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The second Planck’s radiation law is derived considering that “resonators” induced by

the vacuum absorb thermal excitations as additional fluctuations. The maximum energy

transfer, as required by the maximum entropy equilibrium, occurs when the frequencies

of these two kind of vibrations are equal. The motion resembles that of the coherent

states of the quantum oscillator, as originally pointed by Schrödinger [1]. The resulting

variance, due to random phases, coincides with that used by Einstein to reproduce the

first Planck’s radiation law from his thermal fluctuation equation [2].

1 Introduction

In 1901, Planck derived the spectral distribution of radiant

heat, simply calculating entropy from the number of ways

that thermal energy can be distributed among all blackbody

resonators (maximum entropy). This forced him to interpret

the possible energies of the resonators, for a given mode and

temperature, as multiples of a fixed energy; the quantum of

electromagnetic energy [3]. In such approach, the appear-

ance of a collection of resonators — with all sort of frequen-

cies — depends only on thermal excitations, that is, for T = 0

they do not exist. However, in 1912 Planck realized that ther-

mal equilibrium with radiation would make sense only if the

resonators remain even for T = 0 [4]. In this new approach

the quantization of the first Law was preserved, but only in

the emissions, that is, oscillators in equilibrium with radiation

absorbs continuously until a certain nhν is reached, and then

they emit or continues absorbing. From this semi-classical

derivation, one concludes that exists vibrations not induced

by thermal excitations. In this way, arose the concept of zero-

point energy (ZPE), which is a term of the second Planck’s

radiation law, i.e.

〈E〉 =
1

2
~ω +

~ω

e~ω/kBT − 1
. (1)

At the time, the ZPE was a controversial concept; at best,

it was accepted as “virtual photons due to nearby matter”.

The concept of a radiation field permeating the vacuum, and

then inducing “matter-oscillators” with an energy given by

the first term of Eq. (1), only gained credibility after the pre-

dictions of the quantum field theory (quantum vacuum states)

and the experimental proof of the Casimir’s force [5]. In fact,

around the middle of the last century they begin appear works

that assume explicitly that the matter (elementary electrical

charges or agglomerates of them) are in permanent interac-

tion with a zero-point radiation field (ZPF); absorbing and

emitting electromagnetic radiation in a conservative way, in-

dependently of temperature.

In accordance with the experimentally proved work of

Casimir [6] and the proponents of the stochastic electrody-

namics [7], the ZPF is a homogeneous and isotropic distribu-

tion of electromagnetic plane waves pervading all space; each

one carrying energy proportional to its frequency (ranging

from zero to infinite, or a big cutoff value), ~ω/2. Moreover,

its spectral energy density is proved to be a Lorentz invariant.

As the phases of such waves are randomically distributed in

the range [0, 2π], then electrical charges (or any agglomerate

of them) are permanently receiving unpredictable impulses

with the following features: First, the ZPF isotropy ensures

zero net momentum transfer. Second, the emitted radiation,

due to non uniform acceleration, responds by the local en-

ergy conservation. Third, the symmetric distribution of emis-

sions ensures zero net self-momentum (no liquid radiation

reaction). Fourth, the permanent nature of the absorption-

emission process imply a remnant random trembling motion,

whose energy in the particle-bound reference frame, in the

case of a free electron, is the well-known rest energy

m0c2 =
~ωZ

2
, (2)

where ωZ is the zitterbewegung frequency [8, 9].

This zitterbewegung, strongly correlated with the trans-

lational motion trough the de Broglie’s periodicity, prevent

such particles to follow predictable paths (quantum random-

ness). Even so, the overall motion obeys the dynamical prin-

ciple founded on trajectories. Non relativistically, this obedi-

ence means that the center of mass of the particle’s vibrations

can be found — instantly — over any one of the trajectories

dictated by the stochastic Hamilton-Jacobi-Bohm equation,

which is implicit in the Schrödinger’s equation [10].

What follows is a derivation of Planck distribution, which

replaces the quantization a priori by the presence of the ZPF,

which, therefore, is the responsible by “resident blackbody

resonators”. Nevertheless, quantization is implied. Indeed,

the zero-point energy ε0, besides being a fixed quantity for

each mode, is indispensable to get a discrete Boltzmann’s dis-

tribution from a continuous one [12].

2 Thermal excitations of vacuum induced fluctuations

The energy absorbed (emitted) from (to) the ZPF in order to

form temperature independent primordial matter-oscillators

(or “Blackbody resonators”) is

ε0(ω) =
1

2
~ω. (3)
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When particles absorbs such vibrant energy, conserva-

tively, it is expected that its coordinates fluctuates as

q0(t, φ) =

√

2ε0(ω)

mω2
cos(ωt + φ), (4)

which differs from a typical classical oscillation only by the

presence of random phases φ (ZPF randomness), which imply

that this equation does not describe the actual path followed

by particles, but simply obedience to the dynamic principle at

each occupied position. Indeed, this is the main feature of the

Schrödinger’s equation, as argued elsewhere.

Notice, now ε0(ω) is the energy of the matter-oscillator

(the zero-point energy), which, as can be seen by simple sub-

stitution of Eq. (4), obey the equality

ε0(ω) =
1

2π

∫ 2π

0















(2)
2π

ω

∫ 2π/ω

0

1

2
m

(

dq0(t, φ)

dt

)2

dt















dφ, (5)

where the factor (2) refers to equal contributions from kinetic

and potential energies of the harmonic oscillator, ω is the an-

gular frequency of the absorbed radiation, the integral in t is

an average over the radiation period, and the integral in φ is

an average over random phases.

Given the permanent nature of the interactions, the ZPE

must be viewed as a remnant energy. It is indispensable to

compose the ground state energy of quantum systems. The

exact shape, as it should be, only appears in the case of the

harmonic oscillator.

For T , 0, there are thermal excitations, which manifest

as additional vibrations that increase the amplitude of existing

fluctuations. In a sense, this can be inferred from the thermal

dilatation of bodies. In other words, the center of mass of the

matter-fluctuations, as expressed by Eq. (4), fluctuates due to

thermal excitations. This implies the superposition

qφ,Φ(t) =

√

2ε0(ω)

mω2
cos(ωt+φ)+

√

2ET (Ω)

mΩ2
cos(Ωt+Φ), (6)

where ET (Ω) is the vibrational energy induced be thermal ex-

citations at the temperature T , Φ is a random phase, and, for

the sake of generality,Ω is an arbitrary frequency.

It is worth informing, the assumption of the last paragraph

is in full agreement with what is inferred from the coherent

states of the quantum harmonic oscillator (the perfect frame-

work to derive the Planck’s law); that is, the statistical Gaus-

sian of the ground state (here, the primordial oscillator) is

moved, as a whole, by classical oscillations [11, see p. 104 ].

Averaging the energy

(2) ×
ω

2π

∫ 2π/ω

0

1

2
m

(

dqφ,Φ(t)

dt

)2

dt

over random phases, both φ andΦ, yields the energy absorbed

(emitted) by this superposition of vibrations, i.e.

E(ω,Ω) = ε0(ω) + ET (Ω), (7)

where Ω still continues unknown.

Now, averaging the square deviation from ε0(ω),















(2) ×
2π

ω

∫ 2π/ω

0

1

2
m

(

dqφ,Φ(t)

dt

)2

dt − ε0(ω)















2

,

over both random phases, emerges the variance

σ2
ω,Ω =

2~ω3
(

ω2 + Ω2
)

sin2 (πΩ/ω) ET (Ω)

π2
(

ω2 −Ω2
) +

+

[

ω2 + 16π2Ω2 − ω2 cos2 (4πΩ/ω) ET (Ω)
]

ET (Ω)

16π2Ω2
(8)

which seems to diverges when Ω→ω. In true, there is the

maximum variance

σ2 = lim
Ω→ω
σ2
ω,Ω = E2

T (ω) + ~ωET (ω), (9)

which can also be obtained replacing Ω by ω in the starting

Eq. (6), and then performing the indicated operations.

Maximum variance implies maximum entropy (or ther-

modynamical equilibrium). Indeed, calculating entropy form

Gaussian or exponential distribution (like Boltzmann’s distri-

bution) one find that entropy is proportional to [ln(σ2) + cte].

From another point of view, the Eq. (9) also means that

maximum energy transfer occurs when thermal vibrations are

tuned with that induced by the ZPF, in full agreement with a

well-known result of the theory of oscillations; that is, max-

imum energy transfer occurs at the natural frequency of the

absorbing oscillator.

Therefore, from this tuned behavior — thermodynamical

equilibrium — it follows that each possible energy, consider-

ing Eq. (7), obey

E =
~ω

2
+ ET (ω), (10)

and are distributed in such a way that the corresponding dis-

tribution has the variance σ2.

It is crucial emphasizing, such ensemble of random ener-

gies is justified by a variance arising from random phases, φ

and Φ. The first is a well-known feature of the ZPF (master-

fully interpreted in the quantum mechanics framework), and

the second is related to the myriad of ways that thermal exci-

tations can move an elementary constituent of a body.

3 Thermal fluctuations and the Planck’s radiation law

The variance expressed by Eq. (9) ensures that for each ω-

mode at the remperature T there is a collection of random

energies E, Eq. (10). From a thermodynamical point of view,

the equilibrium involving such energy fluctuations must be

treated in terms of the Boltzmann’s statistics.

Deriving the moments of such distribution,

〈Er〉 =

∫ ∞

0
dEEre−βE

∫ ∞

0
dEe−βE

= r!〈E〉r,
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with respect to β= 1/kBT , we obtain the Einstein’s thermal

fluctuation equation

σ2
E = kBT 2 d 〈E〉

dT
, (11)

where, in the present calculations, 〈E〉 is the thermal average

of the energies expressed by Eq. (10), i.e.

〈E〉 =
~ω

2
+ 〈ET 〉 , (12)

and the thermal variance (thermal fluctuation) σ2
E

is, there-

fore, the thermal average of Eq. (9):

σ2
E = 〈ET 〉

2 + ~ω 〈ET 〉 . (13)

Combining the last three equations, we get the differential

equation

kBT 2 d 〈ET 〉

dT
= 〈ET 〉

2 + ~ω 〈ET 〉 , (14)

whose solution, considering 〈ET 〉 = 0 for T = 0, is

〈ET 〉 =
~ω

e~ω/kBT − 1
. (15)

Therefore,

〈E〉 =
~ω

2
+

~ω

e~ω/kBT − 1
. (16)
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