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Charge and mass gauging procedure is carried out by means of counting the oscillation

numbers of an auxiliary top-speed signal (“photons”) between the appropriately ordered

electrons and positrons, moving under their interaction along the diagonals of the cube

toward its center (the “cube star”). Regular lattices composed of such stars transport the

values of charge and mass over space-time regions. The gauge consists in detection of

the cube symmetry in each star. However, the detected symmetry can also be observed,

even if some particles of the basic electron/positron star are replaced with heavy mesons.

These become an unavoidable byproduct of the gauge procedure. Two possible sub-

symmetries of the cube realizing such replacement correspond to two mesons, but the

regularity of the whole lattice holds only for some particular values of their masses.

Numerical solutions to the non-linear ODE systems describing this situation yield these

masses in terms of electron mass, which are close to those of the µ- and τ-mesons.

1 Introduction

The existence of the three flavor families remains a mystery,

and it appears rather artificial in the otherwise self-contained

structure of the standard model of particle physics (see, for

instance, [1]). As in all basic structures of physics, theories

must agree with experimental facts, and, in turn, the perfor-

mance of experiments depends on existing theoretical con-

ceptions. The design of measuring devices includes their

gauge, which is an intermediary between the measurement

of interest and some standard test measurements. In order

to eliminate clocks and rods in the gauge, which might hide

some features of the desired correspondence, we suggested

a direct motion-to-motion gauge [2, 3]. We shall show that

the flavor families naturally arise from the particular way this

gauge could be carried out. Since all related experiments

are ultimately based on the observation of the trajectories of

charged particles in external electromagnetic fields, the gauge

of electric charges and masses of particles is at the heart of

any measurement. A relevant gauge procedure could use a

regular lattice comprised of elementary cells (“stars”), each

one being a standard configuration of the trajectories of test

particles that are identical, apart from the sign of their charges

[2, 3]. Starting with the stars that are primary for the gauge

lattice, the whole lattice is constructed in such a way that the

primary stars completely define secondary ones. The result-

ing relay races make it possible to transport the initial val-

ues of charge and mass over a chosen space-time region. In

an appropriate construction of the lattice, each star could be

connected to a previous star along various sequences of inter-

mediate stars. The preservation of charge and mass over such

transports might be detected, provided various paths connect-

ing a pair of stars reveal the same symmetry at both ends ac-

cording to the dynamics of involved particles.

In order to realize this program one needs a method to

construct standard stars unambiguously. For this purpose, it

was proposed to count top signal oscillations between the par-

ticles of the star [2]. No rods or clocks are then needed, pro-

vided the elementary stars possess some symmetry belong-

ing to the Platonic solids. In this communication, we confine

ourselves to the lepton sector of elementary particles, cor-

responding to the cube subsystem of the full dodecahedron

structure. To this end, consider electrons and positrons mov-

ing along the diagonals of the cube toward its center under

mutual attraction — the “cube star”. The cube consists of

two interlaced tetrahedrons — one for electrons, another for

positrons, and the star is thus electrically neutral as a whole.

Charge is being gauged by means of detecting the cube sym-

metry as being seen in the equality of the related numbers of

photon oscillations, so that the detection of even one extra

oscillation is sufficient to find this symmetry broken. (It is

convenient to replace formally the counting of inter-particle

oscillations with that between the particle and an imaginary

central body; the translation is straightforward.) Of particu-

lar interest is the limiting case of the finest lattice, in which

only one photon oscillation is sufficient to detect the symme-

try of the star. Just this finest star will be considered in what

follows.

The regular lattice comprises the stars as elementary cells

to form a whole charge gauging structure. For this to be possi-

ble, the electrons/positrons are bound to turn into neutrinos at

the center: Otherwise, the exit potential together with the ra-

diation reaction force would prevent their leaving the star, so

destroying the lattice forming connections. We regard neu-

trinos massless (or having a mass that is negligible as com-

pared to that of other involved particles), hence moving prac-

tically with the velocity of light independently of their kinetic

energy.

Only the simplest case of cube star symmetry breaking

was considered in the charge gauging procedure [2, 3], i.e.

that in which asymmetry may occur only between the two

opposite-charge tetrahedrons of the cube. The breaking of
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cube symmetry in this case consists in this that particles be-

longing to different tetrahedrons have dissimilar masses m

and/or absolute values of charge e, while these parameters

remain identical within each tetrahedron. Perfect symmetry

will be observed, provided all the involved particles have the

same values of both m and |e|. In this case, the asymmetry

to be detected is, in a sense, the weakest, and we assign it

to the first flavor family, i.e. to that of the electron. We re-

gard this — electron/positron — star as the basic one and

ask whether or not our photon oscillations counting proce-

dure might detect the symmetry as observed, even if some

electrons/positrons in the star are being replaced with differ-

ent particles. Detection of a perfect star with our method re-

quires both charges and masses of the involved particles to be

identical. Upon assuming the charges to remain equal, let us

consider the lattice, in which some particles have a different

mass. While electrons must turn into neutrinos in each star,

these foreign particles (“mesons”) are able to pass the center

intact, since the exit barrier decreases there. They can then

take part in the secondary stars. For this to be possible, they

must satisfy three following requirements:

i. Preserve proper charge distribution in each star;

ii. Pass successfully the symmetry detection in the stars as

carried out by counting photon oscillations;

iii. Yield the definite output velocity (e.g., equal to the in-

put velocity) to be suitable over a long line of succes-

sive stars.

To fulfill these requirements, we have only two parameters

at our disposal to be controlled over the whole lattice, that

is, the mass and the velocity of the meson at the star entrance.

We guess only much heavier mesons to be met with. Since the

lattice is a ready structure and the slower mesons are just “im-

purities” in it, they will enter the next star with some time lag.

Besides the basic star, there exist only two configurations

having weaker sub-symmetries. Depending on the mass

found for the related foreign particle, one of the sub-symmet-

ries will be ascribed to the τ-meson, and another to the µ-

meson.

In the first sub-symmetry, only one pair of opposite elec-

tron and positron is replaced by the meson/anti-meson pair.

Their diagonal is the natural axis of the star symmetry, since

under the interaction in the star the mesons keep moving

along this axis. The trajectories of the remaining three elec-

trons and three positrons are curvilinear, though confined

pair-wise to three planes (the members of each pair don’t be-

long to a common diagonal of the cube). Then the absolute

values of the Cartesian coordinates of all six electrons/posi-

trons, both along and transverse the axis, will be the same.

We refer to this case as (6:2) sub-symmetry. (In this notation,

the electron/positron star is (8:0) sub-symmetry.) Contrary

to the basic (8:0) case, magnetic part of the interaction is no

longer cancelled on the curved trajectories in stars possess-

ing only sub-symmetries, though the total resulting interac-

tion still leaves the particles on the same planes they would

move under the electric force alone.

In the second sub-symmetry, two identical meson/anti-

meson pairs replace electron-positron pairs. Now all eight

trajectories are curved though confined to the two mutually

orthogonal planes, one of which carries only electrons and

positrons, while another — only mesons and anti-mesons.

Within each of these planes, the absolute values of the ap-

propriately chosen Cartesian coordinates of its particles will

be the same. We refer to this case as (4:4) sub-symmetry. Fol-

lowing the previous argument [2], we ignore the terms with

retarded interaction in the equations describing the motion

of the particles in the star, but radiation reaction of the ac-

celerated particles may be important. However, even rough

estimation of this multiple soft photons radiation will be suf-

ficient to distinguish flavor families, provided the mesons are

much heavier than the electron, and the mesons related to the

two possible sub-symmetries strongly differ in their masses.

As was found [2], the radius of the star is much smaller than

the classical electron radius, still the smallest radius down

to which the photon oscillations are being counted might be

of the order or even larger than the classical radius r0 of the

meson. Therefore, the effect of radiation on the motion of

the star particles should be estimated for the electrons and the

mesons differently though the very motion of the center of the

electron wave packet, which only matters in the photon oscil-

lations counting procedure, might be described classically in

virtue of the Ehrenfest theorem. In so complicated systems as

the stars containing several interacting particles, accurate cal-

culation of radiation would be rather complicated, and, more-

over, it is well known [4] that r0 is the limit of validity of

the electrodynamics, while the trajectories for the finest star

lie well deeper this value. Therefore, QED is needed to deter-

mine single photon radiation of electrons, pair production etc.

in the very strong (even vacuum violating) electric field [5].

However, the motion of the electrons is of interest here only

inasmuch as it influences that of the mesons, and we need not

go into fine details for the electron component of the star. We

thus choose to model radiation of the electrons with an appro-

priate functional factor S that tempers the energy increase of

the accelerated electrons. This factor will depend on a param-

eter q, varying which one can match a solution for the mesons

according to the threshold where the quantum single photon

radiation reaction exceeds the driving force in the star. We

assume that S depends only on the kinetic energy of the elec-

tron via the relativistic factor γe: S = exp[−(γ−2
e − γ−2

ei
)/q2],

where γei is the initial value γe of in the star. So, S = 1 at the

initial moment, while for appropriate solutions the value of q

must be so chosen that its final value γe, f � 5, in accordance

with the charge gauge [2] in the basic (8:0) star unperturbed

by mesons.

The mesons are expected to move unchanged over many

successive stars. Their motion should be analyzed in respect

of the possibility to sustain a regular lattice, that is, of the
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. (1)

repeatability of their initial and final velocities either in each

star or, at least, for a long sequence of successive stars. For

each of the sub-symmetries this possibility depends on the

mass of the related meson. Interaction of the electrons and

the mesons results in that that the motion of the electrons de-

pends on the meson mass as well, hence the ratio of electron

to meson masses might be obtained from our condition of the

whole lattice regularity. Motion of heavy mesons might be

described classically.

Strictly speaking, one has to include explicitly the meson

radiation reaction term in the equation of motion. It would

be convenient however to use, wherever possible, perturba-

tion methods to determine the radiation reaction, provided it

is much less than the driving force: The equation of motion

could be solved for the driving force alone, and then the ra-

diated energy is found using this solution. The final kinetic

energy of the meson is determined by subtracting the radi-

ation loss from its value as obtained before (see, e.g., [4]).

This estimation is certainly valid for a large enough mass,

since the radiation cross section contains inverse square of

the mass value. For this reason, we may use classical, that is,

multiple soft photon emission value for the radiation of heavy

mesons.

2 (6:2) sub-symmetry

In this case, the meson/anti-meson pair still moves along a

straight line, whereas the curved trajectories of the three elec-

tron family pairs confine to three planes intersecting over the

meson axis with the relative angles 2π
3

. It is convenient there-

fore to measure the z coordinate along the meson axis, and to

choose the second coordinate ρ at each electron plane as the

distance from this axis. Then the values of ρ for each particle

of the electron family (each one measured in its own plane)

are equal, and the absolute values of z are the same for all

electrons. In dimensionless variables:
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,

where the subscript e marks electrons, M means mesons, c is

the speed of light. The system of three ODEs describes the

motion of the electrons and the mesons in the star under their

interaction. Using the well-known expression for the field of

a fast moving charge [4], this system can be written as shown

in Eqs. 1 on top of this Page 101.

This system should be numerically solved under the ini-

tial conditions taken from the solution for the basic electron

family [2]: the initial radius of the electrons re,i = 0.24r0, and

γe,i = 3.2. In our variables, these correspond to:
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In the perturbation approach, the value of γM,i for the regular

lattice should be equal to the final γM, f at the exit of the pre-

ceding star (or a group of stars) as obtained by subtracting the

radiation term γM,rad and the term of the exit potential barrier

γM,ex from the final value of the solution to the system (1).

These terms are:

γM,rad =
2

3
η

∫ χ f

0

dχ

(

dβM

dχ

)2

γ3
M , (3)
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γM,ex � 12−1ηu−1
M, f γ

−2
M,i . (4)

It is assumed in (4) that γM,ex≪ γM, f −γM,i, and uM, f ≪ uM,i.

(The first inequality holds since the deceleration from the

opposite meson is at least an order of magnitude less than

the acceleration from the electrons because of the relativistic

anisotropy of the electric field of fast moving charges.)

Then the value of uM,i is: uM,i =
ri

r0
(2−βM, f ), where βM, f =

(1 − γ−2
M, f

)1/2.

The solution for (1) goes down to the final value re,2 =

0.002r0, that is, (u2
e,2
+ v2

e,2
= 0.002)1/2. This value of re,2

corresponds to the average value of the weak Yukawa-type

potential (instead of re,2 = 0.003r0 found in the charge gauge

procedure for (8:0) case [2]). We assume that the electrons

and positrons disappear at r < re,2. The value of χ f in (3)

should be defined by the condition that the function

re(χ f ) = re,2 for the first time.

The solution must meet the requirement for the meson to

be unrecognized with our method of symmetry detection, i.e.,

that the numbers of the photon oscillations remain equal for

the electron and the meson. To this end, consider the photon

emitted at re(0) = ri and reaching re,1 = re(χe,1) after be-

ing reflected at the star center. Then, χe,1 = (u2
e,i
+ v2

e,i
)1/2+

(u2
e,1
+ v2

e,1
)1/2, where the last member should be taken from

(1). Similarly for the meson: χM,1 = uM,i + uM,1. Neglecting

the small (because rM,1 ≫ rM,2 ≈ rM,i − re,i) difference in the

initial positions, we write the condition for the second photon

not to have enough time to oscillate between the electron and

the center over the first oscillation of the meson as:

(

u2
e,1 + v

2
e,1

)
1
2
+ 0.002 > uM,1 . (5)

This inequality ensures that the electron annihilates

within the time of the first oscillation for the meson. Since the

meson doesn’t annihilate, the opposite inequality preventing

the second photon oscillation for the meson within the time

of the first photon oscillation for the electron is:

uM,1 >
(

u2
e,1 + v

2
e,1

)
1
2
. (6)

Upon solving the system (1) with q = 2, it was found that

only for η = 0.0003 there exists an “equilibrium cycle” that

repeats itself over the series of the stars (possibly with small

shift of γM, f from a mean value in a star to be compensated

with some opposite shift in the next star) under the condi-

tions (5) and (6) for some particular value of γM,i. For γM,i =

5.150408, and uM,i = 0.244567, the system (1) yields γM, f =

5.248322 , γM,i, but already in the next star with uM,i, fol-

lowing from this γM, f : uM,i = 0.244397 (γM,i = 5.248322),

we obtain γM, f = 5.150408, and the solution for the whole

trajectory of the meson repeats itself infinitely. For these two

consecutive stars: (u2
e,1
+ v2

e,1
)1/2 = 0.00437 and 0.003782,

uM,1 = 0.004815 and 0.003785 respectively, so both (5) and

(6) are fulfilled for each of them; uM, f = uM,2 = 0.00214,

(u2
e,1
+ v2

e,1
)1/2 = 0.002, γe, f = 5.280387. According to (3)

and (4), radiation decreases γM, f by only γM,rad ≈ 10−4, and

the exit potential by γM,ex ≈ 10−3. Both are small as com-

pared to the variation in the energy of the meson along its

trajectory:
∣

∣

∣γM, f − γM,i

∣

∣

∣ ≈ 0.05. Hence, our assumption for

deceleration from the exit potential barrier to be negligible

for (6:2) sub-symmetry is reasonable. No acceptable solu-

tions exist for other values of η. Although at each η there is

a value of γM,i, for which the electrons and the mesons meet

at (u2
e,2
+ v2

e,2
)1/2 ≈ uM,2 6 0.002, but γM, f , γM,i, tending

to increase monotonously, when extended over the next stars.

Eventually the electron radius (u2
e,2
+ v2

e,2
)1/2 becomes larger

than the weak interaction threshold 0.002 everywhere on the

trajectory. E.g., for η = 0.00015 this happens at γM,i ≈ 5.46,

while for η = 0.0004 at γM,i ≈ 5.48. (For η = 0.0002, only

(6) is broken.) Then the annihilation of the electrons becomes

impossible, and our lattice will be ruined.

This behavior of the solutions to (1) can be explained as

follows. If in the immediate vicinity of the star center the pos-

itive, say, meson lags with respect to the three nearest elec-

trons, it is accelerated, while the electrons are decelerated to

be overtaken by the meson and vice versa. Which case is re-

alized depends on η and on γM,i. The equilibrium along the

whole series comes from balance in the interaction. If situa-

tion is far from the balance, the meson will move much ahead

or behind the electrons. Then its attraction will not be able

to compensate for the reciprocal repulsion of the electrons,

resulting in the increase of (u2
e,2
+ v2

e,2
)1/2, and this quantity

becomes eventually larger than 0.002.

3 (4:4) sub-symmetry

In this case, electrons and mesons move in two orthogonal

planes intersecting at some axis of the cube (z) that connects

the centers of the pair of its opposite faces. In each of these

planes, the absolute values of the two Cartesian coordinates

of the particles are the same for its four particles — elec-

trons or mesons — due to the (4:4) symmetry. It is convenient

therefore to choose a coordinate frame with the (x) axis in the

electron plane and the (y)axis in the meson plane.

We guess in this case η ≫ 0.0003, since the effect of four

electrons on four mesons is smaller than that of six electrons

on two mesons. Hence, radiation is expected to be important,

since the meson must radiate much more energy with main

contribution coming from the close neighborhood of the star

center. This effect owes to the smaller meson mass as well

as to the curvature of the trajectory, since, given force, trans-

verse acceleration scales as γ−1 while longitudinal one only as

γ−3. Although it was long shown [4, 6] that, in the relativistic

case, the energy radiated by the particle might be even larger

than that received under external acceleration, we cannot use

this result directly. In these references, the accelerating field

was considered given in advance, i.e. independent of the par-

ticle’s motion, whereas in our case back influence of radiation
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1 − βev (βeu + βev) (1 − βeuβev)
]

}

γ−3
e ×

×
[

u2
e + v

2
e − (ueβev − veβeu)2

]− 3
2
+

1

4

(

1 − β2
eu

)
1
2
(

1 − β2
ev

)

γ−3
e v
−2
e +

1

4

(

1 − β2
eu

)− 1
2
βeuβevγ

−1
e u−2

e +

+ 2
[

(uM + ue) (1 − βevβMu) βeuβev − ve (1 − βeuβMu)
(

1 − β2
ev

)]

×

× γ−2
M γ
−1
e

{

v2eγ
−2
M + w

2
M + (uM + ue)

2 −
[

(uM + ue) βMw − wMβMu

]2
}− 3

2 −

− 2
[

(uM − ue) (1 − βevβMu) βeuβev − ve (1 − βeuβMu)
(

1 − β2
ev

)]

γ−2
M γ
−1
e ×

×
{

v2eγ
−2
M + w

2
M + (uM − ue)2 −

[

(uM − ue) βMw − wMβMu

]2
}− 3

2

d2βMu

dχ2
=

3

2

(

η−1 dβMu

dχ
− U

)

γ−1
M − 2

(

βMu

dβMu

dχ
+ βMw

dβMw

dχ

)

×

×
[

dβMu

dχ
− γ−2

M βMw

(

βMu

dβMw

dχ
− βMw

dβMu

dχ

)]

− 2γ−2
M βMu

(

βMu

dβMu

dχ
+ βMw

dβMw

dχ

)2

d2βMw

dχ2
=

3

2

(

η−1 dβMw

dχ
−W

)

γ−1
M − 2

(

βMu

dβMu

dχ
+ βMw

dβMw

dχ

)

×

×
[

dβMw

dχ
+ γ−2

M βMu

(

βMu

dβMw

dχ
− βMw

dβMu

dχ

)]

− 2γ−2
M βMu

(

βMu

dβMu

dχ
+ βMw

dβMw

dχ

)2


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


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




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


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










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







, (7)

where the functions U and W are expressed as follows

U = −
1

4

(

1 − β2
Mw

)− 1
2
(

1 − β2
Mu

)

γ−3
M u−2

M −
1

4

(

1 − β2
Mu

)− 1
2
βMuβMwγ

−3
Mww

−2
M −

− 1

4

[

uM

(

γ−2
M + β

2
Muβ

2
Mw + βMuβ

3
Mw

)

− wM

(

2βMuβMw − β3
Muβ

2
Mw

)]

γ−3
M ×

×
[

u2
M + w

2
M − (uMβMw − wMβMu)2

]− 3
2
+ 2

[

(uM + ue) (1 − βMwβeu)
(

1 − β2
Mu

)

− wM (1 − βMuβeu) βMuβMw

]

×

× γ−1
M γ
−2
e

{

w−2
M γ
−2
e + v

2
e + (uM + ue)

2 −
[

(uM + ue) βev − veβeu

]2
}− 3

2 −

− 2
[

(uM − ue) (1 − βMwβeu)
(

1 − β2
Mu

)

− wM (1 − βMuβeu) βMuβMw

]

γ−3
M ×

×
{

w2
M
γ−2

e + v
2
e + (uM − ue)

2 −
[

(ue − uM) βev − veβeu

]2
}− 3

2
,
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W = − 1

4

{

uMβMw (βMu + βMw)
(

1 − β2
Mw

)

+ wM

[

1 − βMw (βMu + βMw) (1 − βMuβMw)
]

}

×

× γ−3
M

[

u2
M + w

2
M − (uMβMw − wMβMu)2

]− 3
2
+

1

4

(

1 − β2
Mu

)
1
2
(

1 − β2
Mw

)

γ−3
M w

−2
M +

+
1

4

(

1 − β2
Mu

)− 1
2
βMuβMwγ

−1
M u−2

M + 2
[

(uM + ue) (1 − βMwβeu) βMuβMw − wM (1 − βMuβeu)
(

1 − β2
Mw

)]

×

× γ−2
e γ
−1
M

{

w2
Mγ
−2
e + v

2
e + (uM + ue)

2 −
[

(uM + ue) βev − veβeu

]2
}− 3

2
+

+ 2
[

(uM − ue) (1 − βMwβeu) βMuβMw − wM (1 − βMuβeu)
(

1 − β2
Mw

)]

×

× γ−2
e γ
−1
M

{

w2
Mγ
−2
e + v

2
e + (uM − ue)

2 −
[

(uM − ue) βev − veβeu

]2
}− 3

2
.

on the field-generating particles is important. We have thus to

include the radiation reaction term explicitly in the equation

of motion. But the value η ≈ 0.005 is just at the bound-

ary of self-contradiction of electrodynamics for the meson at

the weak interaction threshold. Also quantum effects, how-

ever weaker than those for the electron, might alter radiation

there. Moreover, deceleration of the meson at the exit po-

tential barrier coming from other mesons as well as radiation

accompanying this deceleration cannot be neglected now.

However, it would be inadequate merely to introduce a

functional factor like that used above for the electron, because

details of the meson trajectory are now in question. In order to

trace the tendency, we shall instead try to approach the value

η = 0.005 from below, i.e. from larger meson mass.

Again, in dimensionless variables

χ =
ct

r0

, ue =
ze

r0

, ve =
xe

r0

, βeu =
due

dχ
, βev =

dve

dχ
,

γe =
(

1 − β2
eu − β2

ev

)− 1
2
,

uM =
zM

r0

, wM =
yM

r0

, βMu =
duM

dχ
, βMw =

dwM

dχ
,

γM =
(

1 − β2
Mu − β2

Mw

)− 1
2
,

the system of four ODE equations — Eqs. 7 shown in the

previous Page 103, with the functions U and W explained

on the same Page Page 103 and on top of this Page 104 —

describes the relativistic motion of electrons and mesons in

the (4:4) cubic star under their interaction.

This system will be numerically solved under following

initial conditions:

ue,i = uM,i =
ri√
3r0

, ve,i = wM,i =

√

2

3

ri

r0

,

βeu,i =
1
√

3
βe,i , βMu,i =

1
√

3
βM,i , βev,i =

√

2

3
βe,i ,

βMw,i =

√

2

3
βM,i , βe,i =

(

1 − γ−2
e,i

)
1
2
,

γe,i = 3.2, βM,i =
(

1 − γ−2
M,i

)
1
2
.

At the star exit, the contribution of radiation coming from

meson-meson interaction is expected to be rather low. It is

thus convenient to follow the method used in the previous

section in order to separate the radiation part in the total de-

crease of kinetic energy there. So, we solve first the equa-

tions of motion ignoring radiation, and then compute γM,rad

over the confined to a plane meson trajectory corresponding

to this solution:

γM,rad =
2

3
η

∫ χ f

0

dχ















(

dβMu

dχ

)2

+

(

dβMw

dχ

)2

−

−
(

βMw

dβMu

dχ
− βMu

dβMw

dχ

)2














γ3
M .

(8)

The related ODE system is shown in Eqs. 9 on top of the

next Page 104.

Since the lateral displacement of the heavy meson in a

single star is expected to be small, the system (9) should be

solved under the initial condition:

uMi =
rM2√

3
, wMi = rM2

√

2

3
, rM2 =

(

u2
M2 + w

2
M2

)
1
2
, (10)

where rM2 is the final radius of the meson in the accelerating

phase of the star. It was found that the condition (6) holds

only for η > 0.005. With η = 0.005, the equilibrium cycle

looks as follows. (We have to choose q = 1.3 to agree with

the charge gauge condition γe, f ≈ 5 as in [2]). Unlike (6:2)

case, in which the full cycle of returning to the initial state

takes two neighboring stars, now it takes four.

On the accelerating phase of the first star of the cycle:

rM,i = 0.244912; rM,2 = 0.001923; γM,i = 4.927011; γM, f =

5.090523; γe, f = 5.353761. On the decelerating phase: γM, f =

4.925161; γM,rad = 0.014866. Radiation energy decrease (8)

is less than 0.1 of that from the exit potential barrier as found

by subtraction the final energy for the deceleration phase (9)

from that for the acceleration phase (7), the second being

initial for the first. Hence, our approximation is appropri-

ate. On the accelerating phase of the last star of the cy-

cle: rM,i = 0.244921; rM,2 = 0.001934; γM,i = 4.926057;
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η−1 dβMu

dχ
=

1

4

(

1 − β2
Mw

)− 1
2
(

1 − β2
Mu

)

γ−3
M u−2

M −
1

4

(

1 − β2
Mu

)− 1
2
βMuβMwγ

−3
M w

−2
M −

− 1

4

[

uM

(

γ−3
M + β

2
Muβ

2
Mw + βMuβ

3
Mw

)

− wM

(

2βMuβMw − β3
Muβ

2
Mw − β

2
Muβ

2
Mw

)]

×

× γ−3
M

[

u2
M + w

2
M − (uMβMw − wMβMu)2

]− 3
2

η−1 dβMw

dχ
= −1

4

{

uMβMw (βMu + βMw)
(

1 − β2
Mw

)

+ wM

[

1 − βMw (βMu + βMw) (1 − βMuβMw)
]

γ−3
M ×

×
[

u2
M + w

2
M − (uMβMw − wMβMu)2

]− 3
2
+

1

4

(

1 − β2
Mu

)
1
2
(

1 − β2
Mw

)

γ−3
M w

−2
M +

1

4

(

1 − β2
Mu

)− 1
2
βMuβMwγ

−1
M u−2

M


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. (9)

γM, f = 5.089923; γe, f = 5.411567. On its decelerating phase

again: γM, f = 4.927011. The conditions (5) and (6) are satis-

fied in all four stars of the equilibrium cycle.

Contrary to the (6:2) case, both electron and meson en-

ergies have been found to increase in the close vicinity of

the star center on the acceleration phase. Therefore, for (4:4)

symmetry it is just meson radiation that dominates the mecha-

nism to support equilibrium. An equilibrium cycle satisfying

both (5) and (6) exists also for η > 0.005. Formal solution

gives that only for η > 0.02 the condition (5) is broken. QED

estimation with averaged Coulomb field [5] shows that for

heavy meson (η < 0.02) quantum single photon corrections

for radiation are small. However, classical electrodynamics

is invalid for η < 0.005. Therefore η = 0.005 could only be

accepted as the lowest value compatible with the above equa-

tions. This result by no means undermines the very fact of

correspondence between the lepton families and the cube star

sub-symmetries as detected with photon oscillation counting,

which possesses its own meaning, independent of a particular

theory to specify trajectories.

4 Concluding remarks

However imprecise, the obtained values for η strongly sug-

gest the (6:2) and (4:4) sub-symmetries to be associated ac-

cordingly with the τ−meson (≈ 1.5 GeV/c2, η = 0.0003) and

the meson (≈ 100 MeV/c2, η = 0.005). Our estimations

are reliable because of sufficiently big differences in mass

values between the leptons. In order to find precise values,

more complicated calculations of bremsstrahlung [5] are re-

quired for the star involving many Feynman diagrams for the

mesons, interacting between themselves and with the elec-

trons. Another approximation relates to the assumed sharp

cut-off in the electroweak interaction at re,2.

We point out that the similar analysis might be carried out

for quarks, which correspond to the three subsets of the com-

plementary to the cube 12-particle part of the dodecahedron

star in the full gauge lattice [2].

Although being presented here in the conventional form,

the motion-to-motion gauge is actually coordinate-less, bas-

ing solely on the existence of the top velocity signal and sym-

metrical patterns of particles’ trajectories. The existence of

the flavor families could never be comprehended, unless the

direct motion-to-motion gauge of charge is used, because the

intermediary involving reference systems comprised of

clocks and rods hides some important features of actual mea-

surements. Just the same situation comes about in the weak

interaction [3], where the obstructive role of reference sys-

tems stimulates the appearance of auxiliary “principles” like

gauge invariance with its artificial group structure that can

only explain the already known results of experiments rather

than predict them. As a matter of fact, the very statement

of the basic problem in mechanics, i.e. the contact problem,

must be sufficient to substantiate all principles, including

Lorentz covariance, gauge invariance and so on [7].
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