qm and qeff

m able
to fit the experimental values of D and Deff .

Rewrite thus meff/m as

Deff

D∗
= 1 +

∂2u
∂k2 D =

ℏqm

m
D∗ = qD q =

qmeff

qm
, (2)

which calculate D∗ and thus Deff as a function of the physical
D actually measurable. So, once taking into account the in-
teraction of the electron with the lattice, one could think that
the real and effective electron masses correspond to the actual
D and effective Deff related to its interaction with the electric
field and lattice. Note that the first eq (2) reads

Deff = D∗ + D§ D§ = D∗
∂2u(k)
∂k2 . (3)

Clearly the contribution of D§ to the actual diffusion coef-
ficient Deff is due to the kind and strength of interaction of
the charge carrier with the lattice; thus Deff , and not the plain
D, has physical valence to determine the electrical conduc-
tivity of the electrolyte during the operation conditions of the
cell: the electron in the lattice is not a bare free particle, but a
quasi-particle upon which depends in particular its conductiv-
ity. It is known indeed that electrons in a conductor should be
uniformly accelerated by an applied electric field, but attain
instead a steady flow rate because of their interaction with the
lattice that opposes their motion; the resistivity is due to the
electron-phonon scattering and interaction with lattice ions,

impurities and defects, thermal vibrations. Any change of
these mechanisms affects the resistivity; as a limit case, even
the superconducting state with null resistivity is due itself to
the formation of Cooper pairs mediated just by the interaction
between electrons and lattice. Write thus the Nernst-Einstein
equation as follows

σeff =
1
ρeff =

(ze)2cDeff

kBT
. (4)

The crucial conclusion is that all this holds in principle
for any charge carrier, whatever U and m might be. To un-
derstand this point, suppose that the interaction potential U
depends on some parameter, e.g. the temperature, such that
u = u(k,T ) verifies the condition lim

T→Tc
∂2u/∂k2 = ∞ at a crit-

ical temperature T = Tc. Nothing excludes “a priori” such
a chance, as this condition does not put any physical con-
strain on the macroscopic value of the diffusion coefficient D
nor on the related D∗: likewise as this latter is simply D af-
fected by the applied electric field via the finite factor q, the
same holds for Deff affected by the lattice interaction upon
which depends meff as shown in the eq (2). Thus the limit
lim

T→Tc
(Deff/D) = ∞ concerns D§ only. Being qm > 0 and

qeff
m > 0 but anyway finite, the divergent limit is not unphysi-

cal, it merely means that at T = Tc the related carrier/lattice
interaction implies a new non-diffusive transport mechanism;
this holds regardless of the actual value of D, which still rep-
resents the usual diffusion coefficient in the case of carriers
ideally free or weakly interacting with the lattice in a differ-
ent way, e.g. via vacancies only. In conclusion are possible
two diverse consequences of the charge carrier/lattice defect
interactions: one where D§ , D, i.e. the presence of de-
fects simply modifies the diffusion coefficient, another one
where the usual high temperature diffusive mechanism is re-
placed by a different non-diffusive mechanism characterized
by D§ → ∞, to which corresponds ρeff → 0 at T = Tc. Two
essential remarks in this respect, which motivate the present
paper, concern:

(i) The quantum origin of both eqs (1) is inferred in [10];
this paper infers both equations as corollaries of the statis-
tical formulation of quantum uncertainty. Has been contex-
tually inferred also the statistical definition of entropy S =
−∑ jπ j log(π j) in a very general way, i.e. without hypothe-
ses about the possible gaseous, liquid or solid phase of the
diffusion medium. It has been shown that the driving force
of diffusion is related to the tendency of a thermodynamic
system in non-equilibrium state because of the concentration
gradients towards the equilibrium corresponding to the max-
imum entropy, whence the link between diffusion propensity
and entropy increase.

(ii) The result Deff = D§ +D∗, actually inferred in [9]: the
interaction of the charge carrier with the stress field of one
edge dislocation defines an effective diffusion coefficient Deff

consisting of two terms, D∗ related to its interaction with the
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electric potential of the cell and D§ related to its chemical gra-
dient and interaction with the stress field of the dislocation.

The concept of Deff is further concerned in the next sec-
tion to emphasize that the early ideas of Fick mass flow,
which becomes now effective mass flow, and Einstein Deff-
dependent conductivity are extendible to and thus still com-
patible with the limit case D§ → ∞.

In summary Did → D → D∗ → Deff are the possible
diffusion coefficients of each charge carrier concerned in [9]:
Did is that in an ideal defect free lattice, D that in a lattice
with point defects only, D∗ in the given lattice with an ap-
plied electric potential, Deff in a real lattice with dislocations
under an applied electric potential. The chance of extrapolat-
ing the equation (4) to the superconducting state, despite this
latter has seemingly nothing to do with the diffusion driven
charge displacement, relies on two logical steps.
The first step is to acknowledge that Deff = D§ + D is re-
quired by the presence of dislocations, because Deff cannot
be defined simply altering the value of the plain D; the reason
of it has been explained in [9] and is also summarized in the
next section for clarity.

To elucidate the second step, consider preliminarily D→
Deff simply because D§ ≫ D: in this case the finite con-
tribution D§ due to the charge/dislocation interaction can be
accepted without further problems.

Suppose that a valid physical reason allows a charge car-
rier to move as a free particle in the lattice, regardless of the
concentration gradient or applied potential difference or force
F of any physical nature; in this extreme case, the condition
ρeff → 0 necessarily results by consequence and requires it-
self straightforwardly D§ → ∞ in the Nernst-Einstein equa-
tion. In other words, the second step to acknowledge the
divergent value of D§ is to identify the peculiar interaction
mechanism such that the charge carrier behaves effectively
in the lattice as a free particle at a critical temperature Tc:
the existence of such a mechanism plainly extrapolates to the
superconducting state the eq (4), which is thus generalized
despite the link between σ and D is usually associated to a
diffusive mechanism only.

The present paper aims to show that thanks to the fact of
having introduced both point and line lattice defects in the
diffusion problem, the previous model can be effectively ex-
tended to describe even the ion superconducting state in ce-
ramic electrolytes. It is easy at this point to outline the or-
ganization of the present paper: the section 2 shortly sum-
marizes the results exposed in [9], in order to make the ex-
position clearer and self-contained; the sections 3 and 4 con-
cern the further elaboration of these early results according
to the classical formalism. Eventually the section 5 reviews
from the quantum standpoint the concepts elaborated in sec-
tion 4. Thus the first part of the paper concerns in particular
the usual mechanism of charge transport via ion carriers, next
the results are extended to the possible superconductivity ef-
fect described in the section 5. A preliminary simulation test

in the section 5.1 will show that the numerical results of the
model in the particular case where the charge carrier is just
the electron match well the concepts of the standard theory of
superconductivity.

2 Physical background of the model

The model [9] assumes a homogeneous and isotropic elec-
trolyte of ceramic matter at uniform and constant temperature
everywhere; so any amount function of temperature can be re-
garded as a constant. The electrolyte is a parallelepiped, the
electrodes are two layers deposited on two opposite surfaces
of the parallelepiped. The following considerations hold for
all charge carriers; for simplicity of notation, the subscript i
that numbers the i-th species will be omitted. Some remarks,
although well known, are shortly quoted here because use-
ful to expose the next considerations in a self-contained way.
Merging the flux definition J = cv and the assumption J =
−D∇c about the mass flux yields v = −D∇ log(c). Introduce
then the definition v = βF of mobility β of the charge carrier
moving by effect of the force F acting on it; one infers both
D = kBTβ and F = −∇µ together with µ = −kBT log(c/co).
An expression useful later is

F =
kBT
D

v =
kBT
Dc

J. (5)

So the force is expressed through the gradient of the potential
energy µ, the well known chemical potential of the charge
carrier. The arbitrary constant co is usually defined as that of
equilibrium; when c is uniform everywhere in the diffusion
medium, the driving force of diffusion vanishes and the Fick
law predicts a null flow of matter, which is consistent with
c ≡ co. Another important equation is straightforward conse-
quence of the link between mass flow and charge flow; since
the former is proportional to the number of charged carriers,
each one of which has charge ze, one concludes that Jch = zeJ
and so βch = zeβ. Let the resistivity ρ be summarized macro-
scopically by Ohm’s law ρJch = −∇ϕ = E; i.e. the charge
carrier interacts with the lattice while moving by effect of the
applied electric potential ϕ and electric field E. The crucial
eq (4) is inferred simply collecting together all statements just
introduced in the following chain of equalities

Jch = σE = zecv = zecβchE =

= (ze)2cβE =
(ze)2EcD

kBT
= −cDze∇ϕ

kBT
. (6)

Moreover the effect of an electric field on the charge car-
riers moving in the electrolyte is calculated through the last
sequence of equalities recalling that the electric and chemical
forces are additive. Consider thus the identity

Ftot = −∇µ − αze∇ϕ = −kBT
c

(
∇c + α

zec∇ϕ
kBT

)
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where α is the so called self-correlation coefficient ranging
between 0.5 to 1; although usually taken equal to 1 and omit-
ted [11], it is quoted here by completeness only. Recalling
the mobility equation kBT/c = D/βc and noting that Fβc is
just a mass flow, the result is

Jtot = −D
(
∇c + α

zec
kBT
∇ϕ

)
=

cD
kBT

(∇µ − αze∇ϕ) . (7)

So far D has been introduced without mentioning the dif-
fusion medium, in particular as concerns its temperature and
the presence of lattice defects of the ceramic crystal. As the
point defects simply increase the frequency of lattice jumps
[12] and thus the value of the diffusion coefficient, in these
equations D is assumed to be just that already accounting for
the vacancy driven enhancement. As concerns the presence of
edge and screw dislocations also existing in any real crystal,
the paper [9] has shown that in fact the dislocations modify
significantly the diffusion mechanism in the electrolyte: their
stress field hinders or promotes the charge transfer by creating
preferential paths depending on the orientation of the disloca-
tion stress field with respect to the electrode planes. In par-
ticular the dislocation affects the mobility of the charge carri-
ers, as it is intuitive to expect: phenomena like the climbing,
for instance, occur when a dislocation or isolated atoms/ions
move perpendicularly to the extra plane of another disloca-
tion to overcome the compression field due to the local lattice
distortion. Moreover, in the case of edge dislocations the fig-
ure 2 shows the possibility of confinement of light atoms, e.g.
typically C and N, along specific lattice directions perpendic-
ular to the Burgers vector; this emphasizes the importance of
the orientation of grains and dislocations with respect to the
average path of the charges between the electrodes.

Assume first one lonely dislocation in a single crystal lat-
tice; this case allows a preliminary assessment of the interac-
tion between charge carriers travelling the lattice in the pres-
ence of an applied potential field. In the case of edge disloca-
tion the shear stress component on a plane at distance y above
the slip plane is known to be σxy = [8πy(1 − ν)]−1Gb sin(4θ),
being ν the Poisson modulus, G the shear modulus, b = |b|
and b the Burgers vector, θ is the lattice distortion angle in-
duce by the extra plane on the neighbour crystal planes [13].
Moreover the modulus of the force per unit length of such
dislocation is F(d) = bσxy, where the superscript stands for
dislocation. Hence, calling l(d) the length of the extra plane,
the force field due to one dislocation is

F(d) = [8πy(1 − ν)]−1Gb2l(d) sin(4θ)ub

where ub is a unit vector oriented along the Burger vector, i.e.
normally to the dislocation extra plane. It is known that atom
exchange is allowed between dislocations; the flow J of these
atoms within a lattice volumeΩ is reported in the literature to
be

J = DL∇µ/(ΩkBT ) µ = −kT log(cΩ),

being µ the chemical potential and DL the appropriate diffu-
sion coefficient; for clarity are kept here the same notations
of the original reference source [14]. Actually this flow is
straightforward consequence of the Fick law, as it appears
noting that the mass mΩ of atoms within the volume Ω of
lattice corresponds by definition to the average concentration
cΩ = mΩ/Ω; so the atom flow between dislocations at a mu-
tual distance consistent with the given Ω is nothing else but
the diffusion law JΩ = −DL∇cΩ itself, as it is shown by the
following steps

JΩ = −DL∇cΩ = −cΩDL∇ log(cΩ)

=
cΩDL

kBT
∇µ = mΩ

Ω

DL

kBT
∇µ.

(8)

Thus the flow J = JΩ/mΩ reported in the literature de-
scribes the number of atoms corresponding to the pertinent
diffusing mass. The key point of the reasoning is the appro-
priate definition of the diffusion coefficient DL, which here
is that of a cluster of atoms of total mass mΩ rather than
that of one atom in a given matrix. Once having introduced
F(d), it is easy to calculate how the flow of the charge carri-
ers is influenced by this force field via the related quantities
D(d) = kBTβ(d) and v(d) = β(d)F(d); in metals, for instance,
it is known that the typical interaction range of a disloca-
tion is of the order of 10−4 cm [13]. The contribution of
this exchange to the charge flow is reasonably described by
J(d) = F(d)D(d)c/kBT according to the eq (5). Consider now
F(d) as the average field due to several dislocations, while the
same holds for β(d) and D(d), which are therefore related to
the pertinent σ(d); omitting the superscript to simplify the no-
tation, eq (7) reads thus

Jtot = −D
(
∇c + α

zec
kBT
∇ϕ − cF

kBT

)
F =< F(d)(G, ν, l(d),b) > . (9)

In this equation D has the usual statistical meaning in a
real crystal lattice and includes the electric potential as well.
Here the superscript has been omitted because also F denotes
the statistical average of all the microscopic stress fields F(d)

existing in the crystal. One finds thus with the help of the
continuity condition

∇·
[
D

(
∇c + α

zec
kBT
∇ϕ − cF

kBT

)]
=
∂c
∂t

D = D(T, c, t) (10)

where c and v are the resulting concentration and drift veloc-
ity of the i-th charge carrier in the electrolyte. In general the
diffusion coefficient depends on the local chemical composi-
tion and microstructure of the diffusion medium. Moreover
the presence of F into the general diffusion equation is re-
quired to complete the description of the charge drift through
a real ceramic lattice by introducing a generalized thermody-
namic force, justified from a microscopic point of view and
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thus to be regarded also as a statistical macroscopic param-
eter. This force, considered here as the average stress field
resulting from the particular distribution of dislocation arrays
in the lattice, accounts for the interaction of a charge carrier
with the actual configuration of lattice defects and is expected
to induce three main effects: (i) to modify the local velocity
v of the charge carrier, (ii) to modify the local concentration
of the carriers (recall for instance the “Cottrel atmospheres”
that decorate the dislocation), (iii) to modify the local electric
potential because altering the concentration of charged parti-
cles certainly modifies the local ϕ. Accordingly, considering
again the average effects of several dislocations in a macro-
scopic crystal, it is reasonable to write

cF
kBT

=
mcv̇
kBT
+ a∇c + Γ

v̇ = v̇(c) Γ = Γ(c, ϕo) c = c(x, y, z, t,T )

being a a proportionality constant. The first addend at right
hand side accounts for the effect (i), the second for the ef-
fect (ii), the vector Γ for the effect (iii) because it introduces
the local potential ϕo due to the charges piled up around the
dislocation; the dependence of these quantities on c of the
pertinent carrier emphasizes the local character of the respec-
tive quantities depending on the time and space coordinates.
The final step is to guess the form of Γ in order to introduce
in the last equation the electrochemical potential αϕ + µ/ze
inferred from the eq (7) . As motivated in [9], Γ is defined
as a local correction of ϕ because of the concentration of the
charge carriers; with the positions

Γ =
cα

kBT
∇ (zeϕ + µ) − zeϕoα

kBT
∇c a = 1 − α

eq (10) turns into

∇ ·
[

mv
kBT

∂(cD)
∂t
+

zeϕoα

kBT
D∇c

]
=
∂C
∂t

(11)

where

C = c +
m

kBT
∇ · (cDv) ϕo = ϕo(x, y, z, t).

The function ϕo has physical dimensions of electric po-
tential. Eventually, owing to this definition of C, the last
equation reads

∇ ·
[
(D∗ + D§)∇C

]
=
∂C
∂t

(12)

being

D∗ =
zeϕo

kBT
αD

m
kBT

∂(cD)
∂t

v = D∗∇(C − c) + D§∇C.

These considerations show that it is possible to define an ef-
fective diffusion coefficient in the presence of an applied po-
tential ϕ and taking into account the presence of point and
line defects

Deff = D∗ + D§. (13)

This equation is equal to that inferred via the effective mass
of the charge carrier interacting with the lattice, see the eq
(3); D§ is defined by the last eq (12) accounting via C for
the presence of dislocations in a real ceramic electrolyte. Ac-
cordingly, the equation (13) is modified as follows

Deff

D
= α

zeϕo

kBT
+

D§

D
σeff =

1
ρeff =

Deff

D
σ. (14)

The solution of the eq (10) via the eq (12) to find the an-
alytical form of the space and time profile of c is described
in [9]; it is not repeated here because inessential for the pur-
poses of the present paper. Have instead greater importance
the result (13) and the following equations inferred from the
eqs (11) and (12)

∇ · (cDv) = 0, C ≡ c, v =
kBT
m

D§

∂(cD)/∂t
∇c. (15)

The consistency of the first equation with the eq (12) has
been therein shown. This condition requires that the vector
cDv, having physical dimensions of energy per unit surface,
is solenoidal i.e. the net flow of carriers crossing the volume
enclosed by any surface is globally null; this holds for all car-
riers and means absence of source or sinks of carriers around
any closed surface. Note that this condition is fulfilled by

v =
B

cD
(16)

with

B = iBx(y, z, t) + jBy(x, z, t) + kBz(x, y, t) |B| → energy
sur f ace

.

The vector B is defined by arbitrary functions whose ar-
guments depend on the coordinate variables as shown here:
at any time and local coordinates the functions expressing the
components of B can be appropriately determined in order to
fit the corresponding values of vcD resulting from the solu-
tion of the eq (10). Hence the positions (15) do not conflict
with this solution, whatever the analytical form of v and c
might be; the third equality (15) defines D§ = D§(c,D, v,T ).
The central result to be implemented in the present model is

v =
kBT
η

D§
∇c
m
= ΩD§∇n (17)

where

η =
∂(cD)
∂t

n =
c
m

Ω =
kBT
η

with n numerical density of the given carrier and η energy
density corresponding to the time change of cD; the volume
Ω results justified by dimensional reasons and agrees with the
fact that the diffusion process is thermally activated. More-
over one finds

v =
B

cD
=
Ω

m
D§∇c = D§

∇c
c

m = cΩ. (18)
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Owing to the importance of the third eq (15) for the pur-
poses of the present paper, it appears useful to verify its va-
lidity; this check is shortly sketched below by demonstrating
its consistency with relevant literature results.

First of all, the eq (17) leads itself to the literature re-
sult (8); the key points are the definition of mobility β and
its relationship to the diffusion coefficient β = D/kT previ-
ously reported in the eq (5). Let the atom exchange between
dislocations be thermally activated, so that holds the last eq
(17). Being v = D§∇µ/kBT according to the eq (18), then
DLF/kBT = −D§∇µ/kBT specifies DL ≡ D§, i.e. the dif-
fusion coefficient is that pertinent to the interaction of atoms
with the concerned dislocations; moreover the force F ≡ −∇µ
acting on the atoms corresponds to the change of chemical po-
tential related to the migration of the atoms themselves. Since
these relationships are directly involved in the Fick equation
inferred in section 1, it follows that the eq (15) fits well the
model of concentration gradient driven diffusion process.

Furthermore let us show that eq (15) implies the link be-
tween ∇µ and the stress τ that tends to move preferentially
dislocations with Burgers vector favourably oriented in a
crystal matrix, e.g. perpendicularly to a tilt boundary plane
[14]; this stress produces thus a chemical potential gradi-
ent between adjacent dislocations having non-perpendicular
component of the Burgers vector. Once more D to be im-
plemented here is just the diffusion coefficient D§ pertinent
to the interaction with the dislocation and thus appropriate to
this specific task. Assuming again kBT/η ≈ Ω, then F = −∇µ
yields FΩ = −(kBT/η)∇µ. If two dislocations are at a dis-
tance d apart, then Ω = Ad/2 for each dislocation, being A
the surface defined by the length L of the dislocations and the
height of their extra-planes; so Ad is the total volume of ma-
trix enclosed by them, whereas Ad/2 is the average volume
defined by either extra-plane and its average distance from an
equidistant atom, assumed d/2 apart from each dislocation.
Being 2FΩ/(Ad) = −∇µ, the conclusion is that 2τΩ/d = −∇µ
with τ = F/A, which is indeed the result reported in [14].

Finally let us calculate with the help of the eq (15) also
the atom flux I = AJ/m between dislocations per length of
boun-dary of cross section A in direction parallel to the tilt
axis. The following chain of equations

I = −ADL∇c
m

= −ADL∇c
cΩ

= −ADL∇ log(c)
Ω

=

=
DLA∇µ
kBTΩ

= −2DLF
kBTd

= −2DLLτ
kBT

τ =
F
Ld

yields the literature result −2DLτ/kT per unit length of dislo-
cation [14].

All considerations carried out from now on are self-
contained whatever the analytical form of c might be. In the
following the working temperature T of the cell is always re-
garded as a constant throughout the electrolyte.

Fig. 2: A: Cross section of the stretched zone of an edge dislocation
at the interface between the lower boundary of the extra plane and
the perfect lattice. B: Equilibrium position of an atom, typically
carbon or nitrogen, in the stretched zone after stress ageing.

3 Outline of the charge transport model

In general, the macroscopic charge flow within the electrolyte
of a SOFC cell is statistically represented by average concen-
tration profiles of all charges that migrate between the elec-
trodes. The profiles of the ions during the working condition
of the cell, qualitatively sketched in the fig. 1, are in effect
well reproduced by that calculated solving the diffusion equa-
tion (12) [9]. The local steps of these paths consist actually
of random lattice jumps dependent on orientation, structure
and possible point and line defects of the crystal grains form-
ing the electrolyte, of course under the condition that the dis-
placement of the charge carriers must be anyway consistent
with the overall formation of neutral reaction products. So v
and∇n of the eqs (17) are average vectors that consist actually
of local jumps dependent on how the charge carriers interact
each other and with lattice defects, grain boundaries and so
on. The interaction of low sized light atoms and ions with
the lattice distortion due to the extra plane of a dislocation
has been concerned in several papers, e.g. [15]: the figure
2A shows the cross section of the stretched zone of an edge
dislocation, the fig. 2B the location of a carbon atom in the
typical configuration of the Cottrell atmosphere after strain
ageing of bake hardenable steels. The segregation of N and
C atoms, typically interstitials, on dislocations to form Cot-
trell atmospheres is a well known effect; it is also known that
after forming these atmospheres, energy is required to unpin
the dislocations: Luders bands and strain ageing are macro-
scopic evidences of the pinning/unpinning instability. These
processes are usually activated by temperature and mechani-
cal stresses.

Of course the stress induced redistribution and ordering of
carbon atoms has 3D character and has been experimentally
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Fig. 3: 3D representation of the static Cottrell configuration of sev-
eral carbon atoms after interaction with the stress field of an edge
dislocation. B: dynamical flow of charge carriers that tunnel along
the length of the extra plane of the dislocation.

verified in ultra low carbon steels; the configuration reported
in the literature and redrawn in fig 3A explains the return to
the sharp yield point of the stress-strain curve of iron [16].

The chance that light atoms line up into the strained zone
of an edge dislocation is interesting for its implications in the
case of mixed conductivity in ceramic electrolytes. It is rea-
sonable to guess that the aligned configuration sketched in
fig. 3A is in principle also compatible with the path of mo-
bile charge carriers displacing along this transit trail, as repre-
sented in the fig. 3B. Among all possible paths, the next sec-
tion concerns in particular the conduction mechanism that oc-
curs when low atomic number ions tunnel along the stretched
zone at the interface between the extra-plane of an edge dis-
location and the underlying perfect lattice. The mechanism
related to this specific configuration of charges involves di-
rectly the interaction of the carriers with the dislocation and
thus is described by the eq (15), which indeed depends explic-
itly upon D§. From a classical point of view, is conceivable
in principle an ideal fuel cell whose electrolyte is a ceramic
single crystal with one edge dislocation spanning the entire
distance between the electrodes; in this particular case, there-
fore, is physically admissible a double conduction mecha-
nism based on the standard diffusive process introduced in [9]
plus that of ion tunnelling throughout the whole electrolyte
size. Regarding the tunnel path and the whole lattice path as
two parallel resistances, the Kirchhoff laws indicate how the
current of charge carriers generated at the electrodes shunts
between either of them. This is schematically sketched in the
figure 4.

The tunnel mechanism appears reasonable in this context
considering the estimated electron and proton classical radii,
both of the order of 10−15 m, in comparison with the lattice

Fig. 4: Shunt effect of charge carriers between dislocation path and
lattice path of different resistivity. On the left is sketched the pos-
sible path within and in proximity of the stretched zone of an edge
dislocation; on the right is shown the corresponding electric circuit
of the currents crossing the electrolyte.

spacing, of the order of some 10−10 m. A short digression
about the atom and ion sizes with respect to the crystal cell
parameter deserves attention. Despite neither atoms nor ions
have definite sizes because of their electron clouds lack sharp
boundaries, their size estimate allowed by the rigid sphere
model is useful for comparison purposes; as indeed the Cot-
trel atmospheres of C and N atoms have been experimentally
verified, the sketch of the fig. 3A suggests by size comparison
a qualitative evaluation about the chance of an analogous be-
haviour of ions of interest for the fuel cells. The atomic radius
is known to be in general about 104 times that of the nucleus,
the radii of low atomic number elements typically fall in the
range 1÷100 pm [17]. Specifically, the covalent values for C,
N and O atoms are 70, 65 and 60 pm respectively; it is known
that they decrease across a period. The ionic radii of low
atomic number elements are typically of the order of 100 pm
[18]; they are estimated to be 0.1 and 0.14 nm for Na+ and
O=. It is known that the average lattice parameters of solid
oxides increase about linearly with cationic radii [19]; typi-
cal values of lattice average spacing are of the order of 0.5-0.6
nm. As the stretched zone of a dislocation has size necessarily
greater than the unstrained spacing, one reasonably concludes
that, at least in principle, not only the proton and nitrogen
and carbon atoms but even oxygen ions have sizes compatible
with the chance of being accommodated in the stretched zone
underlying the dislocation extra-plane. These estimates sug-
gest by consequence that even low atomic number ion con-
duction via channelling mechanism along the stretched zone
of the dislocation is reasonably possible. It is known that pro-
ton conducting fuel cells typically work with protons crossing
of polymer membranes from anode to cathode, whereas in-
SOFCs oxygen ions migrate through the ceramic electrolyte
from cathode to anode; yet the tunnelling mechanism seems
in principle consistent with both kinds of charge carriers in
typical SOFC electrolytes.
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Consider now the case where the driving energy of the
segregation process of atoms to dislocations is not only the
lattice strain of the ceramic electrolyte but, during the work-
ing cycle of a fuel cell, also the free energy that generates
ions at the electrodes and compels them migrating by effect of
the electric potential; the alignment of several ions confined
along the dislocation length sketched in fig. 3A has thus a
dynamical valence, i.e. it suggests the specific displacement
mechanism that involves the tunnelling of ions throughout the
stretched zone of an edge dislocation at its boundary with the
perfect lattice. In other words, one can think that the line of
foreign light ions along this zone is also compatible with the
particular migration path of such ions generated at either elec-
trode; certainly the proton is a reasonable example of carrier
compliant with such particular charge transport mechanism,
as qualitatively sketched in fig. 3B. These considerations ex-
plain the difference between D, the usual diffusion coefficient
of a given ion in a given lattice with or without point defects,
and Deff , which in this case is the effective diffusion coef-
ficient of the same ion that moves confined in the stretched
zone of the dislocation. This conclusion agrees with and con-
firms the idea that the electric conductivity is related to Deff

and not to D, because the former only accounts for this par-
ticular kind of interaction between charge carrier and dislo-
cation. Also, just for this reason in the fig. 4 the resistivity
of ions with different kind of interaction with the dislocation,
i.e. inside it along the stretched zone and outside it in the
lattice compression zone, have been labelled respectively ρeff

1
and ρeff

2 . Despite Deff is related generically to any interaction
mechanism possible when charge carriers move in the pres-
ence of dislocations, it will be regarded in the following with
particular reference to the charge tunnelling mechanism just
introduced.

4 Classical approach to elaborate the early results [9]

The experimental situation described in this section, in princi-
ple possible, is the one of a unique edge dislocation crossing
throughout the single crystal ceramic electrolyte and arbitrar-
ily inclined with respect to plane parallel electrodes. The fol-
lowing discussion concerns the eq (17) and consists of two
parts: the first part has general character, i.e. it holds at any
point of the ceramic lattice, in which case the presence of the
dislocation merely provides a reference direction to define
specific components of v; the second part aims to describe
the particular mechanism of transport of charges that tunnel
along the stretched zone of the dislocation, which in fact is
the specific case of major interest for the present model.

4.1 Charge transport in the electrolyte lattice

Regard in general the drift velocity v of a charge carrier as
due to a component v∥ parallel to the tunnelling direction and
a component v⊥ perpendicular to v∥; so the eq (17) yields

v = v∥ + v⊥ v∥η = kBT D§∥∇n ± η′va (19)

v⊥η = kBT D§⊥∇n ∓ η′va D§∥ + D§⊥ = D§

where η′ has physical dimensions of energy per unit volume
and va is an arbitrary velocity vector: with the given signs,
the third equation is fulfilled whatever va and η′ might be. Of
course the components of v are linked by

v =
√

v2
∥ + v2

⊥ v⊥ =
(
u∥ −

uo

uo · u∥

)
v∥ u∥ =

v∥
v∥

(20)

with v = |v| given by the solution of the set (12) of diffusion
equations; the same notation holds for the moduli v∥ and v⊥.
The arbitrary unit vector uo is determined in order to satisfy
the first equation; trivial manipulations yield indeed

v =
v∥

cosφ
v2
⊥ = v2

∥

(
1

cos2φ
− 1

)
uo · u∥ = cosφ, (21)

which fits v2 via an appropriate value of cosφ. Moreover the
eq (17) yields

v∥ = ΩD§u∥ · ∇n, (22)

which in principle is fulfilled by an appropriate value of Ω
whatever the actual orientation of uo and related value of
cosφ in the eqs (21) might be. Consider now that also the
thermal energy kBT = mv2

T/2 contributes to the velocity of
the carriers crossing the electrolyte, and thus must someway
appear in the model; vT defined in this way is the average
modulus of the velocity vector vT , whose orientation is by
definition arbitrary and random. During the working condi-
tions of the cell it is reasonable to expect that the actual dy-
namics of charge transport is described combining vT , due to
the heat energy of the carrier in the electrolyte, with v, due to
its electric and concentration gradient driving forces. Let us
exploit va of the eqs (19) to introduce into the problem just
the vector vT of the carriers; hence

v∥ =
D§∥
D§

v± η
′

η
vT v⊥ =

D§⊥
D§

v∓ η
′

η
vT va ≡ vT . (23)

These equations express the components of v along the
tunnel direction and perpendicularly to it. Of course v is the
actual velocity of the charge carrier resulting from the solu-
tion of the eq (12), v∥ and v⊥ are the components of v affected
by the thermal perturbation consequently to either sign of vT ;
the notations v±∥ and v∓⊥, in principle more appropriate, are
implied and omitted for simplicity. So in general

v∥ = r∥v±rvT v⊥ = r⊥v∓rvT r =
η′

η
r∥ =

D§∥
D§

(24)

r⊥ =
D§⊥
D§

r∥ + r⊥ = 1.

As expected, the velocity components result given by the
respective linear combinations of v and vT . Here it is reason-
able to put r = 1 in order that v∥ → ±vT and v⊥ → ∓vT for
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v → 0; as this reasonably occurs for T → 0, it means that
both components of v tend to the respective values consistent
with the zero point energy of the charge carrier. Note in par-
ticular that the second eq (24) vT = ±(r⊥v−v⊥) yields thanks
to the eqs (21) v2

T = (r⊥v)2 + v2
⊥ − 2r⊥v · v⊥, i.e.

v2
T = r2

⊥
v2
∥

cos2φ
+ v2
∥ tan2φ − 2r⊥v2

⊥ = (25)

=

(
r2
⊥

cos2φ
+ (1 − 2r⊥)tan2φ

)
v2
∥ v · v⊥ = v2

⊥

Let us specify now the considerations hitherto carried out to
describe the behaviour of a charge carrier moving inside the
stretched zone of the dislocation; the next part of this section
concerns in particular just the charge transport via tunnelling
mechanism.

4.2 Charge transport along the stretched zone of the
dislocation

Both possible chances r∥v∥ + vT and r∥v∥ − vT of the first
equation (24) yield an average velocity vector still consistent
with the possible tunnelling of the ion. The corresponding
chances of the second equation, where instead the vector vT

sums and subtracts to r⊥v⊥, are more interesting and critical.
The components r⊥v⊥ ∓ vT of v show indeed that the ther-
mal agitation summed up to the transverse component of ion
velocity could possibly avert the tunnelling conduction mech-
anism; this linear combination implies the possibility for the
ion path to deviate from the tunnel direction and flow out-
wards the tunnel. Moreover, even the Coulomb interaction
of the carriers with the charged cores of the lattice closely
surrounding the tunnel is to be considered: as the cores are
in general electrically charged, their interaction with the flow
of mobile carriers is expectable. The second condition for a
successful tunnelling path of the carriers concerns just this in-
teraction: if for instance the charge carrier is an electron, it is
likely attracted to and thus neutralizes with the positive cores;
so the tunnel path through the whole distance L is in practice
impossible. If instead the carrier is a proton, its Coulomb re-
pulsion with the positive cores is consistent with the chance
of travelling through L and coming out from the dislocation
tunnel: in the case of a ceramic single crystal and dislocations
crossing throughout it, the charge carrier would start from one
electrode and would reach the other electrode entirely in the
confined state. This tunnel transport mechanism is coupled
with the usual lattice transport mechanism. This situation is
represented in the figure 5.

Let us analyze both effects. Let δt = L/v∥ be the time
necessary for the carrier to tunnel throughout the length L of
the stretched zone. Then, as schematically sketched in fig. 6,
all possible trajectories are included in a cone centred on the
entrance point of the carrier whose basis has maximum total
size 2δr = 2(r⊥v⊥+vT )δt.

Fig. 5: Schematic sketch of a cell where is operating the proton
conduction mechanisms.

Fig. 6: The figure shows qualitatively the effect of the thermal ve-
locity, solid arrow, on the tunnelling of a charge carrier that travels
within the stretched zone of an edge dislocation. In A the vector sum
of v∥ and vT occurs at a temperature preventing the chance for the
carrier to tunnel throughout the dislocation length; in B the reduced
value of vT at lower T allows the tunnelling effect.

As vT has by definition random orientation, here has been
considered the most unfavourable case where vT is oriented
just transversally to v∥ in assessing the actual chance of con-
finement of the carrier within the stretched zone of the dis-
location. In general the tunnel effect is expectable at tem-
peratures appropriately low only, in order that the width of
the cone basis be consistent with the average size δl of the
stretched zone: during δt the total lateral deviation 2δr of the
ion path with respect to v∥ must not exceed δl, otherwise the
ion would overflow in the surrounding lattice. In other words,
the charge effectively tunnels if v∥ is such to verify the condi-
tion (r⊥v⊥ + vT )L/v∥ ≤ δl only.
In conclusion, considering the worst case with the plus sign
where vT and r⊥v⊥ sum up correspondingly to the maximum

Sebastiano Tosto. Mixed Ion-Electron Conductivity and Superconductivity in Ceramic Electrolytes 69



Volume 11 (2015) PROGRESS IN PHYSICS Issue 1 (January)

deviation of the charge, it must be true that, whatever the
component v∥ of the actual ion displacement velocity might
be,

T ≤ m
2kB

(
v∥
δl
L
− r⊥v⊥

)2

kBT =
mv2

T

2
. (26)

Two interesting equations are obtained merging the gen-
eral eq (5) and the eqs (24). Specifying for instance that the
modulus of velocity is v⊥ and D is actually D§⊥, one finds
D§⊥ = v⊥kBT/F⊥; so, multiplying both sides by v⊥/D§ and
repeating identical steps also for v∥, the results are

r⊥v⊥ =
kBT

F⊥D§
v2
⊥ r∥v∥ =

kBT
F∥D§

v2
∥ . (27)

These equations introduce the confinement forces F⊥ and F∥
that constrain the carrier path within the tunnel and corre-
spond to the interaction of the charge carrier with the neigh-
bours lattice cores surrounding the stretched zone of the dis-
location. Also, as the eqs (21) yield v⊥ = ±v∥ tanφ, one finds

T ≤
mv2
∥

2kB

(
δl
L
− kBTv∥

F⊥D§
tan2φ

)2

which is more conveniently rewritten as follows

T
Tc
≤

mv2
∥

2kBTc

δlL − T
Tc

v∥
vc
w

(
δl
L

)22

(28)

F⊥D§ = vckBTc tanφ = ±wδl
L
+ . . . .

The meaning of the second equation is at the moment
merely formal, aimed to obtain an expression function of
T/Tc and v∥/vc; as concerns the third position, is attracting
the idea of writing the expression in parenthesis as a power
series expansion of δl/L truncated at the second order, in
which case the proportionality constant w defines the series
coefficient Tv∥w/(Tcvc). Note that this coefficient should ex-
pectably be of the order of the unity, in order that the series
could converge; indeed this conclusion will be verified in the
next subsection 5.2. Clearly vc is definable as the transit crit-
ical velocity of the charge carrier making equal to 1 the right
hand side of the first eq (28). Anyway both positions are ac-
ceptable because neither of them needs special hypotheses,
being mere formal ways to rewrite the initial eq (26). This
equation emphasizes that even when v⊥ = 0, i.e. in the par-
ticular case where the entrance path of the charge carrier is
exactly aligned along v∥, the mere thermal agitation must be
consistent itself with the available tunnel cross section: the
greater the latter, the higher the critical temperature below
which the tunnelling is in fact allowed to occur. This equation
links the lattice features δl and L to the operating conditions
of the cell, here represented by the ion properties m and v∥.
Hence it is reasonable to expect that vT and thus T must not
exceed a critical upper value in order to allow the tunnelling

Fig. 7: The figure highlights that the arising of a concentration gra-
dient along the tunnel is hindered by the size of the stretched zone
of the dislocation.

mechanism. If T and m, and thus vT , are such that v∥δt really
corresponds to the whole length L of the dislocation, then the
eqs (17) describe the flow of ions that effectively tunnel in the
stretched zone of the dislocation.

4.3 The superconducting charge flow

The main feature of these results is that D§ and ∇n char-
acterize the charge tunnelling path. In general the occur-
ring of concentration gradient requires by definition a volume
of electrolyte so large to allow the non-equilibrium distribu-
tion of a statistically significant number of charge carriers
unevenly distributed among the respective lattice sites. Yet
∇n , 0 is in fact inconsistent with the size of the dislocation
stretched zone here concerned; in particular, the existence of
the component u∥ ·∇n of this gradient would require a config-
uration of charges like that qualitatively sketched in fig. 7.

This chance seems however rather improbable because of
the mutual repulsion between charges of the same sign in the
small channel available below the dislocation extra plane. So
the gradient term at right hand side of the eq (22) should in-
tuitively vanish inside the tunnel. Assume thus the compo-
nent u∥ · ∇n = 0, i.e the carriers travel the stretched zone
with null gradient within the tunnel path. To better under-
stand this point, note that in the eq (22) appears the product
D§∇n; moreover, in the eqs (27) appear the products F⊥D§

and F∥D§. These results in turn suggest two chances allowed
at left hand side of eq (22):

(i) v∥ = 0, i.e. all charges are statistically at rest in the
stretched zone; the eq (22) trivially consisting of null terms at
both sides is nothing else but the particular case of the Cottrell
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atmosphere sketched in fig. 3A. The ions that decorate the
dislocation prevent the tunnelling of further ions provided by
the lattice. The charge flow in the cell is merely that described
by the usual bulk lattice ion transport under concentration and
electric potential gradients, already concerned in [9].

(ii) The left hand side of the eq (22) is non-vanishing:
v∥ , 0 reveals actual dynamics of charges transiting within
the tunnel zone. This is closely related to the previous state-
ment of the section 1 according which, for instance, a bare
electron of mass me interacting with the dislocation can be
described by a free electron of effective mass meff

e : owing to
the eqs (2), this reasoning is identically expressed in general
via Deff instead of meff of any charge carrier.

The latter case is interesting, because the finite value of
v∥ , 0 requires that D§ → ∞ in order that the undetermined
form∞×0 makes finite the corresponding limit value of D§u·
∇n. This also means that Deff = D∗ + D§ tends to infinity
as well, which compels the resistivity ρeff → 0 according
to eq (4). Moreover, for the same reason this mechanisms
implies both F⊥ → 0 and F∥ → 0 for D§ → ∞, which implies
D§⊥ → ∞ and D§∥ → ∞; this in turn means null interaction of
the charge carrier with the lattice surrounding the tunnel zone.
Hence the eqs (28) and (27) yield

T
Tc
=

mv2
∥

2kBTc

δlL − T
Tc

v∥
vc
w

(
δl
L

)22

(29)

lim
D§→∞
F⊥→0

F⊥D§

kB
= vcTc lim

D§→∞
F∥→0

F∥D§

kB
= v′cTc.

In the eqs (28) Tc and vc were in general arbitrary vari-
ables; here instead they are fixed values uniquely defined by
the limit of the second and third equations; the same holds for
v′c related to v∥. So the transport mechanism in the stretched
boundary zone of the dislocation extra plane is different from
that in other zones of the ceramic crystal: clearly the for-
mer has nothing to do with the usual charge displacement
throughout the lattice concerned by the latter. While the con-
centration gradient is no longer the driving force governing
the charge transport, F⊥ → 0 and F∥ → 0 consequently ob-
tained mean that the charge carrier moves within the tunnel as
a free particle: the lack of friction force, i.e. electrical resis-
tance, prevents dissipating their initial access energy into the
dislocation stretched zone. This appears even more evident in
the eq (5), where D ≡ D§ at T = Tc yields J , 0 compatible
with F = 0.

Simple considerations with the help of fig. 8, inferred
from the fig. 4 but containing the information ρeff → 0,
show the electric shunt between zones of different electrical
resistivity and highlight why the charge carriers tend to privi-
lege the zero resistance tunnel path: this answers the possible
question about the preferential character of this conduction
mechanism of the charge carriers. Further quantum consider-
ations are necessary to complete the picture essentially clas-

Fig. 8: Schematic sketch showing that at the ion current shunts to
the zero resistivity path inside the tunnel with electrical resistivity
ρeff = 0 rather than to any lattice path with ρeff , 0.

sical so far carried out. On the one hand the expectation of a
superconducting flow of charges cannot be certainly regarded
as an unphysical result, despite its derivation has surprisingly
the classical basis hitherto exposed. In this respect however it
is worth recalling the quantum nature of both eqs (1), which
indeed have been obtained as corollaries of the statistical for-
mulation of the quantum uncertainty [10]; the fact that the
Fick equations have been obtained themselves as corollaries
of a quantum approach to the gradient driven diffusion force,
shows that actually all results have inherently quantum phys-
ical meaning. Then, by definition, even a classical approach
inferred from these equations has intrinsic quantum founda-
tion. On the other hand, the heuristic character of this section
requires being completed with further concepts more specifi-
cally belonging to the quantum world.

5 Quantum approach

This section aims to understand why the results of the clas-
sical model of a unique dislocation crossing through one sin-
gle grain are actually extendible to a real grain with several
disconnected dislocations of different orientations and to the
grain boundaries consisting of several tangled dislocations in-
ordinately piled up at the interface with other grains.

5.1 Grain bulk superconductivity

Define δε = εtu − εla, being εtu the energy of the ion trav-
elling the tunnel along the stretched zone of the edge dislo-
cation and εla that of the ions randomly moving in the lattice
before entering the tunnel; δε represents thus the gap between
the energy of the ion in either location, which in turn suggests
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the existence of an energy gap for a charge carrier in the su-
perconducting and non-superconducting state. This conclu-
sion is confirmed below. The fact of having introduced the
tunnelling velocity components v⊥ and v∥, suggests introduc-
ing the respective components of De Broglie momentum of
the ion corresponding to εtu. Being p∥ = h/λ∥ and p⊥ = h/λ⊥
these components, then |p| = h

√
λ−2
⊥ + λ

−2
∥ in the tunnel state;

λ⊥ and λ∥ are the wavelengths corresponding to the respective
velocity components. Let us specify n⊥λ⊥ = δl and n∥λ∥ = L,
in order to describe steady waves with n⊥ and n∥ nodes along
both tunnel sizes; then, with n⊥ = 1 and n∥ = 1,

ptu = |p| = γh/δl γ =

√
1 + (δl/L)2.

Note that γ ≈ 1 approximates well ptu even if L corre-
sponds to just a few lattice sites aligned to form the extra-
plane of the edge dislocation, i.e. even in the case of an
extra-plane extent short with respect to the lattice spacing
stretched to δl: indeed (γh/δl − h/δl)/(γh/δl) ≈ (δl/L)2/2
yields γ ≈ 1 even for values L >∼ δl. Anyway with ptu = γh/δl
one finds εtu = (hγ)2/2mδl2. According to this result, the
momentum is essentially due to the small cross section of the
stretched zone that constrains the transverse velocity compo-
nent v⊥ of the ion in the tunnel with respect to that of the ion
randomly moving in the lattice; this means that remains in-
stead approximately unchanged the component v∥ of velocity
along the tunnel. Put now εla = ϑεtu, being θ an appropriate
numerical coefficient such that δε = (ϑ − 1)εtu. In princi-
ple both chances ϑ >

< 1 are possible, depending on whether
εla >

< εtu: as neither chance can be excluded “a priori” for an
ion in the two different environments, this means admitting
that in general to the unique εla in the lattice correspond two
energy levels spaced ±δε around εtu, one of which is actu-
ally empty depending on either situation energetically more
favourable. This is easily shown as the eqs (24) yield two
chances for the energy of the charge carrier in the tunnel, de-
pending on how vT combines with v∥ and v⊥. These equa-
tions yield ε2 =

(
(r∥v + vT )2 + (r⊥v − vT )2

)
m/2 and ε1 =(

(r∥v − vT )2 + (r⊥v + vT )2
)

m/2; trivial manipulations via the
eqs (21) yield thus δε = ε2 − ε1 = 2mv · vT (r∥ − r⊥) showing
indeed a gap between the levels ε2 = ε0 +mv · vT (r∥ − r⊥) and
ε1 = ε0 − mv · vT (r∥ − r⊥) with ε0 =

(
(r2
∥ + r2

⊥)v2/2 + v2
T

)
m:

this latter corresponds thus to the Fermi level between the oc-
cupied and unoccupied superconducting levels defining the
gap. As the ion dwell time δt in the tunnel is of the order of

δt =
ℏ

|δε| = 2
mδl2ℏ

|ϑ − 1| (γh)2 ,

the extent L of the extra-plane controlling the time range of
ion transit at velocity v∥ requires

L = v∥δt =
mv∥δl2

|ϑ − 1| πhγ2 .

So, supposing that ntu electrons ξ apart each other transit si-
multaneously within the tunnel,

L =
v∥ℏ
|δε| =

v∥ℏ
|ϑ − 1| εtu

L = (ntu − 1)ξ v∥ =
γh
mδl

suggest that

ξ =
v∥ℏ

(ntu − 1) |δε| =
v∥ℏ

|ϑ − 1| (ntu − 1)εtu
.

Define now the tunnel volume V available to the transit of
the ions as V = χLδl2, being χ a proportionality constant
of the order of the unity related to the actual shape of the
stretched zone; if for instance the tunnel would be simulated
by a cylinder of radius δl/2, then χ = π/4. Hence

V = χδl2v∥δt =
χ

|ϑ − 1| π
m
h

v∥δl
γ2 δl3.

Note that v∥δl has the same physical dimensions of a dif-
fusion coefficient; so it is possible to write v∥δl = ψD∥, being
ψ an appropriate proportionality constant. Moreover recall
that the diffusion coefficient has been also related in the sec-
tion 1 to h/m via a proportionality constant, once more be-
cause of dimensional reasons; so put Dm = qmh/m via the
proportionality factor qm, as done in the section 1, whereas
the subscript emphasizes that the diffusion coefficient is by
definition that related to the mass of an ion or electron tun-
nelling in the stretched zone of the dislocation. So one finds

V =
χψ

|ϑ − 1| πγ2

D∥
qmDm

δl3.

Note eventually that it is certainly possible to write V/δl3 =
θ(1 + ζ) with ζ > 1 appropriate function and θ proportional-
ity constant: indeed the tunnel can be envisaged as a series
of cells of elementary volumes L0δl2, where L0 corresponds
to the lattice spacing of atoms aligned along the dislocation
extra plane. Replacing these positions in the equation of V
one finds

D∥
qDm

= 1 + ζ q =
|ϑ − 1| θπqm

χψ
γ2.

This result compares well with the eq (2) previously ob-
tained in an independent way, simply identifying ζ =

∂2u(k)/∂k2 and all constants with q; as expected here D∥ plays
at T = Tc the role of D§ introduced in the section 1, whereas
qDm is just D∗ previously obtained as electric potential driven
enhancement of the plain diffusion coefficient D ≡ Dm. This
agreement supports the present approach. This also suggests
some more considerations about the nature of the supercon-
ducting charge wave propagating along the tunnel zone. It is
intuitive that the quantum states of the charge carriers within
the tunnel must correspond to an ordered flow of particles, all
travelling the tunnel with the same velocity v∥; any perturba-
tion of the motion of these charges would increase the total
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Coulomb energy of the flow and could even spoil the flow;
the low temperature helps in this respect. This requires in
turn a sort of coupling between the carriers, because several
fermions cannot have the same quantum state; in effect it is
known that a small contraction of positive charges of the lat-
tice cores around the transient electrons in fact couples two
electrons. Actually, in this case the contraction is that of
the lines of lattice cores delimiting the tunnel stretched by
the dislocation plane around the transient charges. In other
words, electron pairs or proton pairs travel through the tunnel
as bosons with a unique quantum state.

5.2 Computer simulation

Some estimates are also possible considering a ceramic lattice
whose average spacing is a; this is therefore also the order of
magnitude expected for the size δl >∼ a of the stretched zone.
Consider first the case where the charge carrier is an elec-
tron, which requires negatively charged ion cores delimiting
the tunnel cross section; this assumption reminds the famil-
iar case of electron super-conduction and thus helps to check
reliability and rationality of the estimates. To assess the pre-
vious results, put m = 9 × 10−28 g and consider the rea-
sonable simulation value δl = 5 × 10−8 cm, consistent with
a typical lattice spacing quoted in the section 3; one finds
v∥ ≈ 1.5× 108 cm/s with the approximation γ = 1. Moreover
putting L = 10−4 cm, i.e. considering an edge dislocation that
crosses through a test grain average size of the typical order
of 1 µm, one finds a gap δε = v∥ℏ/L = 10−3 eV between the
ion energies in the tunnel and in the lattice. Note that the
zero point energy of a free ion in such a test lattice would be
of the order of εla ≈ 3ℏ2/2ma2 ≈ 0.3 eV, quite small with
respect to the definition value 1 eV of one electron or unit
charge ion in a ceramic electrolyte of a cell operating with
1 V. To εla corresponds the zero point vibrational frequency
ν = 2εla/h, i.e. ν ≈ 2 × 1014 s−1; with such a frequency the
wavelength λ∥ = L corresponds to a total charge wave due to
Lν/v∥ electrons. So one finds ≈ 102 electrons, whose mean
mutual distance is thus 10 nm about. Eventually the critical
temperature compatible with the arising of the superconduct-
ing state given by the eq (26) is 0.02 K with v⊥ = 0 or even
smaller for v⊥ , 0. Compare now this result obtained via the
eq (26) with that obtainable directly through the eq (25)

v2
T =

(
r2
⊥

cos2φ
+ (1 − 2r⊥)tan2φ

)
v2
∥ .

Note that v2
T has a minimum as a function of r⊥. If φ = π/2

this minimum corresponds to rmin
⊥ = 1, to be rejected because

it would imply D§⊥ = D§ and D§∥ = 0. If instead φ , π/2,
then the minimum corresponds to rmin

⊥ = sin2φ, which yields
in turn v2

T = v2
∥ sin2φ; hence kBTc = mv2

T /2 yields

Tc =
m

2kB
v2
∥ sin2φ.

With v∥ = 1.5 × 108 cm/s the electron mass would yield
T = 6.2 × 106sin2φ K. Comparing with the previous result,
one infers that 10−8 >∼ sin2φ; so being sin2φ ≈ tan2φ with good
approximation, one also infers that the second position (28) is
verified with w such that Tv∥w/(Tcvc) is of the order of unity
for δl/L = 10−4, as in fact it has been anticipated in the previ-
ous subsection 4.3. Of course the actual values of these order
of magnitude estimates depend on the real microstructure of
the ceramic lattice; yet the aim of this short digression con-
cerning the electron is to emphasize that the typical properties
of the test material used for this simulation are consistent with
the known results of electron superconduction theory. The
simulation can be repeated for the proton, considering that
the proton velocity v∥ is now me/mprot times lower than be-
fore; so, despite m is mprot/me larger than before, mv2

∥ of the
eq (26) predicts a critical T smaller than that of the electron
by a factor me/mprot for r⊥v⊥ ≪ v∥δl/L.

5.3 Grain bulk and grain boundary superconductivity

As concerns the chance of superconduction in the grain bulk
with several disconnected dislocations at the grain bound-
aries, it is necessary to recall the Josephson effect concur-
rently with the presence of tangled dislocations and pile up of
dislocations. The former concerns the transfer of supercon-
ducting Cooper pairs existing at the Fermi energy via quan-
tum tunnelling through a thin thickness of insulating material:
it is known that the tunnelling current of a quasi-electron oc-
curs when the terminals of two dislocations, e.g. piled up or
tangled, are so close to allow the Josephson Effect. If some
terminals are a few nanometers apart, then superconduction
current is still allowed to occur even though the dislocation
break produces a thin layer of ceramic insulator. In other
words, the terminal of the superconducting channel of one
dislocation transfers the pair to the doorway of another dislo-
cation and so on: in this way a superconduction current can
tunnel across the whole grain. An analogous idea holds also
at the grain boundary. Of course the chance that this event
be actually allowed to occur has statistical basis: due to the
high number of dislocations that migrate and accumulate at
the grain boundaries after displacement along favourable slip
planes of the bulk crystal lattice, the condition favourable to
the Josephson Effect is effectively likely to occur. As the
same holds also within the grain bulk between two differ-
ent dislocations close enough each other, e.g. because they
glide preferentially along equal slip planes and pile up on
bulk precipitates, the conclusion is that the pair tunnelling al-
lows macroscopic superconduction even without necessarily
requiring the classical case of a unique dislocation spanning
throughout a single crystal electrolyte.

6 Discussion

It is commonly taken for granted that the way of working of
the fuel cells needs inevitably high temperatures, of the or-
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der of some hundreds C degrees, so as to promote adequately
the ion conductivity; great efforts are addressed to reduce as
much as possible this temperature, down to a few hundreds
C degrees, yet still preserving an acceptable efficiency of the
cell compatibly with the standard mechanisms of ion conduc-
tion.

The present paper proposes however a new approach to
the problem of the electric conduction in solid oxide elec-
trolytes: reducing the operating temperature of SOFCs down
to a few K degrees, in order to promote a superconducting
mechanism.

Today the superconductivity is tacitly conceived as that
of the electrons only; the present results suggest however that
at sufficiently low temperatures, even the low atomic num-
ber ions are allowed to provide an interaction free conduc-
tion thanks to their chance of tunnelling in the stretched zone
of edge dislocations. Note that although the electron and
ion superconduction occur at different temperatures, as it is
reasonable to expect, the nature of the lattice cores appears
able to filter either kind of mechanism during the working
conditions of the cell for the reasons previously remarked:
for instance positively charged cores hinder the electron su-
perconduction by attractive Coulomb effect, while promoting
instead the proton superconduction via the repulsive effect
that keeps the proton trajectory in the middle of the stretched
channel. The results obtained in this paper support reason-
ably the chance that, at least in principle, this idea is practica-
ble. Of course other problems, like for instance the catalysis
at the electrodes, should be carefully investigated at the very
low temperatures necessary to allow the ion superconduction.
However this side problem, although crucial, has been delib-
erately waived in the present paper: both because of its differ-
ent physicochemical nature and because the foremost aim of
the model was (i) to assess the chance of exploiting the super-
conductivity not only for the electric energy transmission but
also for the electric energy production and (ii) to bring this
intriguing topic of the quantum physics deeply into the heart
of the fuel cell science.

Moreover other typical topics like the penetration depth of
the magnetic field and the critical current have been skipped
because well known; the purpose of the paper was not that of
elaborating a new theory of superconductivity, but to ascer-
tain the feasibility of an ion transport mechanism able to by-
pass the difficulties of the high temperature conductivity. Two
considerations deserve attention in this respect. The first one
concerns the requirement u∥ ·∇n = 0 characterizing the super-
conductive state with D→ ∞. At first sight one could naively
think that the eq (4) should exclude a divergent diffusion coef-
ficient. Yet the implications of a mathematical formula cannot
be rejected without a good physical reason. Actually neither
the chain of equations (6) nor the eq (19) exclude D → ∞:
the former because it is enough to put the lattice-charge inter-
action force F → 0 whatever v and kBT might be, the latter
provided putting concurrently ∇ϕ = −Ee → 0. The prod-

uct∞× 0 is in principle not necessarily unphysical despite D
diverges, because this divergence is always counterbalanced
by some force or energy or concentration gradient concur-
rently tending to zero; rather it is a matter of experience to
verify whether the finite outcomes of these products, see for
instance the eqs (29), have experimental significance or not.
In this respect, however, this worth is recognized since the
times of Onnes (1913). In fact, the electron superconductiv-
ity is nothing else but a frictionless motion of charges, some-
how similar to the superfluidity. Coherently, both equations
(29) and (10) suggest simply a free charge carrier moving
without need of concentration gradient or applied potential
difference or electric field or force F of any physical nature.
The essence of the divergent diffusion coefficient is thus the
lack of interaction between lattice and charge carrier. In this
sense the Nernst-Einstein equation is fully compatible even
with De f f → ∞: in fact is hidden in this limit, and thus in the
eq (4) itself, the concept of superconductivity, regarded as a
peculiar charge transport mechanism that lacks their interac-
tions and thus does not need any activation energy or driving
force.

These results disclose new horizons of research as con-
cerns the solid oxides candidate for fuel cell electrolytes. The
choice of the best oxides and their heat treatments is today
conceived having in mind the best high temperature conduc-
tivity only. But besides this practical consideration, nothing
hinders in principle exploring the chance of a fuel cell re-
alized with MIEC solid oxides designed to optimize the ion
superconducting mechanism. The prospective is that MIECS
with poor ionic conductivity at some hundreds degrees could
have excellent superconductors at low temperatures. It seems
rational to expect that the optimization of the electrolytes for
a next generation of fuel cells compels the future research not
to lower as much as possible the high temperatures but to rise
as much as possible the low temperatures.

7 Conclusion

The model has prospected the possibility of SOFCs work-
ing at very low temperatures, where superconduction effects
are allowed to occur. Besides the attracting importance of
the basic and technological research aimed to investigate and
develop high temperature superconductors for the transport
of electricity, the present results open new scenarios as they
concern the production itself of electric power via zero re-
sistivity electrolytes. Of course the chance of efficient fuel
cells operating according to these expectations must be veri-
fied by the experimental activity; if the theoretical previsions
are confirmed at least in the frame of a preliminary laboratory
activity, as it is legitimate to guess since no ad hoc hypothe-
sis has been introduced in the model, then the race towards
high Tc electrolytes could allow new goals of scientific and
applicative interest.

Submitted on December 9, 2014 / Accepted on December 12, 2014

74 Sebastiano Tosto. Mixed Ion-Electron Conductivity and Superconductivity in Ceramic Electrolytes



Issue 1 (January) PROGRESS IN PHYSICS Volume 11 (2015)

References
1. Murch G.E. Atomic diffusion theory in highly defective solids. Trans

Tech Publications, Limited, 1980
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