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The Van der Pol differential equation was constructed for an autonomous regime using
link’s law. The Van der Pol equation was studied analytically to determine fixed points,
stability criteria, existence of limit cycles and solved numerically. The graphs of the
equation are drawn for different values of damping coefficient µ.

1 Introduction

Balthazar Van der Pol (1899-1959) was a Dutch electrical en-
gineer who initiated experimental dynamics in the laboratory
during the 1920’s and 1930’s. He first introduced his (now
famous) equation in order to describe triode oscillations in
electric circuits, in 1927.

Van der Pol found stable oscillations, now known as limit
cycles, in electrical circuits employing vacuum tubes. When
these circuits are driven near the limit cycle they become en-
trained, i.e. the driving signal pulls the current along with it.
The mathematical model for the system is a well known sec-
ond order ordinary differential equation with cubic non linear-
ity: the Van der Pol equation. The Van der Pol equation has a
long history of being used in both the physical and biological
sciences. For instance, Fitzhugh [1] and Nagumo [2] used the
equation in a planer field as a model for action potential of
neurons. The equation has also been utilized in seismology
to model the plates in a geological fault [3].

During the first half of the twentieth century, Balthazar
Van der Pol pioneered the field of radio telecommunication
[4–9]. The Van der pol equation with large value of non-
linearity parameter has been studied by Cartwright and Lit-
tlewood in 1945 [10]; they showed that the singular solution
exists. Also analytically, Lavinson [11] in 1949, analyzed the
Van der Pol equation by substituting the cubic non linearity
for piecewise linear version and showed that the equation has
singular solution also. Also, the Van der Pol Equation for
Nonlinear Plasma Oscillations has been studied by Hafeez
and Chifu in 2014 [12]; they showed that the Van der pol
equation depends on the damping co-efficient µ which has
varying behaviour. In this article, the analytical study of the
Van der Pol equation in the autonomous regime is studied.

2 Description of the Van der Pol oscillator

The Van der Pol oscillator is a self-maintained electrical cir-
cuit made up of an Inductor (L), a capacitor initially charged
with a capacitance (C) and a non-linear resistance (R); all of
them connected in series as indicated in Fig. 1 below. This
oscillator was invented by Van der Pol while he was trying
to find out a new way to model the oscillations of a self-
maintained electrical circuit. The characteristic intensity-ten-

sion UR of the nonlinear resistance (R) is given as:

UR = −R0 i0
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where i0 and R0 are the current and the resistance of the nor-
malization respectively. This non linear resistance can be ob-
tained by using the operational amplifier (op-amp). By ap-
plying the link’s law to Fig. 1 below,

Fig. 1: Electric circuit modelizing the Van der Pol oscillator in an
autonomous regime.

we have:
UL + UR + UC = 0 (2)

where UL and UC are the tension to the limits of the inductor
and capacitor respectively and are defined as

UL = L
di
dτ

(3)

UC =
1
C

∫
idτ. (4)

Substituting (1), (3) and (4) in (2), we have:

L
di
dτ
− R0 i0
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∫
idτ = 0. (5)
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Differentiating (5) with respect to τ, we have

L
d2i
dτ2 − R0

1 − i2

i20

 di
dτ

+
i
C

= 0. (6)

Setting

x =
i
i0

(7)

and
t = ωeτ (8)

where ωe = 1√
LC is an electric pulsation, we have:

d
dτ

= ωe
d
dt

(9)

d2

dτ2 = ω2
e

d2

dt2 . (10)

Substituting (9) and (10) in (6), yields

d2x
dt2 − R0

√
C
L

(
1 − x2

) dx
dt

+ x = 0. (11)

By setting µ = R0

√
C
L Eq. (11) takes dimensional form as

follows
ẍ − µ (1 − x2) ẋ + x = 0 (12)

where µ is the scalar parameter indicating the strength of the
nonlinear damping, and (12) is called the Van der Pol equa-
tion in the autonomous regime.

3 Analytical study

3.1 Fixed points and stability

Transforming the higher order ODE (12) into a system of si-
multaneous ODE’s i.e. let x1 = x and x2 = ẋ

[
ẋ1
ẋ2

]
=

[
x2

−x1 + µ (1 − x2
1) x2

]
. (13)

Introducing the standard transformation

y = x (14)

z = ẋ − µ
(
x − x3

3

)
(15)

and letting

F(x) = µ

(
x3

3
− x

)
, (16)

now
ẏ = ẋ. (17)

Using (15) we have,

ẏ = z + µ

(
y − y

3

3

)
(18)

and
ż = ẍ − µẋ (1 − x2)

ż = −µ (y2 − 1) ẋ − x − µ (1 − y2) ẋ = −x = −y. (19)

This transformation puts the equation into the form:

[
ẏ
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]
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Eq. (20) is the particular case of Lienard’s Equation
[
ẏ
ż

]
=

[
z − f (y)
−y

]
(21)

where f (y) = µ
(
y3

3 − y
)
. Linearizing (20) around the origin

i.e. fixed point (0,0), we have
[
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]
=
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]
. (22)

The characteristic equation of (22) is given as

λ2 − µ λ + 1 = 0 (23)

with eigenvalues of

λ± =
µ ±

√
µ2 − 4
2

(24)

and eigenvectors of

~e+ =

[ −2
µ−√(µ2−4)

1

]
, ~e− =

[ −2
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√

(µ2−4)
1

]
. (25)

The stability of this fixed point depends on the signs of the
eigenvalues of the Jacobian matrix (22).

3.2 Existence of the limit cycles

Let us now analytically study the amplitude of the limit cycle
by using the average method [13]. Considering the following
transformations

x(t) = A(t) cos (t + ϕ(t)) = A cosψ (26)

ẋ(t) = −A(t) sin (t + ϕ(t)) = −A sinψ (27)

where A(t) is the amplitude, ϕ(t) being the phase and with
ψ(t) = ϕ(t)+t. Supposing the amplitude and phase feebly vary
during a period T = 2π, we have the fundamental equations
of the average method as follows:

Ȧ(t) = − µ
2π

∫ 2π

0
f (A cosψ,−A sinψ) sinψ dψ (28)

ϕ̇(t) = − µ
2π

∫ 2π

0
f (A cosψ,−A sinψ) sinψ dψ (29)
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Eqs. (28) and (29) help to determine the amplitude A(t) and
phase ϕ(t) of the oscillator. Applying this method to (12) for
which

f (x, ẋ, t) = (1 − x2) ẋ

then, we have

f (A, ψ) = −A sinψ + A3 sinψ cos2 ψ. (30)

Substituting (30) into (28) and (29), we get

Ȧ(t) = − µ
2π

∫ 2π

0

(
−A sin2 ψ + A3 sin2 ψ cos2 ψ

)
dψ (31)

ϕ̇(t) = − µ
2π

∫ 2π

0

(
−A sinψ cosψ + A3 sinψ cos3 ψ

)
dψ. (32)

Integration of (31) and (32) gives the evolution equation of
the amplitude A(t) and the phase ϕ(t):

Ȧ(t) = −µA(t)
2

(
1 − A2(t)

4

)
(33)

ϕ̇(t) = 0. (34)

The average method states that the amplitude and the phase
feebly vary during a period. Therefore Ȧ(t) = 0, and the
amplitude is eventually A(t) = 2.

4 Numerical solution

The numerical solution to the Van der Pol equation for various
values of µ are presented in Figs. 2 to 4.

Fig. 2: Plot of y(t) and dy/dt against t(s) for µ = 0.

5 Discussion

The classical Van der Pol equation (12) depends on the damp-
ing coefficient µ and the following varying behaviors were ob-
tained. When µ < 0, the system will be damped and the limit
lim t→∞ → 0. From Fig. 2, where µ = 0, there is no damp-
ing and we have a simple harmonic oscillator. From Figs. 3

Fig. 3: Plot of y(t) and dy/dt against t(s) for µ = 10.

Fig. 4: Plot of y(t) and dy/dt against t(s) for µ = 20.

and 4, where µ ≥ 0, the system will enter a limit cycle, with
continuous energy to be conserved. The wave generated by
this oscillator is periodic with sinusoidal form for µ � 1 and
relaxation for large value of µ [14] with fix amplitude equal
to 2. Also when −∞ < µ ≤ 0 and λ± is Re(λ±) < 0, the point
is stable; if µ = 0 and λ± = ±i, the point is marginally stable
and unstable; if 0 ≤ µ < ∞ and λ± is Re(λ±) > 0, the origin
is unstable. If 0 ≤ µ ≤ 2 and λ± is Im(λ±) , 0, then the
fixed point (0,0) is an unstable center. If 2 < µ < ∞ and λ± is
Im(λ±) = 0, then the fixed point (0,0) is still unstable.

6 Conclusion

In the above analysis, a class of analytical study of the Van
der Pol equation in the autonomous regime is presented. An-
alytically, we conclude that the fixed point (0,0) is unstable
whatever the value of the damping coefficient µ and the sys-
tem enters a limit cycle with amplitude A(t) of the Van der Pol
oscillator limit cycle equal to 2. We showed that there exists
a unique limit cycle.
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