
Volume 11 (2015) PROGRESS IN PHYSICS Issue 3 (July)

Beyond Quantum Fields: A Classical Fields Approach to QED

Clifford Chafin

Department of Physics, North Carolina State University, Raleigh, NC 27695. E-mail: cechafin@ncsu.edu

A classical field theory is introduced that is defined on a tower of dimensionally in-

creasing spaces and is argued to be equivalent to QED. The domain of dependence is

discussed to show how an equal times picture of the many coordinate space gives QED

results as part of a well posed initial value formalism. Identical particle symmetries

are not, a priori, required but when introduced are clearly propagated. This construc-

tion uses only classical fields to provide some explanation for why quantum fields and

canonical commutation results have been successful. Some old and essential questions

regarding causality of propagators are resolved. The problem of resummation, gener-

ally forbidden for conditionally convergent series, is discussed from the standpoint of

particular truncations of the infinite tower of functions and a two step adiabatic turn

on for scattering. As a result of this approach it is shown that the photon inherits its

quantization ~ω from the free lagrangian of the Dirac electrons despite the fact that the

free electromagnetic lagrangian has no ~ in it. This provides a possible explanation for

the canonical commutation relations for quantum operators, [P̂, Q̂] = i~, without ever

needing to invoke such a quantum postulate. The form of the equal times conservation

laws in this many particle field theory suggests a simplification of the radiation reaction

process for fields that allows QED to arise from a sum of path integrals in the various

particle time coordinates. A novel method of unifying this theory with gravity, but that

has no obvious quantum field theoretic computational scheme, is introduced.

1 Introduction

Quantum field theory, in some ways, marks the ultimate state

of our understanding of physics. In its computational ex-

actness, it can be thrilling yet its conceptual grounding is

very unsatisfactory. Field theory has its origins in the 1920’s

and 1930’s when attempts to include particle creation and the

quantization of the photon necessitated a larger mathematical

structure [13, 17]. Fock space seemed to have sufficient fea-

tures to encompass the intrinsic quantum and particle number

variable features. The ladder operators of the harmonic os-

cillator could be formally modified to give an algebra that

allowed these various particle number spaces to interact. Dif-

ferent attempts to generate an equation of motion and find

transition rates led to various formal procedures. Classical la-

grangians were varied in a formal manner with “second quan-

tized” operators in approaches by Schwinger and Tomanaga

and systematic procedures to handle the divergent terms were

introduced [15, 17]. Feynman gave a very intuitive approach

using path integrals that was put into a formal structure by

Dyson. This approach has gained prominence due to its ease

of organizing the terms of the expansion.

Quantum mechanics is the quantum theory of fixed parti-

cle number systems. Certain quasi-classical approaches made

the treatment of radiative decay possible without QED at low

energies. Nevertheless, even in this low energy domain, the

theory had lingering conceptural problems. Measurement and

the “collapse of the wavefunction” led to paradoxes that have

spawned an enormous literature [7]. Decoherence is a pop-

ular “explanation” of these effects but these tend to rely on

assumptions that are just pushed off to other parts of the anal-

ysis [16]. The Born interpretation, due to its simplicity and

historical inertia, still dominates most treatments of classical-

quantum interactions. Some may object that there are now

ways to treat measurements independently of the Born in-

terpretation to handle to new sorts of quantum nondemoli-

tion measurements [11] but these ultimately involve other ad

hoc statistical assumptions. Quantum statistical mechanics

has never found any solid conceptual footing despite the fre-

quent success of its formalism in describing thermodynamic

behavior and providing numerical results. This problem is of-

ten given a short comment in books on the subject and little

progress has been made. Ultimately, an initial data formula-

tion approach must resolve all of these issues in terms of the

dynamical equations and provide evidence for the kinds of

initial data that is physically relevant.

The quantum field theory approach to quantum mechan-

ics is on a solid footing. Even though operators may change

the particle number, it is always changed back at every or-

der in the expansion. One may show [15] that this gives an

exact isomorphism with the Schrödinger, Heisenberg and in-

teraction picture versions of QM. This leads to the Feynman

path integral approach to quantum mechanics which, while

equivalent, generally gives absurdly difficult derivations of

results compared to other means. In contrast, regularization

of the path integral has never had a very solid mathematical

foundation but applying the theory in a “standard” fashion

gives correct results. The main uses of QFT is in relativis-

tic physics, quasiparticle motions in condensed matter and in

the “Wick rotated” form which converts temporal evolution
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to a high temperature expansion of the thermodynamic poten-

tials. The correspondence of QFT in the case of quasiparticle

evolution to that of Schrödinger evolution is itself challeng-

ing [2]. Fundamentally, one must give a description of the

many-body wavefunction’s excited states to give such a cor-

respondence. This has led to the popularity of Green’s func-

tion methods in condensed matter physics since it sidesteps

this difficult work and leads directly to calculations. The va-

lidity of the derivation of the Kubo formula [8] has been ex-

tensively criticized [9] but it has, nevertheless, proved to be

of great use over a broader range of phenomena than should

be expected.

Given that no true classical-quantum correspondence of

objects is known, it is unclear when one should impose clas-

sical structures (like hydrodynamics) on the system and when

to extract certain properties (like viscosity) by quantum me-

ans. This is of particular interest in the study of ultracold

gas dynamics [5] and superfluid Helium. There are popular

and sometimes successful approaches for doing this but it is

never clear that they must follow from the true many body

dynamical theory or that we have simply made enough as-

sumptions to stumble on to the tail of a correct derivation, the

first, and correct part of which is a mystery to us. The general

vagueness and nonspecificity of the subject allows theorists

great freedom to generate calculations that then can be com-

pared with experimental or Monte-Carlo data for affirmation

of which ones to keep. This very freedom should undermine

our reasons for faith in our theory and intuition. Instead it, to-

gether with professional publication demands, seems to cre-

ate a selective pressure in favor of optimism and credulity on

the part of practitioners and an air of mystical prophecy of our

physics fathers and those who derive experimentally match-

ing results.

In relativistic field theory, where particle creation is im-

portant, there are additional problems. Renormalization is

necessary because of the local interactions of particles and

fields. Classical physics certainly has such a problem and the

radiation reaction problem of classical electrodynamics still

has unanswered questions [14]. The series derived from QFT

in the relativistic and quasiparticle cases tend to be asymp-

totic series and conditionally converging. Nonetheless, it se-

ems very important to resum these series over subsets of dia-

grams to get desired approximations and Green’s functions

that are analytically continued to give the propagator pole

structure corresponding to masses and lifetimes of resonan-

ces. The path integral itself has too large a measure to give

a rigorous derivation. Regularization procedures, like putting

the integrals on a Euclidean lattice for computation, length

scale cutoffs, Wilson momentum cutoffs, dimensional regu-

larization and others, are introduced to get finite results [13].

Of the conceptual problems facing quantum theory, renormal-

ization will be shown to be a rather modest one. Justifying the

use of resummation will be much more serious.

The Schrödinger approach to quantum mechanics has a

special place. Questions of causality and geometric intuition

are most naturally discussed in a real space picture. The dif-

fusive nature of this equation is problematic but vanishes in

the relativistic limit of the Dirac equation. Unfortunately, this

is exactly where particle creation effects become important.

In relativistic classical field theory, all causality questions are

resolvable systematically. The structure of the equations en-

sures that it is valid. Other advantages of classical fields are

that they are deterministic, propagate constraints exactly, give

clearly obeyed conservation laws and introduce a specificity

that allows all philosophical questions and thought experi-

ments to be resolved through examination of their own math-

ematically consistent structure. In some cases, like relativ-

ity, our intuition may need to be updated but how this is to

be done is made clear through such examples. QFT clearly

works at the level of computation for many problems. This

makes one believe that maybe our precursory arguments and

descriptions leading to those calculations are fine and merely

need elaboration. Given the success of so many calculations,

it comes as a great disappointment that almost any interacting

field theory is inconsistent [6].

Beyond these problems, the use of one particle lagrangi-

ans and couplings that get promoted to many body interacting

theory through canonical quantization or propagator methods

lead to a kind of conceptual disconnect that makes the solid

implications of classical field theory, e.g. Noether’s theorem

and conservation laws, unclear. These conservation laws can

be formally defined by a correspondence of operators and

checked but are no longer strict implications of the symme-

tries of a lagrangian. The symmetries of one-particle sys-

tems themselves require a more explicit definition in the many

body case where multiple coordinate labels of the wavefunc-

tion Ψ can describe independent motions but the current state

of theory does not present a solid enough foundation to show

how and when to make this manifest as an important symme-

try. The meaning of a “propagator” in classical theory is sim-

ple yet it is often not appreciated that the full reality described

by a Klein-Gordon (KG) field is not necessarily contained in

the support of φ in a given constant time slice due to its sec-

ond order nature. This is often lost in confusing discussions

in terms of positive and negative energy components. This

will be resolved for both KG and Dirac equations in the clas-

sical and quantum cases and clear up any apparently acausal

effects without reference to commutation relations and formal

measurement.

It is an emotionally identical state to feel that something

is wrong but unclear, lacking sufficient specificity, or that we

simply don’t understand. The formal character of quantum

field theory has produced a useful computational tool but left

enough vague and ill-defined that there is plenty to improve.

It is interesting that it has been proved that no interacting

quantum field theory is consistent [6]. People typically shrug

this off as with the other conceptual troubles in quantum the-

ory. At some point people have to generate work or do some-
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thing else but eventually formal approaches are destined to

lose productivity. Beyond that is the lack of satisfaction that

one really understands what one is doing. It is very common

in physics to find clever solutions or long derivations that turn

out to be flawed. Classical systems exist as well posed ini-

tial value problems so that they can be tackled from many

angles: perturbation theory, conservation laws, idealized sys-

tems, . . . . A well posed such problem that describes field

theory would doubtlessly open some new doors.

The foregoing was to show that some new approach to

the reality described by QFT is justified. In doing so, QFT’s

successes are the best guide to start. In the following we will

seek a well-posed classical relativistic theory over a tower of

spaces of increasing dimension that will have some loose cor-

respondence with Fock space. This will not be guided by the

computational convenience it affords but logical and mathe-

matical consistency and specificity. Since we are taking the

point of view that the fields are valid at all time (so implicitly

have an “emergent measurement theory” at work) we don’t

need to think of “particles” as something more than a label

for some axes in our higher dimensional space. It will turn

out that we will need a larger encompassing structure than

field theory on Fock space to describe the phenomenology of

QFT adequately. From this we can derive QFT phenomenol-

ogy in a suitable limit and use its rigid structure to answer

conceptual questions in a more convincing fashion. Since this

will strictly be a deterministic covering to QFT we consider

for it a new name, deterministic wave mechanics (DWM). Its

purpose is to elucidate an explanation of why quantum field

theory works and give a framework for modifications, like the

inclusion of gravity, that may have a well posed structure but

not exist in the framework of QFT itself. In the following we

will use QED as a particular case but the generalizations will

be evident.

2 Overview

The goal here is to introduce set of many particle number

spaces where energy, mass, charge, probability, stress, . . .

can travel between the spaces at two-body diagonals. This

will necessitate we make sense of multiple time labels and

have a well defined set of initial data and regions where inter-

acting fields can consistently evolve in this high dimensional

many-time structure. Because there will be no “field opera-

tors” there will be no need for a translationally invariant vac-

uum to build particles from. If we start with N electrons, the

number of photons may increase and electron-positron pairs

can appear but the net charge is the same in every space where

nonzero amplitude exists. This eliminates the basis of Haag’s

theorem and its contradiction.

Firstly, we will introduce separate equations of motion

and particle labels for electrons and positrons. The ampli-

tude of each of these will be positive locally and interactions

will not change this. Negative norm states exist but are never

utilized by the system. This is due to a symmetry of the dy-

namical equations not a constraint akin to the Gupta-Bueler

formalism. The photon fields will be described by both A and

Ȧ labels so that, each “photon” will now have 4 → 2 × 4 co-

ordinate labels. An important distinction here with QFT is

that there will be nonzero functions in the “tower” of fields

that have zero norm. For example, in a one-electron zero-

photon system, ψ(x) has full norm while the function in the

one-electron and Φem sector is nonzero. The norm of electro-

magnetic fields will not be a simple square of the function am-

plitude but a function of its amplitude and derivatives in such

a way that only if there are imaginary parts will it contribute

to the “norm.” Thus our tower of functions will involve many

nonzero ones that have no norm and the electromagnetic field

can pick up some complex components. This suggests that

our theory may have a larger configuration space than QFT.

A explanation of QFT may arise from this by thinking of

QFT tracking the flow of norm and other conserved quanti-

ties through the system while ignoring these higher nonzero

functions and, in some gauges, treating them as constraints.

Once we have a suitable configuration space, equations of

motion and reasonable sense of “future” we seek a mapping

of QED into the space. The tools used to treat scattering in

QFT involve “adiabatic turn on/off” of the interactions, reg-

ularization and renormalization. Typically we sum over spe-

cial subsets of diagrams and adjust the “bare” parameters to

get the right free behavior for these modifications. The reg-

ularization can be easily dealt with as in classical theory by

assuming finite size effects. This is essential for the radiation

reaction. It is still unclear how QFT can treat the radiation

reaction adequately so this alone may introduce new physics.

The sort of initial data with interactions already “on” requires

we work with a truncated set of the total space on interactions.

Implicit here is that the bare parameters be chosen to give the

right momenta and other observable for the “free” particles

(in the sense that they are ballistic not that interactions are

turned off). The structure of the theory allows us to adjust

couplings and interactions with far more freedom than QFT

for perturbative purposes. Resummation has always been the

most dubious aspect of QFT. Conditionally convergent series

should not be rearranged so having a limiting method to make

sense of this is an important improvement. In this paper we

will not prove an isomorphism with QED, and, given the in-

consistencies in the theory, this may be for the best. A foun-

dation is laid with some arguments for its ability to generate

QED results, but given the scope of the subject, much more

work remains than can be done in this one paper.

Finally we will discuss a method of combining this with

gravity by promoting the γ matrices themselves. This will re-

quire some extension of most fields to allow dual pairs so that

the quadratic lagrangians become bilinear. Such a method is

distinct from vierbein approaches and works on a flat back-

ground. Some important extensions of the notion of gauge

freedom arise here and the “reality” of the particles can be
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shown to move causally yet not be definable in any obvious

fashion in terms of the fields.

3 The configuration space

3.1 Dirac fields

In the early days of the Dirac equation, interpretations have

evolved from a proposed theory of electrons and protons to

that of electrons and positrons with positrons as “holes” in an

infinitely full electron“sea” to that of electrons with positrons

as electrons moving “backwards in time.” The first interpre-

tation failed because the masses of the positive and negative

parts are forced to be equal. The second was introduced out

of fear that the negative energy solutions of the Dirac equa-

tions would allow a particle to fall to endlessly lower ener-

gies. The last was introduced as a computational tool. The

negative mass solutions were to be reinterpreted as positive

mass with negative charge. Necessary fixes to this idea are

subtly introduced through the anticommutation relations and

the algebraic properties of the vacuum ground state used in

the field theory approach.∗ If we are going to seek a clas-

sical field theory approach to this problem we need another

mechanism.

In a universe containing only electrons and positrons we

require the fields Ψe, Ψp, Ψee, Ψep. . . where the number of

spinor and coordinate labels is given by the number of parti-

cle type labels as inΨee = Ψ
ab
ee (xµ, yν). The lagrangian density

must distinguish electrons and positron by their charge only.

Since we have not included any photons yet and we have as-

serted that positive norm will be enforced on the initial data

(and suggested it will be propagated even in the interacting

case) these will have equations of motion that follow from

the related one particle lagrangians

Le = i~ψ̄eγ
µ∇µψe − mψ̄eψe

Lp = i~ψ̄pγ
µ∇µψp + mψ̄pψp.

(1)

The sign of the charge will be discussed when the electromag-

netic field is added but, at this point, could be chosen either

±q. We confine ourselves to the Dirac representation and the

positron lagrangian is chosen so that its rest positive energy

contribution is in the v component of the spinor
(

u

v

)

unlike the

the electron case. We will only be interested in initial data

with positive energy. Later we will see that this is consistent

with the kinds of creation and annihilation operator couplings

in QED that allows positrons to have positive energy. We still

need a lagrangian for our many particle wavefunctions. In

this noninteracting case, we consider this to be built of a sum

of the one particle ones so that the lagrangian of the two elec-

tron field Ψab(xµ, yν) is

Lee = i~Ψ∗a fγ
0
abγ

µ

bc
∇µΨc f − mΨ∗abγ

0
acΨcb+

+ i~Ψ∗f aγ
0
abγ

ν
bc∇νΨ f c − mΨ∗abγ

0
acΨcb

(2)

∗It is interesting to note that it is precisely the properties of this ground

state that lead to the inconsistencies shown by Haag’s theorem.

where we have explicitly written out the indices associated

with spinor labels and coordinates and the summation con-

vention is assumed for all repeated indices. The action is to

be computed by integrating over a region in the 2-fold Lorentz

spaceR4×R4. Variation of the function can be done holding it

constant along y and x respectively leading to the usual equa-

tions of motion along the separate time coordinates tx, ty for

a product function Ψ = ψ1(xµ)ψ2(yν).

From a dynamical point of view, we are mostly interested

in the cases where the fields are all evaluated at equal times.

However we should ask what it even means to evaluate a func-

tion at two different times. When is this even meaningful? If

we specify Ψ(x
µ
1
, xν

2
) at t1 = t2 we desire to know into what

region of this many-time future we should expect a solution.

Further explanation of the equal time evolution is discussed

in Sec. 3.4.

Considering free propagators we can evolve the data from

(x1, x2) in the t1 direction indefinitely and similarly for t2. The

domain of dependence is then the union of the two backwards

light-cones |x′
1
− x1| < c (t1′ − t1) and |x′

2
− x2| < c (t2′ − t2). In-

teractions will allow free evolution for such a function except

on 2-body diagonals xµ = yν. When these cones intersect

these regions sources and sinks with other particle number

functions will arise. When these produce a net change in am-

plitude versus simply a potential force remains to be seen.

Furthermore, it is still unclear that we can derive the static

electromagnetic force effects from such a restricted local in-

teraction. This will be explained later but first we investigate

the case of free photons.

3.2 Photons

The classical electromagnetic field is a real vector field Aµ.

For our many body generalization as Ψ
µ
a ∼ ψa(x) Aµ(y) we

will have, generally nonseparable, combinations of electro-

magnetic and electron fields so making the assignment of

which is “real” is ambiguous. We will find that phase dif-

ferences between these fields on the many body diagonals

give sources and sinks of amplitude from one particle num-

ber space to another. Firstly, let us consider the classical elec-

tromagnetic field which we can, loosely, think of as a single

particle field.† The lagrangian of the electromagnetic field is

LA = −
1

4
FµνFµν (3)

where Fµν = ∂[µAν] = ∂µAν−∂νAµ. For now consider only the

“classical” field theory case where we have one field of each

type on R4. The complex Klein-Gordon field has a norm con-

servation law induced by the global phase change φ → φeiγ.

In this case of a noninteracting electromagnetic field we have

equations of motion �Aµ = 0 and, allowing complex values,

we have four independent global phase changes allowed in

†Generally classical electromagnetic fields are considered as combina-

tions of photon fields of all photon number.
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addition to the usual Aµ → Aµ + ∇ξ gauge freedom. We will

revisit this shortly and reveal how photon quantization arises

naturally from the lagrangian once coupling is introduced.

One important distinction of the electromagnetic fields

versus the Dirac fields is that the equations are second order.

These can be rendered into first order equations by introduc-

ing an auxiliary field Cµ = Ȧµ so that the equations of motion

become
∂tA

µ = Cµ

∂tC
µ = ∂i∂

iAµ.
(4)

The extension to the many particle case leads to a prolifera-

tion of functions akin to the rapid number of increasing spin

states for multiple Dirac fields. In each time direction of a two

photon state Aµν(xα, yβ) we need first and second order time

derivatives. A complete set of first order initial data is then

A, Cx = ∂tx A, Cy = ∂tyA, and Cx,y = ∂tx,tyA with equations of

motion
∂tx Aµν = C

µν
x

∂tyA
µν = C

µν
y

∂txC
µν
x = ∂i∂

iAµν

∂tyC
µν
y = ∂ j∂

jAµν

∂txC
µν
y = ∂tyC

µν
x = C

µν
x,y = C

µν
y,x

∂txC
µν
x,y= ∂i∂

iC
µν
y

∂tyC
µν
x,y = ∂ j∂

jC
µν
x

(5)

where the roman indices are spatial indices related to the cor-

responding spacetime indices as (tx, xi) = xµ, (ty, y j) = yν,

etc. We can see that the number of first order fields for a

source free N-photon system is 4 · 2N analogous to the num-

ber of spin subspaces for an N-electron system. A convenient

notation for this is (P,Q) where P, Q can be 0 or 1 and the

pair indicates how many derivatives of A with respect to x

and y are taken. This notation gives (suppressing spacetime

indices)

A = C00

Cx = C10

Cy = C01

Cx,y = C11

(6)

which will be convenient for later generalization.

3.3 Interactions

The presence of interactions is what makes dynamics inter-

esting. The mixing of gauge freedom means that any notion

of “reality” of an electron now involves a photon field as is

illustrated through the Aharonov-Bohm (A-B) effect. This is

seen in the definition of a gauge invariant electron current in

its explicit use of A. In the many body case we need a set

of interaction terms tailored for our, now distinct, equations

of motion for electrons and positrons. It also radically con-

strains our domain of dependence in this many time coordi-

nate space.

Let us begin with the classical or “one body” case. The

interaction terms tailored for electrons and positrons are re-

spectively:

ΛeA = −qψ̄(e)
a γ

µ

ab
Aµψ

(e)

b

ΛpA = −qψ̄
(p)
a γ

µ

ab
Aµψ

(p)

b
.

(7)

The free Dirac equation does not require such extra terms but

we will include them from now on to make the interaction

terms nicer. The sign stays the same here because of the sign

flip in the charge induced by the γ0 factor in the Dirac rep-

resentation where we assume the amplitude for the resting

positron is chosen in the “v” component of the spinor ψ =
(

u

v

)

.

We previously changed the sign of the mass term in Lp so

that the energy of this field is positive.

Including the interaction term Le, variation of the action

yields the equations of motion

∂Fµν

∂xν
= q jµ = qψ̄γψ

i~γψ + qAµγµψ − mψ = 0.
(8)

These are not all dynamic. Since the first is a second order

equation of motion, the equations of motion must have two

time derivatives. In this case we have the constraint ∇ · E =
qρ = q j0 which is propagated by the equations of motion.

This is induced by the conservation law we derive from the

sources, ∂µ jµ = 0 which shows that only three of these equa-

tions are now dynamical. We can rewrite this as a set of first

order equations by the definition Cµ = ∂tAµ. Choosing the

Lorentz gauge, ∂µAµ = −Ct + ∂iA
i = 0, we obtain �Aµ = q jµ

in a form that automatically generates compatibility with the

conservation of charge and is propagated for all time.

Interactions for the many body case, QED, involves two

ways of coupling electrons and positrons to the electromag-

netic field: a lone electron can couple to a lone electron and a

photon or a photon can couple to an electron and a positron.

We are not interested in any of the common “backwards in

time” mnemonics or procedures here since this is an initial

value approach. Firstly we should give a picture of the “tow-

er” of states that need to be coupled.

α

Ψ
µ

(A),Q
(x),Ψ

µν

(AA),QR
(x, y) . . .

Ψ(e),a(x),Ψ
µ
(eA),aQ

(x, y),Ψ
µν
(eAA),aQR

(x, y, z) . . .

Ψ(p),a(x),Ψ
µ
(pA),aQ

(x, y),Ψ
µν
(pAA),aQR

(x, y, z) . . .

Ψ(ep),ab(x, y),Ψ
µ

(epA),abQ
(x, y, z),

,Ψ
µν

(epAA),abQR
(x, y, z, w) . . .

. . .

(9)
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The first line holds a complex value α that indicates occu-

pancy of the “vacuum” state. The next line gives the pure

photon states. The N photon state has 4 · 2N degrees of free-

dom (dof) in the free case if we have not imposed any gauge

constraints. Below this are the one electron states with the 1,

2, . . . photon states to the right. Below are the one positron

states with the various photon number states then the electron

and positron states with corresponding photon number cases.

The action to describe these as free fields is given by a collec-

tion of independent actions

S (e) =
∫ (

i~Ψ∗aγ
µ

ab
∂µΨb − mΨ∗aΨa

)

dx

S (ee),1 =
! (

i~Ψ∗
ba
γ0

bc
γ
µ

cd
∂µΨda − mΨ∗

ba
γ0

bc
Ψca

)

dxdy

S (ee),2 =
! (

i~Ψ∗
ab
γ0

bc
γν

cd
∂νΨad − mΨ∗

ab
γ0

bc
Ψac

)

dxdy

. . .

(10)

The action for a single particle photon field is

S (A) = −
∫

1
4
FµνFµν dx

= − 1
4

∫ (

∂[µΨ
∗ν]
(A)

) (

∂[µΨ
(A)

ν]

)

dx
(11)

where we have included a complex conjugation. This seems

unnecessary since we generally consider the electromagnetic

field to be real. When we consider the functions that correlate

electron and photon fields we will see that we cannot neglect

it. The two photon actions are∗

S (AA),1 =− 1
4

∫ (

∂
[µ
(x)
Ψ
∗ν]α
(AA)

(x., y.)
)

(

∂(x)

[µ
Ψ

(AA)

ν]α
(x., y.)

)

dxdy

S (AA),2 =− 1
4

∫ (

∂
[µ
(y)
Ψ
∗να]

(AA)
(x., y.)

)

(

∂
(y)

[µ
Ψ

(AA)

να]
(x., y.)

)

dxdy

S (AC),1 =− 1
4

∫ (

∂
[µ

(x)
Ψ
∗ν]α
(AC)

(x., y.)
)

(

∂
(x)

[µ
Ψ

(AC)

ν]α
(x., y.)

)

dxdy

S (CA),2 =− 1
4

∫ (

∂
[µ

(y)
Ψ
∗να]

(CA)
(x., y.)

)

(

∂
(y)

[µ
Ψ

(CA)

να]
(x., y.)

)

dxdy

(12)

where the 1, 2, . . . subscripts on the actions indicate the re-

spective coordinate label x., y. . . . where the derivatives are

being taken. The previous notation we used to distinguish

coordinate order for the Dirac fields is not available here be-

cause of the more complicated index structure and we replace

A and C as field labels withΨ(A) andΨ(C) for the sake of a uni-

form notation when both electrons and photons are present.

Here we explicitly include the coordinates and label the first

∗The “upper” or “lower” state of the particle type labels (AA), (AC), (eA)

etc. have no meaning but are chosen to make the expression as uncluttered

as possible. Summation conventions are in effect for spacetime and spinor

indices.

coordinate, x., in the derivative operator ∂
µ
(x)

and order the

indices in Ψµν to correspond to x. and y. respectively. The

square backets, [ ], indicate antisymmetry over the two in-

dices immediately to their open sides. The first order time

derivative data from the “inactive” coordinates, those not be-

ing dynamically evolved by the particular lagrangian, are in-

cluded with the C labels to get a full set of first order initial

data. Variation of these lagrangians, through a combination

of explicit and implicit expressions, gives the four functions

Ψ
µν

(CPQ )
and eight linear Equations of Motion (EoM) for each

function in each of the two time directions tx, ty.

The (noninteracting) mixed one-electron one-photon ac-

tions on Ψ(x., y.) to generate EoM in each time label are

S (eA),1 =
∫ (

i~Ψ∗,ν
(eA),a

γ
µ

ab
∂(x)
µ Ψ(eA),bν−

−mΨ∗ν
(eA),a
Ψ

(eA)
aν

)

dx

S (eA),2 =− 1
4

∫ (

∂
[µ
(y)
Ψ
∗ν]
(eA),a

) (

∂
(y)

[µ
Ψ

(eA)

aν]

)

dx.

(13)

Generalizations to higher particle numbers from here are ev-

ident but rapidly become onerous. Symmetries among iden-

tical particle types are not required by these actions but it is

not hard to see that imposing them as initial data lets them be

propagated.

To give an interesting theory there must be interactions.

The vacuum u is strictly formal and does not couple to any-

thing. We know that electrons and positrons can annihilate

and electrons/positrons can scatter and produce a photon. The

couplings must be “local” in some sense that we enforce, with

inspiration from QED, as

S (e) =
∫ (

i~Ψ̄∗aγ
µ

ab
∂µΨb − mΨ̄∗aΨa

)

dx

+Λ(e−eA)

S (eA),1 =
∫ (

i~Ψ̄
∗,ν
(eA),a

γ
µ
ab
∂

(x)
µ Ψ(eA),bν−

−mΨ̄∗ν
(eA),a
Ψ

(eA)
aν

)

dx + Λ(eA−eAA)

S (eA),2 = − 1
4

∫ (

∂
[µ

(y)
Ψ
∗ν]
(eA),a

) (

∂
(y)

[µ
Ψ

(eA)

aν]

)

dx+

+Λ(e−eA) + Λ(eep−eA)

. . .

(14)

where the “bar” action over theΨ is hiding a γ0 considered to

be contracted on the active spinor indices. Here we see that

the one-electron field ψ = Ψ(e) feels the electromagnetic field

from Ψ(eA) as we evolve in its time coordinate direction t(e).

The notion of locality for this interaction is chosen so that ψ

feels the field of Ψ(eA) when all three spacetime coordinates

agree. In this case, this gives only a self energy contribu-

tion but will give the usual two body static interaction for two

charges. Conversely, the field Ψ(eA) feels the influence of ψ as

a source where all three coordinates agree when we evolve in

the time direction t
(eA)

2
, the second time label corresponding
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to A. For an electron-positron pair production or annihilation

amplitude we give a similar definition of locality.

Explicitly, the couplings are

Λe−eA = −q
∫

Ψ̄
(e)
a (x.)γ

µ

ab
Ψ

(eA)

µ,b
(y., z.)δ(x. − y.)

δ(x. − z.) dxdydz

Λp−pA =−q
∫

Ψ̄
(p)
a (x.)γ

µ

ab
Ψ

(pA)

µ,b
(y., z.)δ(x. − y.)

δ(x. − z.) dxdydz

Λep−A = ±q
∫

Ψ
(ep)∗
ab

(x., y.)γ0
acγ

µ
cb
Ψ

(A)
µ (z.)δ(x. − y.)

δ(x. − z.) dxdydz.

(15)

The sign of the pair production term is not clearly constrained

here and neither is our choice of where to place the complex

conjugations. Comparison with QED suggests that the sign

be chosen negative and these be the correct choices of con-

jugation and contraction with γ0 factors. The evolution of

the free equations ensures conservation of the stress-energy,

charge and particle number. These coupling terms can in-

troduce relative phase differences at these many-body diago-

nals so can act as source and sink terms for amplitude. The

complexity of the quantum version of the photon is important

in generating these sources and in creating a norm conserva-

tion law that governs the flow of “norm-flux” between these

spaces. Interestingly the conservation of charge and norm

arise from the same global phase symmetry. The electron-

positron field has no net charge yet will have a well defined

norm from the phase symmetry Ψab → eiθΨab in the free la-

grangians

S (ep),1 =
! (

i~Ψ∗
ba
γ0

bc
γ
µ
cd
∂

(x)
µ Ψda−

−mΨ∗
ba
γ0

bc
Ψca

)

dxdy

S (ep),2 =
! (

i~Ψ∗
ab
γ0

bc
γν

cd
∂

(y)
ν Ψad+

+mΨ∗
ab
γ0

bc
Ψac

)

dxdy.

(16)

There is an obvious extension of these interactions to the

tower of fields. We need to discuss why the equal times slice

of the evolution∗ here is most related to what we see and expe-

rience. Before we do this let us consider the electrostatic in-

teraction between two electrons. It has always seemed a little

ad hoc that we impose the two point interaction
q

4π
|x2

1
− x2

2
|−1

for a function Ψ(x, y) in quantum mechanics. Certainly we

can write down a one body wavefunction ψ(x) and vector po-

tential Aµ and impose a classical 4D lagrangian. We find an

electrostatically driven self spreading distribution where the

density of the norm gives the charge density. This is not at

all what we see for the two charge quantum system. No such

self-force is manifested beyond the usual quantum pressure.

∗Specifically, for any many body point of any function of the tower, we

choose all the times corresponding to the spatial coordinates equal: t1 = t2 =

t3 . . . .

Given the fields Ψ
(ee)

ab
(x., y.) and Ψ

(eeA),µ
ab

(x., y., z.), we see

that when we impose the Coulomb gauge that

Ψ
(eeA),t
ab

= Ψ
(ee)

ab
(x, y)

q

4π

(

|~x 2 − ~z 2|−1 + |~y 2 − ~z 2|−1
)

. (17)

The nature of the self-energy for such a theory seems more

opaque than in the classical case where we can consider it

in terms of finitely sized objects [14]. Locality and causal-

ity here are not so forgiving with such a construction and a

constituent based approach would likely require an infinite

number of fields of vanishing mass and charge that bind to a

state of finite extent with the center-of-mass coordinates ap-

pearing as the xµ, yν coordinates in our Ψ
(ee)

ab
. We will not

discuss this point further but should be aware of the compli-

cation in managing self field contributions that affect both the

energy and momenta of particles. Shortly we will see that

even though Ψ
(eeA),t
ab

is nonzero it contains zero norm and that

there is an infinite tower of such nonzero fields above it. This

is not so evident in QFT which we may think of as tracking

the nonzero norm of the fields through the tower. Now would

be a good time to emphasize that these are all classical fields

in a tower of spaces of growing dimensionality. There are no

Grassmann variables, q-numbers or field operators and their

associated commutation relations. These have always been

conceptually dubious or ad hoc constructions on which field

theory is built and the goal of our construction is to show why

(and when) they work.

3.4 Diagonal time evolution

The relationship between the quantum and classical worlds is

an enduring problem. It is not just explaining quantum mea-

surement that is troublesome. Encoding the classical world

in a quantum description is a challenge to do correctly. Naive

approaches have led to such useful results as band theory

and the Kubo relations but ultimately lead to inconsistencies.

One approach is to assume the classical world is a very re-

stricted subset of localized many body wavefunctions that

are sparsely distributed in the total Fock space. The usual

quantum statistics then follow trivially along with an arrow

of time [1,3]. The new problem is justifying such initial data.

In this many time description we have the further challenge of

justifying why we, as observers, seem to observe the universe

of “equal times” and not the vast regions of unequal space and

time locations where the many body quality of the description

is more evident.

Possible explanations for this is that interactions occur at

many body diagonals. Since our observations require interac-

tions this is the part of the universe we see. In general, many

body wavefunctions do not act in a form similar to discrete

state machines which seem to underlie our notions of mem-

ory and consciousness. The special cases do seem to define

our classical world. We will show that the equal times evolu-

tion defines the motion everywhere so all the other regions are
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defined by them and so give no other possible observations of

the world.

As an example, consider the evolution of the two photon

field Aµν(xα, yβ) along the tx = ty axis with respect to t = tx+ty

∂tA
µν = C

µν
x +C

µν
y

∂tC
µν
x = ∂i∂

iAµν +C
µν
x,y

∂tC
µν
y = ∂ j∂

jAµν +C
µν
x,y

∂tC
µν
x,y = ∂i∂

iC
µν
y + ∂ j∂

jC
µν
x .

(18)

It is unclear if this is particularly useful but it does illustrate

how the evolution along the equal times axis is locally deter-

mined in the equal time coordinate t. However, we still need

to evolve spatially in a neighborhood of this diagonal so the

many body and many time propagator approach seems hard

to avoid.

3.5 Quantization of the photon

Here we show that the quantization of the photon inherits

its norm from the purely electron part of the lagrangians.

This is the photon analog to the way that the “reality” of the

Schrödinger electron picks up a contribution from A in the

current jk = ~

m
∇kφ − eAk.∗ This explains how the photon

quantization condition can be a function of ~ despite having

no such factor in its own lagrangian. It is quantized in the

sense that if all the amplitude (normalized to 1) is initially in

the lepton fields then it is all converted to a photon then the

factor ~ω gives the magnitude of the photon norm. Up to this

point we have been using units where c = µ0 = ǫ0 = 1 but

left ~ general. In this section, we revert to full SI units to

emphasize this connection more clearly.

In the free field cases, the usual definitions of momen-

tum, energy. . . follow from the stress tensors for the classical

Dirac and electromagnetic fields regardless of whether they

are real or complex. The one additional conserved quantity

that Dirac fields have is “norm” associated with the complex

global phase freedom. The fields in the tower possess a U(1)

symmetry in the sense that Ψ → Ψeiθ and similar transfor-

mations for every function in the tower leaves the set of la-

grangians invariant. When a fermion and photon field interact

the coupling terms act as complex source terms resulting in,

for example, a complex Ψ(eA) functions as the amplitude of

Ψ(e) decreases. Since this is not generally a separable func-

tion, we cannot say whether the photon or electron part is

complex individually but can predict the phase difference be-

tween the function pair and derive a many body conserved

norm.

Firstly, we can modify the photon lagragian to allow com-

plex fields as

LA =
1

4µ0

(

∂µA∗ν∂
µAν + ∂µAν∂

µAν∗
)

(19)

∗We have neglected the “spin current” fraction here for simplicity.

This is essentially the massless Klein-Gordon field. The con-

served current is

jµ =
i

4µ0

(

∂µAν · A∗ν − Aν · ∂µA∗ν
)

(20)

Consider the case of a complex plane wave solution Ay(x, t) =

Aei(kx−ωt). If this was a real (classical) field there would be no

current and norm would equal zero. For the complex case,

ρ = j0 = A
2ω/2µ0 and jx = −A

2k/2µ0. In computing the

norm for Ψ(eA) we need to use this j0
(A)

and evaluate

N̂(Ψ(eA))=
i

2µ0

! (
∂

(A)
t Ψ

(eA)
aν Ψ

∗ν
(eA),a
−

−Ψ(eA)
aν ∂

(A)
t Ψ

∗ν
(eA),a

)

dx3dy3

= i
2µ0

! (
Ψ

(eC)
aν Ψ

∗ν
(eA),a
−

−Ψ(eA)
aν Ψ

∗ν
(eC),a

)

dx3dy3

(21)

where N̂ is the norm operator defined by j0 for the argu-

ment function. A Dirac field gives a conserved
∫

ψ∗ψ so this

clearly gives the correct electron-photon conserved current in

the noninteracting case so this is the quantity that is conserved

along the equal times diagonal. Let the volume of the space

be V = 1. Now let us investigate the implications of simul-

taneous conservation of energy and norm in a radiative decay

process.

Suppose we start with an excited positronium state Ψ∗
(ep)

that radiates with frequency ω into the state {Ψ(epA),Ψ(epC)}†
and possibly higher photon number ones. The resulting pho-

ton must have the same frequency ω since this is the fre-

quency at which the source term oscillates. The initial norm

for the states is N̂Ψ(ep) = 1 and N̂Ψ(epA) = 0. Our goal is

to find the resulting norms after the transfer is completed, in

these units. This will tell us the ratio of energy to norm trans-

ferred, which we construe as the meaning of photon quanti-

zation.

Assume the resulting function is Ψ(epx) = Ψ
′
(ep)

Aei(kx−ωt)

where N̂(Ψ′
(ep)

) = 1. Since these lagrangians are coupled

the coefficients they define a relative size for them which are

respectively ~ at t = 0 (from the factor in the kinetic term in

the electron and positron lagrangians) and

N̂Ψ(epA) = N̂Ψ(A) = A
2ω/2µ0 (22)

at t = t f . Since these must be equal we obtain the amplitude

of the wave as A = (2µ0~/ω)1/2. The final energy of the

system must be the same with the electron and positron in a

new state with ∆E(ep) = ∆E(epA). The photon contribution is

given by E(A) =
∫

1
2µ0

C2dx = 1
2µ0

A
2ω2 = ~ω. This shows that

to radiate any more energy an additional photon would need

to be generated.

†Note that the notation {, } does not denote anticommutation here. These

are functions and the braces here just indicate a set.
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In quantum mechanics and quantum field theory this is

one of the assumptions that is hidden in the formalism. Since

we are constructing an explicit classical field theory we do

not have such a liberty. It was not, a priori, necessary that a

transfer of energy, ~ω, from a decay between two eigenstates

give a unit norm transfer. We might have had a partial oc-

cupancy of the Ψ(epA) state and not completely emptied the

Ψ(ep) one or had to resort to higher Ψ(epAA...) states to contain

all the norm that was generated by the event. This is the first

actual derivation of the “quantization” of the photon. In this

model, the statement of photon quantization is more precisely

stated that the ratio of energy flux to norm flux between dif-

ferent photon number states is jE/ jn = ~ω, at least for the

case where the frequency of the radiation is monochromatic.

It is interesting that the photon “norm” depends on ~ even

though the only lagrangian with such a factor is that of the

fermions. The coupling has done several things. It introduces

a constraint on one of the components of the electromagnetic

field from the current conservation of the charges. It mixes

the “reality” of the A and ψ fields to give the electron current.

Here we see that it also induces the proportionality constant

in the norm flux of the photon between different particle num-

ber spaces. This relationship between norm and energy flux

may be what underlies the success of the formal commutation

relations for field operators [P̂, Q̂] = i~ [4].

4 Dynamics

We have not firmly established an isomorphism with QED

for a precise subset of initial data. Ideally, imposing the usual

particle symmetries on such data and evolving will match the

usual scattering amplitudes. We have several barriers to do-

ing this. Firstly is renormalization and the singularity of the

coupling terms. The dimensionality of the space is so enor-

mous and the number of nonzero yet norm free subspaces is

infinitely large so finding an economical and compact man-

ner to even start the problem is unclear if possible at all.

Even finding the suitable “dressed” particles to scatter is not

yet accomplished. The largest hurdle to overcome is prob-

ably the fact that no interacting field theory is well defined

by Haag’s theorem. This has been solved here so it might

be unfair to even ask for an isomorphism between the theo-

ries. However, QED has a record of impressive calculations

and the most reasonable notion of “isomorphism” may be

to reproduce these. The foundational aspects of QED were

designed after the fact on the tail of a process of refining

procedures to obtain useful calculations so the inconsistency

of these foundations may not be so important. Let us be-

gin with a process of restricting the subspaces in a fashion

that gives observable particles with enough of the interac-

tions necessary for good approximations. Given the expanse

of QED we cannot do all the work necessary to make a con-

vincing case for this theory in a single paper. Some of this

section is meant to be suggestive of more essential work

ahead, not an exhaustive argument or thorough calculation

to this end.

4.1 Scattering and adiabatic coupling changes

One of the most frustrating aspects of QFT is that the interim

state of the system is clouded in the language of “virtual par-

ticles” and it seems to be not well defined at every time. Our

measurements are confined to in and out states once the in-

teractions are over. This is a formulaic extension to bound

states where the interaction persists but this does not solve

this problem. The current formulation shows that there is a

well defined state at every time. Ironically, the in and out

state picture has more problems at t = ±∞! This is because

the interactions have been “turned off” here so the “virtual

cloud” of many particle states that must always accompany a

particle are no longer there. By adjusting the bare mass pa-

rameter slowly we can make an association with such states

of the same net mass and momentum.

This is already formally discussed in many books. Here

we will make some small changes that don’t affect the re-

sults but make the process a bit more logical. Firstly, notice

that the equations of motion above have been selected to give

the usual propagators in the single time coordinate functions

and the couplings to model those of QED. The role of the

many photon coordinate spaces has been suppressed by the

QED formalism and we see that there are many more spaces

to consider than in the usual treatment. Once we impose

the Coulomb gauge, we see that many of the constraints de-

scribed by the “longitudinal photons” are just nonzero zero-

norm functions in the tower.

If we consider the case of scattering of two particles, say

an electron and a positron, we should properly “dress” them

first. This suggests we partition our tower into a set of higher

photon and electron-positron pair spaces that only couple to

these particles separately. By turning on the interaction pa-

rameters slowly enough we can force the net mass and mo-

mentum of these waves to be the same without inducing any

unwanted reflection. Since we typically work with plane wa-

ves of infinite extent instead of wave packets, we don’t have

a natural way to let spatial separation of packets prevent them

from interacting but we can now use a second adiabatic turn

on that lets these towers now interact and couple to the set of

higher photon and electron-positron pair spaces that include

both of these in more interesting ways. The more flowery

aspects of QED such as “the positron is an electron moving

backwards in time” is removed by our positive mass indepen-

dent equation for the positron and superluminal virtual parti-

cles are now to be understood as a feature of evolving prop-

agators in separate time spaces to arrive at the equal times

result. We will now show that the apparent superluminal con-

tributions to the Feynman propagator is actually a constraint

on consistent initial data not faster than light effects that are

cancelled by a measurement ansatz.
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4.2 Causality considerations

The divergences we see in field theory with interactions are

directly related to the singular nature of the δ-function cou-

pling in the lagrangian. This is usually phrased in the loose

semi-classical language of quantum theory as the “particles

are point-like”. We already expressed that our opinion was

that finer nonsingular structure existed at a level we cannot yet

probe. The oldest method of handling such a situation is with

“cutoffs”. Naively done, these are intrinsically nonrelativis-

tic for reasons of their small nonlocality. We can make them

as mild a problem as possible by choosing them in the local

frame defined by the two body currents at the interaction diag-

onal. Specifically, it is here we need to couple two fields such

as Ψ(e) and Ψ(eA) so that the electron field of Ψ(e) generates

the electromagnetic field in Ψ(eA) as a source at the xe = xA

diagonal. The current jµ(Ψ(e)) defines a velocity v = j/ρ.

This specifies a local frame to construct a spherical region of

radius r0. We can then modify the electromagnetic source in-

teraction term as Ψ̄(e)γ
µΨ(eA);aµδ(x(e),1 − x(e),2)δ(x(e) − x(A))→

Ψ̄(e)γ
µΨ(eA);aµδ(x(e),1−x(e),2) f (v, x(e),Θ(r0−|x(e)−x(A)|)) where

f gives a boost distortion to the r0 sphere in the rest frame de-

fined by the current. As long as the oscillations we consider

are much longer than r0 this has little contribution to nonlocal

and nonrelativistic errors for a long time. It does create a re-

cursive (hence nonlinear) definition. We only expect cutoffs

to be useful when the details of the cutoff are not important in

the result. It is expected that this extension of the usual cut-

off procedure will give new radiation reaction contributions

not present in QED although it is possible that other regular-

ization procedures to cut off integrals may effectively do this

implicitly. The small range of the boost dependent shape of

the cutoff has effects only for field gradients that can probe

it, however, this is exactly the case in the radiation reaction

problem. There is considerable belief that the radiation reac-

tion force and rate of particle creation is not captured by stan-

dard QED and that all such approaches are plagued with the

pre-acceleration problems standard in the classical case [14]

but some useful limits have been derived [10].

The perturbative schemes generally built on the interac-

tion representation yields a time ordered exponential [13, 17]

of terms ordered by the number of discrete interactions in

the terms. The details of this construction allow S F to be

pieced together from forwards and backwards propagators in

a spacelike slice. This results in a propagator that lives out-

side the light cone. Usual arguments [13] tell us that the

vanishing of the commutator of the field operators outside

the light cone is sufficient for causality, an explanation that

sounds excessively hopeful and reaching but all too familiar

to students of QFT. For our initial data formalism there is no

such analog. Firstly let us argue that this unconfined behav-

ior of S (x − y) at tx = ty = 0 is not an expression of acausal

behavior just a statement that the “reality” the initial data has

not been localized to start with. How can this be? We could

start with a classical delta function source and evolve with

this and arrive at a true solution that evolves past the light

cone. The usual answer to this is obscured by the usual cloudy

use of positive and negative energy states in QFT. Here we

have distinct equations of motion or electrons and positrons

so the “negative energy” components are a reality to contend

with and not to be “reinterpreted” through some measurement

ansatz.

To address this consider the case of the classical (massive)

KG equation

∇2φ − ∂2
t φ =

m2

~2
φ (23)

where the propagator has the same problem. Here the initial

data is φ and φ̇. Localizing φ as a delta function gives

φ =
∑

ei(px−ωt)

φ̇ = −i
∑

Epei(px−ωt)
(24)

where Ep = ω(p) =
√

p2 + m2/~2. This shows that whatever

reality is associated with the KG field φ is not localized even

though φ itself is. Interestingly, if we force localization of φ̇

then φ = i(2π)3∑ E−1
p ei(px−ωt) = i(2π)3Gp(x) so it embodies

the delocalized initial data we complain about in the propa-

gator. We can produce a localization of φ and φ̇ by setting

φ(x) = δ(x) and φ̇ = 0 as the particular linear combination

φ(x, t = 0) =
1

2π

∫ ∞

0

dk
(

aeikx+iω(k)t + be−ikx−iω(k)t
)

|t=0 (25)

with a + b = 1 and a − b = 0 so a = b = 1
4

but this will turn

out not to be the interesting solution for coupling of KG to a

positive energy Dirac field.

Our inability to constrain the total reality (charge, energy,

mass, . . . ) of the particle to a point indicates that we have

a constraint on our physical initial data not a measure of the

incompleteness of our basis or a causality problem with our

propagators. It should now not be surprising that a similar

situation arises for the Dirac fields. For a spin up, positive en-

ergy state, localization of all components is inconsistent with

the equations of motion. In coupling the Dirac field to the

KG (or electromagnetic) field we cannot couple a delocalized

Dirac packet to a localized one and the use of the propagator

Gp to build the interaction now is more reasonable that the so-

lution given by (25) since it follows directly from the Fourier

transforms of the couplingsΛe−eA, Λee−eeA, etc.

4.3 Subspace restrictions and resummation

The problems of finding initial data and evolving in an infi-

nite tower of spaces is daunting. The perturbative solutions

embodied in the path integral approach are a way of working

around this without stating it in these terms. The problems of

field theory are often such that a finite perturbative approach

is inadequate. Superconductivity is a canonical example of

Clifford Chafin. Beyond Quantum Fields: A Classical Fields Approach to QED 217



Volume 11 (2015) PROGRESS IN PHYSICS Issue 3 (July)

this where this “nonperturbative” behavior delayed an expla-

nation for half a century. Summing over the same diagram-

matic sequence such as with “ladder diagrams” lets us cap-

ture some small slice of the infinite character of the space and

derive new effective propagators where effective mass terms

arise. The number of terms in the total perturbative expansion

grow exponentially so it is unclear if such a sum actually has

any meaning to which we are attempting convergence. We

now know that such series are generally asymptotic so that

there is no meaning to them in this limit. However, these par-

ticularly abbreviated series have been very valuable and are

often capturing essential parts of the physics.

In this article, we are seeking a higher standard of con-

ceptual justification for such sums. Even though we cannot

hope to complete this task in a single article, let us seek a

foundation for such calculations based on the data set and

coupling provided. The self energies have been addressed

through a relativistically valid, if slightly nonlocal, approach

through cutoffs. Consider a single particle of mass parameter

m and momentum p. This should be thought of as including

Ψ(e),Ψ(eA),Ψ(eAA), . . . (and associated CPQ fields) with all am-

plitude in the bottom state but constraints holding in the upper

level functions but no other space couplings. This can be ex-

actly and easily solved with the Coulomb gauge imposed at

each level. Turning up the other interactions through the pair

creation states Ψ(eep),Ψ(eepA), . . . can be done independently

since the couplings between all function pairs, labelled by q,

can be controlled separately. These states acquire little con-

tribution in dressing a lone charge because they add so much

energy to the system although the effects can be larger during

deep scattering events with other charges.

In order to evolve such a system with a gradually chang-

ing interaction term while preserving the net norm, mass,

and charge (observed from a distance) we can control the

m and q parameters and an overall multiplicative constant,

β, of the system. The final observed mass is the net en-

ergy of the system in the rest frame. We assert that the ob-

served charge is determined by the electric flux that we can

observe through large spheres in the A-coordinate subspaces

in Ψ(eA),Ψ(epA),Ψ(eAA), . . . . When a large “classical” body

interacts with such a particle we assume it is broadly and uni-

formly distributed through a large variation in photon num-

ber spaces. This may seem ad hoc but for such a body to

affect a lone dressed charge it must act in all the photon num-

ber spaces available or it leads to spectroscopic filtering of

charge subspace components as they move in its field. Since

this is not observed and we don’t have a clear understand-

ing of how classical bodies are represented with a quantum

description, this seems like a reasonable supposition. These

ideas lead to a prescription to modify the m, q, and β as we

turn up the interaction. We need to be careful here as we

now implicitly have multiple q’s! This has been obscured by

our choice of labeling them the same in our tower of inter-

actions. There is the value qeA that gives the self energy cou-

pling in the towers of strictly photon number increasing states

e.g. Ψ(eA),Ψ(eAA),Ψ(eAAA), . . . and the value qeep that gives the

couplings to the towers of electron positron pair increaseΨ(e),

Ψ(eep), Ψ(eeepp), . . . . Ultimately we want these parameters to

be both the same. This seems to be a nontrivial process and

it is somewhat impressive that the usual QED adiabatic turn

on gets this to work by starting with a completely undressed

charge and a single parameter.

Once we have dressed up lone charges on a subset of the

towers deemed to be sufficiently rich to describe the dynam-

ics of the process of interest, the interactions between them

must be turned up. Given the states Ψe1A and Ψe2A we expect

an antisymmetrized product of the two to give a first approxi-

mation to Ψe1e2A and evolve these new “crossing” interaction

parameters q1,2 gradually and then hold it steady for a much

longer period of time followed by a turn off of the interac-

tions. If these adiabatic processes can be done in a way that

leaves momenta of scattered waves unchanged then we can

infer the actual scattering rates and angles for dressed parti-

cles. To this author, this is the simplest possible way to ar-

rive at the scattering results from a well-posed initial value

formalism. Ultimately, we must try other less restrictive sub-

space restrictions to show that our assumption that they made

a small contribution was valid. There is reason to believe this

actually works and gives the usual QED results and will be a

subject of a followup work.

5 Conclusions

The need for establishing a well-defined space and set of dy-

namical equations for the reality described by QED, and QFT

in general, has been discussed and presented in the form of

a tower of spaces of continuum functions. Subsets of the di-

mensional labels of these spaces give meaning to the notion

of “particle” and symmetries in the couplings and initial data

define “identicality” of them. There have been a number of

subtle issues to confront. Not the least of these is how to give

meaning to the many time labels that arise in such a construc-

tion and why we, as observers built from the fields, should

observe only one time. Such a construction has a number of

advantages. It removes the ad hoc character of the construc-

tion and the need for the notion of “quantum fields.” The

inconsistencies described by Haag’s theorem are resolved by

a partitioning of the tower space into subsets of fixed lepton

number that never couple to the ground state. Most impor-

tantly we have given an explanation for the quantization of

the photon and an indication of the origin of the quantization

conditions for quantum operators and the appearance of ~ in

them.

The biggest downside of this construction is that of com-

putability. QED was built from computations and arose out of

many ad hoc attempts to make sense of observed dynamics on

the part of many stellar physicists. The actual foundations of

the subject are almost a necessary afterthought. Of course, no
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class is taught this way and the foundations must come first

regardless of how flimsy they are. A cynic might worry that

field theory courses are filtering students based on their levels

of credulity or lack of concern with consistency, a possible

advantage in a field driven by extreme publication pressures.

The work here is still hardly complete and it is still to

be shown that such construction can validate the successful

results of QED for scattering. The subject of bound state cor-

rections has been untouched here and an important topic that

needs attention. There is good reason to believe that, ulti-

mately, this theory will have corrections that are not found in

QED and therefore be inequivalent at some level of accuracy.

The subject of the radiation reaction and QED is still dis-

puted. Given that the classical radiation reaction is resolved

by keeping track of the self fields that traverse the extent of

a finite body, one might worry that the renormalization pro-

cedure to handle self energy might be too simplistic and miss

the asymmetric forces that must arise to give the back reac-

tion. A primary motivation for this construction is the incor-

poration of gravity in a consistent fashion with the quantum

world and other fundamental forces. A recent construction by

the author in a classical direction relies on a greatly expanded

gauge group and a flat background construction. Here cou-

plings mock up the “geometric” effects of general relativity

to observers and provides a new avenue for this problem as

discussed briefly in the appendix.

A Gravity

Recently the author has presented a treatment of classical GR,

electromagnetism and the Dirac field on a flat background

that retains the apparently geometric features of GR and yet

puts the fields on a similar footing [3]. The motivation for

this is in promoting the Dirac γµ matrices to dynamic fields

without imposing the vierbein approach. This has a number

of consistency challenges to work out that will not be repro-

duced here. One of the essential features is that the γ0 that

is hidden in the Ψ̄ has to go. We must replace all the Ψ̄’s

with new independent fields Φ’s that implicitly do the work

of them. The quadratic nature of the equations then become

bilinear and, while the fields may not evolve causally, it can

be shown that the gauge invariant reality of them do. Promot-

ing the γ
µ
ab

matrices to dynamical fields necessitates that we

reinterpret them as vectors in the µ index and scalars in the

a, b indices. This seems at odds with the usual SU(2) repre-

sentation theory. This can be resolved by keeping track of the

gauge invariant quantities and allowing new rules to actively

boost fields in the space. The various details surrounding this

are discussed in Chafin [1].

The metric and its inverse can be defined in terms of these

fields as
gµν = −4−1Tracγ

(µ

ab
γν)

bc

gµν = Inv(−4−1Tracγ
(µ

ab
γ
ν)
bc

),
(26)

however the complexity of the inverse definition makes it

more convenient to define an auxiliary field λµ and define the

γ matrix with its index down

gµνδac = −2−1{λµ, λν} = −λ(µ, λν)

gµνδac = −2−1{γµ, γν} = −γ(µ, γν).
(27)

Some dynamic interaction terms will then lead to these forc-

ing of the inverse matrix relation for the trace of these at low

enough energy e.g. through the “Higgs-ish” coupling in the

action

S c = M |gµν(γ)gνρ(λ) − δρµ|2 (28)

for a large “mass” parameter M.

In our many body tower of functions we need to ask how

the couplings with such a gravity field γ
µ

ab
would work. Mod-

eling it on the electromagnetic field by introducing γ and λ

labels to Ψ as in Ψν
(eAγ),µ,abc

(x, y, z) has some appeal in think-

ing of gravitons as correlated with other particles but is prob-

lematic in the details. When we look at the modified Dirac

lagrangian we find that there is always an extra µ index to

accommodate:

L = i(φaγ
µ
ab
∂µψb − ∂µφaγ

µ
ab
ψb) − 2mφaψa (29)

Furthermore the γ function will need to span the full coor-

dinate set of the function it is evolving. For example, when

we wish to evolveΨ(eA)(x, y) in the te direction we must mul-

tiply by a function γ
µ

ab
(x, y) so that the x(A) = y coordinate

must still be present even if it is only in a passive role. For

these reasons it seems important to include not just a dual

field Φ(eA) to go with Ψ(eA) but an independent γ
µ
(eA)

(x, y) field

to contract with the derivative operator ∂(e)
x . Note that we have

labeled the gravity function γ
µ
ab

with the electron and photon

coordinate labels not some new graviton coordinate and it has

only one µ and two a, b indices. This will persist regardless

of how many coordinate functions are embedded in it. Thus

the tower of functions of electron, positron and photon fields

(and their Φ associated fields) has an associated tower

γ
µ

(A),Q
(x), γ

µ

(AA),abQR
(x, y) . . .

γ
µ
(e),ab

(x), γ
µ
(eA),abQ

(x, y), γ
µ
(eAA),abQR

(x, y, z) . . .

γ
µ

(p),ab
(x), γ

µ

(pA),abQ
(x, y), γ

µ

(pAA),abQR
(x, y, z) . . .

γ
µ

(ep),ab
(x, y), γ

µ

(epA),abQ
(x, y, z),

, γ
µ

(epAA),abQR
(x, y, z, w) . . .

. . .

(30)

This allows these functions to be straightforwardly coupled

into the electron, positron and photon lagrangians using the

mapping gµν = −8−1Tr{λµ, λν}.
The problem now is reduced to giving an evolution equa-

tion for these various γ
µ

ab
functions in each of the implicit

time directions. The Einstein-Hilbert action S EH =
∫

R
√
g..
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suggests a start. The measure can be extracted from gµν =

−8−1Tr{γµ, γν}. The geometric meaning of these terms is not

clear but it is not necessarily required. We know that we want

GR to arise in some, probably uncorrelated classical limit of

particles over the energy scales we currently observe but be-

yond that we only require that we have a well defined set of

evolution equations. Define the Riemann operator R̂(e)i
to be

the Riemann function of the connections Γ(λ, γ) in terms of

the two associated gravity fields where all the derivatives are

taken with respect to the x(e)i coordinate label, ith electron la-

bel, in the γ(eee...ppp...AAA...) function. The interactions are pro-

vided by the remaining classical lagrangians that now needs

no delta function to localize the interaction.

The global gauge freedom we associate with norm Ψ →
Ψeiθ and Φ → Φe−iθ does not involve the γ functions so

it seems to not acquire or lose amplitude in the fashion of

particle creation so exists as a new kind of field entity that

makes gravity seem fundamentally different than the other

fields even though the geometric nature of the theory is sub-

verted in favor of a flat background formalism. It seems that

any generalization of this theory needs three fields (with var-

ious particle label sets). It would be interesting to see if there

is some high energy unification which treats them in a more

symmetric fashion.
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