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The deformation energy of the even-even nuclei of the Cerium isotopic chain is inves-
tigated by means of the Macroscopic-Microscopic method with a semiclassical shell
correction. We consider axially symmetric shapes. Binding energy and two neutron
separation energy are also evaluated. For the sake of clarity several important details of
the calculations are also given. It turns out that all these nuclei have prolate equilibrium
shape. The regions of maximum deformation are obtained around N = 64 and N = 102.
There is no critical-point of quantum phase transition in this isotopic chain.

1 Introduction

Nowadays it is well established that the majority of nuclei
possess a nonzero intrinsic electric quadrupole moment (IE
QM). This feature means that the charge distribution inside
the nucleus deviates from the spherical symmetry. In other
words, apart from very few nuclei, the surface of the nucleus
is generally not spherical in its ground state. The intrinsic
quadrupole electric moments (or equivalently the nuclear de-
formation) can be deduced from two types of measurements:

e The reduced electric quadrupole transition probability,
B(E2) [1];

e The static electric quadrupole moments of ground and
excited states, O [2].

It turns out that in a number of cases, the two methods of
measurement do not systematically lead to the same values.
Important discrepancies occur for several nuclei. This is es-
sentially due to the fact that not only different experimental
techniques are used but above all, because different models
can be implemented to deduce the nuclear deformation for
the both cases.

In [3] it is stated that deformations deduced from B(E2)
have a “more general character”. In other words, “B(E2)-
type” data reflect not only static nuclear deformation (perma-
nent deviation of the nuclear shape from sphericity), but also
dynamic deformation. Furthermore, B(E2) measurements are
model independent and thus are generally more reliable. This
is corroborated by the fact that the only systematic compi-
lation in which the deformation of the ground state is given
explicitly is based on B(E2;0"—2") and has been published
in [1]. In the present work, experimental values refer to these
ones.

Theoretical approaches to the deformation energy can be
divided into two categories; Dynamic calculations to find the
shape of the ground state (or even of excited states) and static
calculations by determining the absolute minimum (ground
state) or multiple minima (shape isomers) in the potential en-
ergy surface (PES) for a given nucleus.
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Thus, on the one hand, we have the so-called collective
models, which themselves are subdivided into two groups:
The “Geometric Collective Model” also called the “Collec-
tive Bohr Hamiltonian” (CBH and its variants) and the “Al-
gebraic Model”, well known under the name of the “Interact-
ing Boson Model” (IBM and its variants) [4]. On the other
hand, “particle models” consider the nucleus as a collection
of interacting nucleons (fermions).

In practice, the classical N-body problem can be approx-
imately solved by the usual approximation of the mean field
with eventually residual interactions. In this respect, the “be-
st” mean field is deduced after applying a variational prin-
ciple in the Hartree-Fock-Bogoliubov method (HFB). In this
model, the determination of the potential energy surface (PE
S) of the nucleus amounts to perform constrained Hartree-
Fock-Bogoliubov (CHFB) calculations [5]. We will not ad-
dress very complicated methods “beyond the mean field” su-
ch as the Quasiparticle Random Phase Approximation (QRP
A) or the Generator-Coordinate-Method (GCM) methods wh-
ich are unsuitable in practice for large scale calculations.

Because of CHFB calculations are time consumers, es-
pecially in large studies, Microscopic-Macroscopic method
(Mic-Mac) constitutes a good alternative which, is up to now,
implemented [6]. In the present work, we use an improved
variant of this method. The word “improved” means that
we use semi-classical method to avoid the well-known draw-
backs (spurious dependence on two mathematical parame-
ters) of the standard Strutinsky shell correction (see text be-
low).

The present study is devoted to the deformation energy,
equilibrium nuclear shapes and binding energy of the ground
state of the even-even cerium isotopes. There are many rea-
sons to this choice. One of them is to re-test our previous
calculations. In effect, similar calculations have been already
performed by us in the xenon, barium, and cerium region
[7]. However because the phenomenological mean potential
varies smoothly with N and Z, we have made, in the past, a
rough approximation by choosing the same set of parameters
for the phenomenological mean potential, for the all treated
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nuclei. Originally, this approximation was done only for sim-
plifying the calculations.

Here, contrarily to that study, each nucleus has its “own”
mean potential with a specific set of parameters. In this way it
is possible to evaluate in a rigorous way the uncertainty intro-
duced in the previous calculations. Apart from this remark,
there are several main other reasons which could justify this
choice: (i) First, it should be interesting to see how the defor-
mation energy and binding energy vary with the neutron num-
ber (N) for this isotopic chain. (ii) Second, the present study
extends the previous calculations to all cerium isotopes up to
the drip lines (34 versus 13 nuclei). (iii) Third, we also will at-
tempt to deduce, from potential energy surface (PES) curves,
the shape transition from spherical to axially deformed nuclei,
looking for the so-called X(5) critical-point between U(5) and
SU(3) symmetry limits of the IBM [8,9].

It is worth to recall briefly some information deduced fr-
om the literature for the cerium isotopes. In the past, a num-
ber of experimental as well as theoretical studies have been
done for the cerium isotopes. Among the numerous studies,
we only cite some of them.

In 2005 Smith et al [10] have studied excited states of
122Ce up to spin 14% deducing a probable quadrupole defor-
mation of about 8 ~ 0.35. The deformed nucleus '*°Ce has
been studied in 1985, using the techniques of in-beam gamma
-ray spectroscopy [11]. The corresponding data have been in-
terpreted in terms of the cranking model by assuming a pro-
late deformation with &, = 0.25 (8 = 0.27).

High-spin states in '*2Ce have been also studied by A.J.
Kirwan et al [12]. They found a superdeformed band with de-
formation 8 ~ 0.4 much more larger that the ground state de-
formation (8 ~ 0.2). E. Michelakakis et al [13] by evaluating
y~—ray transitions in '“>Ce and '**Ce conclude that in cerium
isotopes (near the beta-stable line) the onset of nuclear defor-
mation occur between N = 86 and N = 88. “Pure” theoretical
calculations have been performed in [14] and [15] with pro-
jected shell model (PSM) and Hartree-Bogoliubov ansatz in
the valence space respectively for '*2Ce and '>*~132Ce for low
lying yrast spectra. Good values of energy levels and reduced
transition probabilities B(E2,0*—2") have been obtained re-
spectively in these two papers.

Other approaches for the rich-neutron cerium isotopes ha-
ve been made in [16]. A study of the shape transition from
spherical to axially deformed nuclei in the even Ce isotopes
has been done in [17] using the nucleon-pair approximation
of the shell model. The result of a such study is that the tran-
sition has been found too rapid. Relativistic Hartree-Fock-
Bogoliubov theory has been used to predict ordinary halo for
186Ce, 188 Ce,!”? Ce, and giant halo for '?>Ce,'* Ce,'*® Ce, and
198Ce near the neutron drip line.

Systematic studies about nuclear deformations and mass-
es of the ground state can be found in [18-21] with respec-
tively, the Finite-Range Droplet-Model (FRDM), Hartree-Fo-
ck-Bogoliubov (HFB), HFB+5-dimensional collective qua-
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drupole Hamiltonian and Relativistic Mean Field (RMF) mo-
dels.

2 The Macroscopic—Microscopic method
2.1 Liquid drop model and microscopic corrections

This method combines the so-called semi-empirical mass for-
mula (or liquid drop model) with shell and pairing corrections
deduced from microscopic model. Thus the binding energy is
given as a function of nucleon numbers and deformation pa-
rameter (referred to as 8) by mean of the usual symbols:

B(A,Z,B) = ELpm(B) = 6Buicro(B)- ey

O0B.icro contains the shell and pairing correction (see text be-
low). The minus sign before 6B, iS consistent with the
convention that the binding energy is defined as positive here.

For the liquid drop model we take the old version of My-
ers and Swiatecki [28] (because of its simplicity compared
to more recent formulae). Here, there is no need to look for
very high accuracy in binding energy, because this is not the
purpose of the present work.

Erpm(B) = CyA — CsA**Bg(B) — CcZ*A™' P B (B)+

-172 24-1 )
+EQpaiy AT+ CqZ AT
In (2), we have the usual contributions of volume, surface and
coulomb energies.

The different constants of Myers and Swiatecki are given
in Appendix A. The shape dependence () of the surface and
coulomb energies are contained in Bs(8) and B¢c(5). They
are normalized to the unity for a spherical nuclear surface.
The latter is symbolized by 8 = 0. The two last terms in (2)
are respectively due to the smooth part of the pairing energy
and the correction of the Coulomb energy to account for the
diffuseness of the nucleus surface. The different constants
will be fixed later.

The potential energy surface (PES without zero point en-
ergy correction) is defined as follows:

Epes(B) = Erpu(0) — B(A, Z,B)

= AELpy(B) + 0Buicro(B) ©
in which
AEpy(B) = ELpm(0) — Erpu(B)
= CsA* [Bs(B) - Bs(0)] + )

+CcZ*A™'P [Bc(B) — Bc(0)].

Constants Cy and Cy are expressed by means of three other
constants ay, ag, and k. For spherical shape, as said before,
the normalization is expressed by: Bg(0) = B¢(0) = 1. As it
can be easily seen, the potential energy surface is related only
to two macroscopic constants Cs (which depends actually on

257



Volume 11 (2015)

PROGRESS IN PHYSICS

Issue 3 (July)

as and k) and C¢. To calculate microscopic shell an pairing
corrections contained in B0, We have to proceed in two
steps. The first consists in solving the Schrodinger equation
and the second in deducing the shell and pairing corrections
in an appropriate way, as explained in the following.

2.2 Microscopic model

We briefly present the microscopic model which is based on
the Schrodinger equation of the deformed independent parti-
cle model:

AP |'Yi(B) = &(B) | ¥i(B) (&)

where |¥;) and ¢; are respectively the eigenfunctions and the
associated eigenvalues of nucleons. Hamiltonian A contains
four contributions which are: (i) kinetic energy, (ii) central
deformed mean field, (iii) spin-orbit and (iv) Coulomb inter-
actions.

We perform analogous calculations as in Nilsson model
but our deformed mean potential is of Woods-Saxon type and
therefore is “more realistic”. Although calculations are not
self consistent, they are microscopic. It is to be noted that our
Schrddinger equation has a form which is very close to the
one of the Skyrme-Hartree-Fock method. Eq. (5) is solved
by our FORTRAN program described in details in [22] and
improved in two successive versions [23] and [24].

2.3 Microscopic corrections

Microscopic corrections are defined as the sum of shell and
pairing corrections which themselves are calculated separate-
ly for each kind of nucleons:

6Bmicr()(18) = 5Eshell(N7ﬁ) + 5Eshell(z7ﬁ)+
+ 6Ppairing(Nsﬁ) + 6Ppairing(zs18)~

(6)

In this formula the shell correction is defined by the usual
Strutinsky prescription, i.e. as the difference between the sum
of the single particle energies (which contains the shell ef-
fects) and an averaged (or smoothed) sum (which is free from
shell effects)

NorZ JE—

SEgen(N or2) = 3" &(B) = ) & (B).

i=1 i=1

N

Energies g;(8) are deduced from (5). In our procedure, the
second sum is found by means of a semi-classical way instead
a Strutinsky smoothing procedure, see [27]. This avoids the
well-known weakness of the standard shell correction meth-
od, namely, the dependence on two unphysical parameters
which are the “smoothing” parameter and the order of the
curvature correction.

Moreover, it has been clearly shown that Strutinsky level
density method is only an approximation of that of the semi-
classical theory [26]. The “pure” pairing correlation energy
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is defined by:

N/2o0rZ/2 2

Z 2&i(B) — %

i=1

P(p) = > 2e(p)vf - (8)
i=1

where uiz, A and A are the usual occupation probabilities, gap
and Fermi energy of the BCS approximation (the factor “2”
is simply due to the Kramers degeneracy). Since the smooth
part of pairing correlations is already contained in the liquid
drop model, we have to add only the one due to the shell
oscillations of the level density. This contribution is defined
by means of a formula similar to (7)

P pairing(N or Z, B) = P(B) — P(B) )

where the averaged pairing is defined as

— 1 —2
P(ﬁ) = 5 gxemicL(/l)A .

We use a simple BCS method to account for pairing correla-
tions. To calculate (7) and (9) we follow the method detailed
in [27] with its FORTRAN code. The treatment of the pairing
has also been explained in [7] and references quoted therein.

2.4 Numerical constants and prescriptions

2.4.1 Constants of the microscopic model

For each kind of particles the mean central and the mean spin-
orbit field are written as [22]:

V(p) = 1 +exp(RyLy(B)/ap)
h y (10)
~ 0
VsoB) = /l(ZMc) 1 + exp(RsoLso(B)/ao)

where Ly(8) and Lgo(B) contain the information on the de-
formation. In fact, these functions contain 9 constants: Vj,...s,
VOpmt, RVneuh RVprots RS O—neut s RS O-prots 40, /lneuts /lpmt~ These
quantities are taken from the “universal” parameters [29] (see
Appendix B) which is an optimized set. The Coulomb mean
field is approximated by a uniform charge distribution inside
a deformed surface. The volume conservation is therefore
Vol =4/ 3)7rthwith the simple assumption Rc;, = Ry pror.

2.4.2 Constants of the liquid drop model

As already stated, we have chosen the parameters of Myers
and Swiatecki (see Table 1) because this set contains a re-
duced number of parameters with respect to more modern
formulae. All the constants are needed in the binding energy
whereas only ag, Cc, k play a role in the potential energy sur-
face.
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| ay as

Ce K Cy Apair

Myers and Swiatecki ‘ 15.67 MeV

18.56 MeV  0.72MeV

1.79 121MeV 11MeV

Table 1: Parameters of the liquid drop model in the Myers and Swiatecki version [28].

2.4.3 Nuclear mass excesses

Nuclear masses are deduced as mass excesses:
Mexcexs(A, Z) = Z1MH + (A - Z)Mn - B(A’Z)

where My = 7.289034 MeV is the hydrogen mass excess and
M, = 8.071431 MeV the neutron mass excess. This makes
comparisons with experimental values easiest.

3 Results

In our previous paper [7] calculations for isotopes '10130Ce
showed that the equilibrium deformations (8 = 0.25 — 0.30)
have always been obtained for symmetric prolate shapes (y =
0°). Results obtained in [32] with a similar approach for the
nuclei ''9-139Ce¢, corroborate this fact. For these reasons, we
think that it is needless to account for the axial asymmetry in a
“pure” static study of the equilibrium deformation. However,
we have to consider prolate (y = 0°) as well as oblate (y =
60°) nuclear shapes. In this regard, it is worth remembering
that oblate shape given by (8 > 0,y = 60°) is equivalent to
the set (8 < 0,y = 0°).

3.1 Comparison between the different contributions en-
tering in the potential energy surface

It could be useful to compare the importance of the different
terms entering in the right hand side of (6). In this respect,
we have drawn in Fig.1 for axially prolate shape, the four
microscopic contributions

6Eshell(N, :8)7 6Eshell(zsﬁ)’ 6Ppuiring(N, ﬂ), 6Ppairing(zsﬁ)

for the case of '®Ce as functions of 8. Following the cited
order, we can say that the difference between the highest and
lowest values in the interval 5 € [0.0, 0.7] are respectively ab-
out 11.0MeV, 10.5MeV, 5.7 MeV, 3.5 MeV for the four cor-
rections.

Thus, these variations show that the shell corrections

6Eshell(N’ ﬁ)’ 6Eshell(Z’ :8)

are more important than
6Ppairing(N7ﬁ)’ 6Ppuiring(z7ﬁ)

and have a clear minimum at respectively 5 = 0.35 and 8 =
0.30. It is well known that for each kind of nucleon the shell
correction is in opposite phase with respect to the pairing cor-
rection (this means for that when 6E g,.;; (N, B) increases with
B, 6P pairing(N, B) decreases and vice versa).
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Contrarily to these curves, the liquid drop model is strictly
increasing with 8, and its minimum occurs always at the be-
ginning B = 0.0 (spherical shape). When all the contributions
are added, the minimum of the potential energy surface of the
nucleus is reached at about 8 = 0.3 and is mainly due to the
shell corrections. When  becomes more and more, larger
the contribution of the liquid drop energy becomes prepon-
derant so that the equilibrium deformation occurs generally
between 8 = 0 and 8 = 0.4. Because of the convention of
the sign stated before, 6B, defined in (1) must be negative
in order to increase the binding energy of the nucleus. Since
the shell corrections (for protons and neutrons) play a major
role in 0Bcr0, it is naturally expected that negative (but ab-
solute large) values of shell correction contribute to increase
the binding energy of the nucleus.

In this respect, it is well known that the shell correction
is essentially determined by the distribution of single-particle
levels in the vicinity of the sharp Fermi level (defined here as
midway between the last occupied level and the first empty
level). Following [31], we can state that “the nuclear ground
state, as well as any other relatively stable state, should cor-
respond to the lowest possible degeneracy, or, in other words,
the lowest density of state near the Fermi level”. This is illus-
trated in Fig.2 where the single-particle levels are drawn as
function of the deformation 8 (y being fixed at y = 0°). To
this end we have used the FORTRAN code of [22] and [24].
The area where the single-particle level density is low near
the Fermi level (black stars) is indicated by a circle. Thus,
it is not so surprising that, it is in this region where the neu-
tron shell correction becomes the most important, involving a
minimum in the PES of the nucleus.

3.2 Equilibrium deformations

Equilibrium deformations are given in Table (2) for prolate as
well as oblate shapes (see table legend for details). The min-
ima of PES for the corresponding wells are denoted minpro
and minobl. The deformation energy is defined as the differ-
ence Egor = Epps(0) — Eg]‘% (B), i.e. the difference between
the potential energy surface for a spherical shape and the one
corresponding to the absolute minimum of PES. Permanent
deformations will be in principle characterized by large val-
ues of E4r and are responsible of rotational spectra.
From this table, some remarks may be drawn:

(i) Two regions of prolate deformation are found. They oc-
cur around N = 64 and N = 102 with maximum deformation
about S =~ 0.30. The deformation energy (between spheri-
cal and deformed shape) is about 6.70 MeV for N = 64 and
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Fig. 1: Contributions of the shell and pairing corrections for the two kind of nucleons and the one of the liquid drop model to the total

potential energy surface of the nucleus 'Ce.
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Fig. 2: Single-particle energies of the microscopic model as function of deformation for prolate shapes (8 > 0) for the nucleus '°Ce.
Spherical spectroscopic notation is given for spherical deformation (8 = 0) .The circle in dotted line indicates the area of lowest level

density.
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Equilibrium Deformation for Cerium Isotopes (Z=58)
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Fig. 3: Theoretical equilibrium deformations for even-even cerium
isotopes evaluated by different or similar approaches.

9.30MeV for N = 102 and decreases from either side from
these two nuclei.
(i) Spherical deformation occur at and near the (magic) num-
bers N = 82 and N = 128 (not shown).
(iii) The deformation energy decreases from N = 64 (maxi-
mum) to N = 82 (minimum) and reincreases again to N =
102 (maximum). We have found graphically that the first
inflexion point occurs between N = 72 and N = 74 and a
second inflexion point is found between N = 90 and N = 92.
One can consider (somewhat arbitrarily) that spherical shapes
occur approximately between these two limits.
(iv) The minima of prolate equilibrium deformations are, by
far, always deeper compared to the ones of the oblate minima
(minpro < minobl). In other words cerium isotopes prefer,
by far, prolate shapes. In other words, the deformation en-
ergy increases in average with the asymmetry y. This justifies
a posteriori that, in a static study of the equilibrium defor-
mation, it is needless to account for axial asymmetry. It is
worth to remember that most of nuclei of the chart have pro-
late shape (see [25]).
(v) Even though the experimental deformations are known
only in absolute value from B(E2), a good agreement is ob-
tained if one excepts the three “nearly magic” nuclei '38-142Ce
In Fig. (3) are displayed the present equilibrium deforma-
tions, experimental values [1] , our “old” calculations [7] and
other studies performed by different authors which are: Kern
et al. [32], Hilaire and Girod [34], Gotz et al. [33] and Nix et
al. [18]. All calculations are based on Macro-Micro method
(with different mean fields or different parameters). Except
the one of [34] which uses Hartree-Fock-Bogoliubov model
with Gogny force.
(i) Near magic number (N = 82) all calculations give spheri-
cal equilibrium deformation whereas experimental results are
always slightly deformed (even for N = 82). It seems difficult
to overcome this defect with a pure static approach which ne-
glects the role of the mass parameters.
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(ii) The overall tendency of these calculations is the same ex-
cept the fact that HFB calculations differ significantly from
the others with higher values in some regions.

(iii) Apart from HFB calculations, theoretical values are gen-
erally quite close from each others.

(iv) Our old and new calculations give very close results (see
Table 3). Thus, even if it is better to choose a proper set of
mean-field parameters for each nucleus, we do not commit
a significant error by taking the same set of parameters for
nuclei that do not differ strongly by the number of neutrons
(N).

3.3 Mass excesses

We list from a FORTRAN file (see Fig.4) the results of our
theoretical calculations of the binding energies and mass ex-
cesses (m-excess) for the even-even cerium isotopic chain.
For the sake of completeness, experimental mass excesses
and the ones of the FRDM model (see [18]) are also given.
We must keep in mind that only 6 parameters are used in
the liquid drop model whereas 16 parameters are necessary
in the FRDM model. This explains the “better quality” of
the FRDM model. However, we have checked that the vari-
ations of binding energy or mass excesses from one isotope
to the nearest is practically the same in our model and the
one of FRDM (the deviations are about +0.35 MeV). For this
reason, the calculation of the two neutron separation energies
(see the following subsection 3.4) will almost be probably the
same for the two approaches even though our model is not so
accurate.

3.4 Transitional regions in cerium isotopes

In Fig.5 is shown the gradual transition in the potential en-
ergy surface from spherical vibrator to the axially deformed
rotor when the number of neutrons (N) increases from 76 to
92. One signature of X(5) symmetry which is a critical-point
of phase/shape transitions (quantum phase transition between
spherical and axial symmetries) should be a long flatness of
the potential energy surface with eventually a weak barrier
from prolate to oblate shapes. In this figure, for N > 82,
the width of the flatness increases as one moves away from
N = 82 but at the same time the difference between oblate
and prolate minima and barrier between oblate and prolate
shapes also increase. For example the differences between
oblate and prolate energy minima and barriers for isotopes
with N = 88,90, 92 are respectively about 1.5 MeV, 2.5 MeV
and 3.3 MeV with energy barrier about 2MeV, 4 MeV and
5.5MeV respectively. The wideness of the bottom of the
well must be relativized with the height of the barrier. Thus
for the case of N = 92 the width is important, i.e. about
AB = Bpro — Port = 0.26 — (=0.20) = 0.46 but the barrier
is about 5.5MeV and therefore seems too high. The case
N = 90 gives a width of AB =~ 0.3 with a barrier of about
4MeV. For N < 82, the case N = 76 seems to be rela-
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N A Bpro  minpro  Bop minobl  Egqey [ﬁexp| N A Bpro  minpro  Bopi minobl  Eqer |ﬁexp|
MeV) (MeV)  (MeV) (MeV) MeV) (MeV)

58 116  0.30 0.90 -0.21 3.62 4.80 92 150 0.25 1.23 -0.17 445 5.12 0.31

60 118 0.32 0.88 -0.23 4.07 5.87 94 152 0.27 1.21 -0.19 5.05 6.40

62 120  0.32 1.03 -0.23 4.33 6.19 96 154 0.28 0.64 -0.21 4.94 7.47

64 122 0.31 1.16 -0.23 4.23 6.68 98 156  0.29 0.66 -0.22 5.13 8.44

66 124 0.30 1.47 -0.21 4.15 6.17 0.30 100 158 0.29 0.71 -0.22 5.14 9.08

68 126 0.29 1.75 -0.21 3.87 5.43 0.33 102 160  0.30 0.32 -0.22 4.52 9.27

70 128 0.27 1.82 -0.21 3.48 4.67 0.29 104 162  0.29 0.71 -0.22 4.42 9.08

72 130  0.25 2.02 -0.2 3.27 3.34 0.26 106 164 0.29 1.00 -0.23 4.23 8.44

74 132 0.20 1.90 -0.17 2.60 1.97 0.26 108 166 0.28 1.16 -0.23 3.92 7.57

76 134 0.16 1.28 -0.14 1.63 0.93 0.19 110 168  0.27 1.46 -0.21 3.84 6.39

78 136 0.10 0.04 -0.07 0.18 0.19 0.17 112 170 0.25 1.68 -0.20 3.55 5.33

80 138 0.00 -1.93 0.00 -1.93 0.00 0.13 114 172 0.25 1.97 -0.19 3.20 4.19

82 140 0.00 -3.96 0.00 -3.96 0.00 0.10 116 174 0.2 1.93 -0.17 2.79 2.95

84 142 0.00 -2.07 0.00 -2.07 0.00 0.12 118 176 0.17 1.71 -0.16 2.17 1.68

86 144 0.15 0.02 -0.06 0.53 0.50 0.17 120 178 0.14 1.39 -0.14 1.60 0.55

88 146  0.19 0.73 -0.11 2.43 1.99 0.17 122 180 0.0 0.3 0.00 0.30 -0.15

90 148 0.23 1.15 -0.14 3.76 3.15 0.25 124 182 0.0 —1.08 0.00 -1.08 -0.08

Table 2: Equilibrium deformations as well as deformation energies for the cerium isotopic chain. The columns give successively the
number of neutrons (), the mass number (A), the prolate equilibrium deformation (8,,,), the minimum of the prolate well (minpro), the
oblate equilibrium deformation (5,;), the minimum of the oblate well (;minobl), the deformation energy (E,.,see text), the experimental
equilibrium deformation (Bcy,). Note: The deformation energy is always given for the prolate equilibrium shape because no absolute

minimum is obtained for oblate shape.

Cerium (Z = 58) “ N =58 60 62 64 66 68 70 72 74 76 78 80 82
Present 8 +0.30 +032 +032 +031 +030 +0.29 +0.27 +025 +020 +0.16 +0.10 +0.00 +0.00
Old g +0.28 +0.30 +031 +031 +031 +030 +0.27 +0.24 +022 +0.18 +0.06 +0.11 +0.00
Present Eg.r(MeV) 4.80 5.87 6.19 6.68 6.17 5.43 4.67 3.34 1.97 0.93 0.19 0.00 0.00
Old Egep(MeV) 4.82 5.77 6.03 6.31 7.08 5.36 4.41 3.35 2.13 0.77 0.00 0.24 0.00

Table 3: New equilibrium deformations and deformations energies vs old [7].

tively equivalent to N = 90 with a slightly smaller width and
a lower height barrier. Thus it is difficult to determine clearly
the existence of a X(5) critical-point. Thus, everything seems
to indicate a continuous transition.

In Fig. 6 is displayed the two-neutron separation energy
(TSN) as function of the neutron number N. A clear jump
is seen from N = 82 to N = 84, i.e. from one major shell
to the following. Just before N = 82 and just after N = 84
the TSN varies more slowly. Far for the “jump” the curve be-
comes quasi-linear. Once again, no special behavior is noted
around N = 90 which from [35] and [36] should constitute
with Z ~ 62 the first order shape transition (X(5) critical-
point) in the rare earth region. In [37], it has been pointed out
that “Empirical evidence of transitional symmetry at the X(5)
critical-point has been observed in 150Nq, 152§m, 134Gd, and
156Dy, One of the most important signatures of the phase
transition is given by a sudden jump in the value of the en-
ergy ratio Ry = 4;'/ 2f from one nucleus to the next. We
found it useful to compare the experimental values of this ra-
tio (see Fig. 7) in the cases of the isotopic chains of Ce and Sm
(The experimental values of the considered levels have been
deduced from the adopted level of ENS DF site [38]). The
figure shows clearly two facts. First, the important variation
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of R4/> near of the magic number N = 82 for both isotopic
chains and then, the important difference between the behav-
ior the two isotopic chain from N = 88 to N = 90. In effect

N Two-Neutron Separation Energies VS Neutron Number
For Cerium Isotopes (2=58)

204

ity

s, (MeV)
!

0

1
64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124
N

Fig. 6: Two-neutron separation energies (S,y) along the cerium
isotopic chain.  This quantity is defined as S,y(A,Z,N) =
Bind(A,Z,N) — Bind(A — 2,Z, N — 2) where the binding energy
Bind(A,Z, N) is given by (1). Note that in our approache the neu-
tron drip line (where S,y ~ 0) can be extrapolated around N = 128
for Cerium isotopes.
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N 58 A 116. Z 58 bi nd 914. 85 m excess -23.94  exp *ErrxxkEx frdm -29.21
N 60 A 118. Z 58 bi nd 942. 64 m excess -35.59 exp *rRFFx Ak frdm -40.57
N 62 A 120. Z 58 bi nd 968. 86 m excess -45.66  exp *rrrxxkkx frdm -50.01
N 64 A 122. Z 58 bi nd 993. 74 m excess -54.40  exp *ErrxxkEx frdm -57.99
N 66 A 124. Z 58 bind 1017.15 m excess -61. 67 exp *EEFFIIIX frdm -64.93
N 68 A 126. Z 58 bind 1039.35 mexcess -67.73 exp ¥rFExrkxx frdm -70.82
N 70 A 128. Z 58 bi nd 1060. 58 m excess -72.81  exp *ErxxxxEx frdm -75.54
N 72 A 130. Z 58 bind 1080. 54 m excess -76.63 exp *rREFx Ak frdm -79.17
N 74 A 132. Z 58 bind 1099.73 mexcess -79.68 exp ¥rFExrkxx frdm -81.89
N 76 A 134. Z 58 bind 1118.37 m excess -82.18 exp -84.750 frdm -84.02
N 78 A 136. Z 58 bind 1136.63 mexcess -84.30 exp -86.500 frdm -85.67
N 80 A 138. Z 58 bind 1154. 66 m excess -86.18 exp -87.570 frdm -87.62
N 82 A 140. Z 58 bind 1171.81 m excess -87.19 exp -88. 090 frdm -88.68
N 84 A 142. Z 58 bind 1184.16 m excess -83.39 exp -84.540 frdm -84.78
N 86 A 144. Z 58 bind 1195.44 m excess -78.53 exp -80.440 frdm -80.23
N 88 A 146. Z 58 bind 1207.28 m excess -74.23 exp -75.720 frdm -76.00
N 90 A 148. Z 58 bind 1218.60 m excess -69.41 exp -70.430 frdm -70.83
N 92 A 150. Z 58 bind 1229.50 m excess -64. 17 exp -64.990 frdm -65.80
N 94 A 152. Z 58 bind 1239.76 m excess -58.28 exp *rREFx AKX frdm -59.78
N 96 A 154. Z 58 bind 1249.85 mexcess -52.23 exp ¥rFExrkax frdm -52.90
N 98 A 156. Z 58 bind 1258. 66 m excess -44.90 exp *EEEFkFxK frdm -45.40
N 100 A 158. Z 58 bind 1266.78 mexcess -36.87 exp *rrExxaax frdm -37.29
N 102 A 160. Z 58 bind 1274.68 m excess -28.63  exp *Errxxxkk frdm -28.70
N 104 A 162. Z 58 bind 1281.19 m excess -19.00 exp *EEFx AKX frdm -19.01
N 106 A 164. Z 58 bind 1287.19 m excess -8.86  exp *rrrrkkkk frdm -8.62
N 108 A 166. Z 58 bind 1292.74 m excess 1.74  exp xxxxxskxx frdm 2.23
N 110 A 168. Z 58 bind 1297.58 m excess 13. 04 exp *EEFFIIIX frdm 13.43
N 112 A 170. Z 58 bind 1301.96 mexcess 24.81  exp *rrEExkkx frdm 25. 00
N 114 A 172. Z 58 bind 1305.73 m excess 37. 17 exp FEEEIxHHK frdm 36. 82
N 116 A 174. Z 58 bind 1309.33 mexcess 49.72  exp *FrrFEkxxk frdm 49. 07
N 118 A 176. Z 58 bind 1312.60 mexcess 62.59  exp *rrEExxEx frdm 61.53
N 120 A 178. Z 58 bind 1315. 49 m excess 75. 84 exp *EEEFkFxK frdm 74.94
N 122 A 180. Z 58 bind 1318.69 mexcess 88.79  exp *rErEExEx frdm 87.48
N 124 A 182. Z 58 bind 1321.72 m excess 101.90  exp *xx*xHkxx frdm 99.94

Fig. 4: Theoretical binding energies and mass excesses of the present approach compared to the experimental mass excesses and the ones
given by the FRDM model of [18]. All energies are expressed in MeV. The experimental data as well as the frdm results have been entered
manually in the code. Asterics mean that no experimental data is available for the corresponding nucleus.

in the case of Samarium, there is a sudden increase of this ra-
tio whereas this is not the case for the Cerium isotopes. This
has been attributed to the X(5) critical-point symmetry of the
nucleus 2Sm. Thus the present study confirms that cerium
isotopic chain is characterized by a continuous shape/phase

35+
—{1— Ce (Z=58)

Oh e —&—Sm (2=62) /ﬁtﬁr""
3.0 O \ ¥/
[ER
0\
%» [/

Ind
&l
L

/
H 4
4

Exp. Ratio R,,=E,/E,
N
o
1

=
u
L

60 64 68 72 76 80 84 88 92 96 100

Fig. 7: R4/, energy ratio as function of neutron number for Cerium
and Samarium isotopes. Sudden variations are associated with
magic closure shells for the both chains ( at N = 82) and with X(5)
critical point which occurs only for Sm (at N = 90).
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transition.

4 Conclusion

Potential energy surfaces have been drawn for the cerium
isotopic chain. All even-even nuclei between the two drip
lines have been considered. To this end, we have used the
microscopic—macroscopic method in which the quantum cor-
rections have been evaluated by a semi-classical procedure.
The microscopic model is based on a “realistic” Schrédinger
equation including a mean field of a Woods-Saxon type. The
macroscopic part of the energy is evaluated from the liquid
drop model using the version of Myers and Swiatecki. The
following points must be remembered:

(i) All equilibrium deformations have been found prolate with
an important deformation energy compared to oblate shapes.
(i) The maximum deformations are of order 8 ~ 0.3 and are
located around N = 64 and N = 102 with deformation energy
about 6 MeV and 9 MeV respectively. The equilibrium defor-
mations decrease as one moves away from these two nuclei.
(ii1) Spherical shapes are found in the neighborhood of N =
82.

(iv) Good agreement is obtained between theoretical and ex-
perimental values if one excepts the area of the shell closure
N = 82 where the latter are slightly larger.
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Fig. 5: Shape evolution for cerium isotopes from N = 78 to N = 92.

(v) This isotopic chain possesses a continuous shape/phase
transition from spherical shapes toward the axially symmet-
ric ones.
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Cy =ay [1 - KIZ] (in the volume term)
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[=— (relative neutron excess)
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The last correction to the Coulomb energy takes into account
that the liquid drop has not a sharp but a diffuse surface of the
Woods-Saxon type. The diffuseness parameter is ay and the
charge radius “contains” ry (R, = ryA'3).

B. Mohammed-Azizi, A. Helmaoui and D.-E. Medjadi. Shape Transition in the Even-Even Cerium Isotopes 265



