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The interacting boson model (sd-IBM1) with intrinsic coherent state is used to study the
shape phase transitions from spherical U(5) to prolate deformed SU(3) shapes in Nd-
Sm isotopic chains. The Hamiltonian is written in the creation and annihilation form
with one and two body terms.For each nucleus a fitting procedure is adopted to get
the best model parameters by fitting selected experimental energy levels, B(E2) transi-
tion rates and two-neutron separation energies with the calculated ones.The U(5)-SU(3)
IBM potential energy surfaces (PES’s) are analyzed and the critical phase transition
points are identified in the space of model parameters.In Nd-Sm isotopic chains nuclei
evolve from spherical to deformed shapes by increasing the boson number. The nuclei
150Nd and 152Sm have been found to be close to critical points.We have also studied the
energy ratios and the B(E2) values for yrast band at the critical points.

1 Introduction

The interacting boson model (IBM) [1] describes the low en-
ergy quadruple collective states of even-even nuclei in terms
of bosons with angular momentum 0 and 2 so called s and d
bosons. The bosonic Hamiltonian is assumed to have a gen-
eral form with one- and two-body terms and must be invariant
under some fundamental symmetries. The algebraic formula-
tion of the IBM allows one to find analytical solutions associ-
ated with breaking the U(6) into three dynamical symmetries
called U(5), SU(3) and O(6) limits of the model, correspond-
ing to spherical (vibrational), axially symmetric prolate de-
formed (rotational)and soft with respect to axial symmetric
(γ-unstable) shapes respectively.

Phase transitions between the three shapes of nuclei are
one of the most significant topics in nuclear structure research
[2-11]. These shape phase transitions were considered in the
framework of the geometric collective model [12], resulting
in the introduction of the critical point symmetries E(5) [13]
X(5) [14]. Y(5) [15], Z(5) [16] and E(5/4) [17]. The E(5)
corresponds to the second order transition between U(5) and
O(6), while X(5) corresponds to the first order transition be-
tween U(5) and SU(3). The symmetry at the critical point is
a new concept in the phase transition theory, especially for a
first order transition. From the classical point of view, in a
first order transition, the state of the system changed discon-
tinuously and a sudden rearrangement happens, which means
that there involves an irregularity at critical point [18].

Empirical evidence of these transitional symmetries at the
critical points has been observed in several isotopes.
The study of the shape phase transitions in nuclei can be best

done in the IBM, which reproduces well the data in several
transitional regions [8, 11].

In this paper we use the IBM with intrinsic coherent states
to study the spherical to prolate deformed shape transition in
the Nd-Sm isotopic chains. Section 2 outlines the theoreti-
cal approach and the main features of the U(5)-SU(3) model,
the model Hamiltonian under study is introduced in subsec-
tion 2.1. In subsection 2.2 the intrinsic coherent states are
given as energy states of the model Hamiltonian.In section 3
we present the numerical results of PES’s for Nd-Sm isotopic
chains and gives some discussions. Finally a conclusion is
given in section 4.

2 Outline of the theoretical approach

2.1 The general Hamiltonian of the sd-IBM

In order to study the geometric shapes associated with the sd-
IBM, we consider the most standard one and two body IBM
Hamiltonian [1]

H = ϵ sn̂s + ϵdn̂d

+
∑

L

1
2

√
2L + 1 CL

[
[d† × d†]

(L) × [d̃ × d̃](L)
](0)

+
1
√

2
v2

([
[d† × d†](2) × d̃s

](0)
+

[
s†d† × [d̃ × d̃](2)

](0)
)

+
1
2
v0

([
[d† × d†](0) × ss

](0)
+

[
s†s† × [d̃ × d̃](0)

](0)
)

+u2[d†s† × d̃s](0)
+

1
2

u0[d†s† × ss](0)

(1)
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with
CL = ⟨ddL|v|ddL⟩, (2)

v2 =

√
5
2
⟨dd2|v|ds2⟩, (3)

v0 = ⟨dd0|v|ss0⟩, (4)

u2 = 2
√

5 ⟨ds2|v|ds2⟩, (5)

u0 = ⟨ss0|v|ss0⟩, (6)

where s†(s) and d†(d̃) are the creation and annihilation op-
erators of the s and d bosons. d̃ is the annihilation operator
of the d boson with the time reversal phase relation d̃2k =

(−1)2+kd2,−k .

2.2 The intrinsic coherent state

The geometric picture of the IBM can be investigated by in-
troducing the intrinsic coherent state which is expressed as a
boson condensate [19]:

|Nβγ⟩ = 1
√

N!
(bc
†)

N |0⟩, (7)

bc
†=

1√
1+β2

[
s†+d0

† β cos γ+
1
√

2
(d2
†+d−2

†)β sin γ
]
, (8)

where N is the boson number, β and γ are the intrinsic defor-
mation parameters which determine the geometrical shape of
the nucleus.|0⟩ is the boson vacuum. Here β ≥ 0, 0 ≤ γ ≤ π3 .

2.3 The Potential Eneryg Surface (PES)

The PES associated with the classical limit of IBM Hamil-
tonian (1) is given by its expectation value in the intrinsic
coherent state (7)

E(N, β, γ) = ⟨Nβγ|H|Nβγ⟩ = ϵ s
N

1 + β2 + ϵd
Nβ2

1 + β2+(
1
10

C0 +
1
7

C2 +
9
35

C4

)
N(N − 1)

β4

(1 + β2)2−

2
√

35
v2N(N − 1)

β3 cos 3γ

(1 + β2)2 +
1
√

5
(v0 + u2)N(N − 1)

β2

(1 + β2)2 +
1
2

u0N(N − 1)
1

(1 + β2)2 .

(9)

If the parameter v2 = 0, then the PES is independent of
γ. If v2 , 0 then for every β > 0 the PES has a minimum at
γ = 0, if v2 > 0 (axially symmetric case with prolate shape)
or γ = π3 if v2 < 0 (oblate shape).

The PES equation (9) can be written in another form as:

E(N, β, γ)
N

=
A2β

2 + A3β
3 cos 3γ + A4β

4

(1 + β2)2 + A0 (10)

Table 1: Equilibrium values of the parameters A2, A3, A4 in the large
N limit for transition from dynamical symmetry limit U(5) to dy-
namical symmetry limit SU(3) as an illustrative example.

Set A2 A3 A4

a 500 -283 850
b 102 -508 703
c 91 -514 727
d 0 -566 700
e -250 -707 625
f 95 -512 728
g 85 -517 725

with
A2 = ϵd − ϵ s − u0 + (N − 1)

1
√

5
(u2 + v0), (11)

A3 = −
2
√

35
(N − 1)v2, (12)

A4 = ϵd − ϵ s −
1
2

u0 + (N − 1)
(

1
10

C0 +
1
7

C2 +
9
35

C4

)
, (13)

A0 =
1
2

u0. (14)

To determine the critical values of the order parameters
of the system, one needs to determine the locus of points for
which the conditions ∂E

∂β
= 0 and ∂

2E
∂β2 = 0 are fulfilled.

The equilibrium value of β is determined by:

∂E(N, β)
∂β

= 0, (15)

leading to

β
[
2A2 + 3A3β + (4A4 − 2A2) β2 − A3β

3
]
= 0. (16)

Figure (1) (with the parameters listed in table (1)) illus-
trates the critical points: For A2 = 1, A3 = A4 = 0, the nucleus
is in the symmetric phase since the PES has a unique mini-
mum at β = 0 when A3 and A4 not vanish and A2 decreases, a
second nonsymmetric minimum arises (set b) at β , 0. This
non symmetric minimum take the same depth of the symmet-
ric one at the critical point (set c). Beyond this value, the
symmetric minimum at β = 0 becomes unstable point (set d).
(Sets g, h) show two cases in the coexistence region.

3 Application to Nd–Sm isotopic chains

Nuclei in rare-earth region are well-known examples of the
U(5)-SU(3). The validity of the present technique is exam-
ined for the rare earth isotopic chains 144−154Nd and
146−162Sm. The optimized values of the nine parameters of
the Hamiltonian ϵ s, ϵd, c0, c2, c4, u0, u2, v0, v2 which are trun-
cated to four parameters A2, A3, A4, A0 are adjusted by fitting
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Fig. 1: The scaled PES’s as a function of the deformation parameter
β for the model parameters listed in table (1). The curves (b, c, d)
represents the spinodal, critical and antispinodal points respectively.
The curves (f, g) show two cases on the coexistence region.

procedure using a computer simulated search program in or-
der to describe the gradual change in the structure as neu-
tron number varied (number of bosons) and to reproduce ten
positive parity experimental levels namely (21

†, 41
†, 61

†, 81
†,

02
†, 23

†, 43
†, 22

†, 31
† and 42

†), the B(E2) values and the two
neutron separation energies for each nucleus in each isotopic
chain. The effect of ϵ s be ignored also the parameter u0 is kept
zero because it can be absorbed in the three parameters. The
resulting model parameters are listed explicitly in Table (2).
The PES’s E(N, β) as a function of the deformation parame-
ter βfor our Nd-Sm isotopic chains evolving from spherical to
axially symmetric well deformed nuclei are illustrated in the
Figures 2, 3. At the critical points (150Nd, 152Sm) the spheri-
cal and deformed minima must coexist and be degenerated in
order to obtain a first order phase shape transition. To identify
the shape phases and their transition it is helpful to examine
the correspondence between the interaction strengths in the
microscopic model and the dynamical symmetry in the IBM.

Phase transitions in nuclei can be tested by calculating the
energy ratios

RI/2 = E(I+1 )/E(2+1 ). (17)

For I = 4, the ratio R4/2 varied from the values which
correspond to vibrations around a spherical shapeR4/2 = 2
to the characteristic value for excitations of a well deformed
rotor R4/2 = 3.33. Figure (4) shows the RI/2 for 150Nd and
152Sm compared to U(5) and SU(3) prediction.

Now, we discuss the electric quadruple transition proba-
bilities. The general form of the E2 operator was used

T (E2) = α
([

d† × s̃ + s† × d†
](2)
+ β

[
d̃ × d̃

](2)
)

(18)

where α is the boson effective charge and β is the structure

Fig. 2: The PES’s (in the γ = 0 plane given by the IBM as a function
of deformation parameter β , to describe the U(5)-SU(3) transition
in 144−154Nd isotopic chain. The calculations are for χ = −

√
7/2.

Fig. 3: The same as Fig.2 but for 146−162Sm isotopic chain.

parameter. The parameters α and β have been determined
directly from the least square fitting to the observed β(E2).
α = 0.135 and β = −0.115. The ratios of the E2 transition
rates for the U(5) and SU(3) are given by

B(I+2)/2 = B(E2, I + 2→ I)/B(E2, 2+1 → 0+1 ),

=
1
2

(I + 2)
(
1 − I

2N

)
for U(5),

=
15
2

(I + 2)(I + 1)
(2I + 3)(2I + 5)

(
1 − I

2N

) (
1 +

I
2N + 3

)
for SU(3).

(19)

In Figure (5), the B(I+2)/2 ratios are shown for the best candi-
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Table 2: The adopted best model parameters in (keV) for our se-
lected Nd-Sm isotopic chains.

NB A2 A3 A4 A0

144Nd 6 400.132 -242.551 636.717 18.936
146Nd 7 168.175 -291.061 452.077 39.874
148Nd 8 54.518 -339.571 385.737 60.812
150Nd 9 -140.338 -388.081 238.197 81.751
152Nd 10 -359.495 -436.591 66.357 102.689
154Nd 11 -452.052 -485.102 21.117 123.627
146Sm 7 748.245 -160.541 946.905 0.0
148Sm 8 554.405 -187.298 786.175 0.0
150Sm 9 360.565 -214.055 625.445 0.0
152Sm 10 166.725 -240.812 464.715 0.0
154Sm 11 -27.115 -267.569 303.985 0.0
156Sm 12 -220.955 -294.326 143.255 0.0
158Sm 13 -414.795 -321.083 -17.475 0.0
160Sm 14 -608.635 -347.839 -178.205 0.0
162Sm 15 -802.475 -374.596 -338.935 0.0

date 152Sm compared to the U(5) and SU(3) predictions and
the experimental data.

4 Conclusion

The shape transition U(5)-SU(3) in 144−154Nd and 146−162Sm
isotopic chains in the rare earth region is studied in the frame-
work of sd IBM1 using the most general Hamiltonian in terms
of creation and annihilation operators using the method of the
intrinsic states.

Fig. 4: Normalized excitation energies RI/2 = E((I1
†)/E((I2

†) for
150Nd and 152Sm nuclei compared to U(5) and SU(3) predictions.

The optimized model parameters have been deduced by
using a computer simulated search program in order to obtain
a minimum root mean square deviation of the calculated some
excitation energies, the two neutron separation energies and
some B(E2) values from the measured ones. The PES’s are
analyzed and the location of the critical points are obtained.
In our Nd and Sm chains, nuclei evolve from spherical to pro-
late deformed shape transition. The lighter nuclei are spher-
ical and the heavier are well deformed. The 150Nd and the
152Sm have been found to be critical point nuclei, that is the

Fig. 5: Comparison of the BI+2/2 = B(E2, I + 2 : I)/B(E2, (21
†, 01

†)
ratios of the ground state band in 152Sm (N=11) compared to the
U(5) and SU(3) predictions and the experimental ratio.

transition from the spherical to deformed occurs between bo-
son number N=9 and N=10. The energy ratios and the B(E2)
values are also studied.
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