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Some dynamical aspects of gravitational collapse are explored in this paper. A time-
dependent spherically symmetric metric is proposed and the corresponding Einstein
field equations are derived. An ultrarelativistic dust-like stress-momentum tensor is
considered to obtain analytical solutions of these equations, with the perfect fluid con-
sisting of two purely radial fluxes — the inwards flux of collapsing matter and the
outwards flux of thermally emitted radiation. Thermal emission is calculated by means
of a simplistic but illustrative model of uninteracting collapsing shells. Our results show
an asymptotic approach to a maximal space-time deformation without the formation of
event horizons. The size of the body is slightly larger than the Schwarzschild radius
during most of its lifetime, so that there is no contradiction with either observations or
previous theorems on black holes. The relation of the latter with our results is scruti-
nized in detail.

1 Introduction

The aim of this paper is to discuss several open problems of
conceptual interest concerning black holes and, in particular,
to elaborate a simple model of dust-like spherically symmet-
ric gravitational collapse with account of both the inwards
flux of the collapsing matter and the outwards flux of emit-
ted thermal radiation. We illustrate how the latter may avoid
the formation of event horizons. The metric considered in
this work is time-dependent, unlike the Schwarzschild one.
Spherical polar coordinates will be used and there will be no
need for analytical extensions (such as the one given by the
Kruskal-Szekeres chart) because the occurrence of an event
horizon at the Schwarzschild radius will be avoided.

In Sec. 2 the main historical events concerning the devel-
opment of the well-known concept of black hole are reviewed
and its precise significance is shortly but precisely detailed. In
Sec. 3 some open problems of the common black hole model
are pointed out and their relationship with the corresponding
historical findings is emphasized. Section 4 deals with the
development of the metric of the present model: First of all,
in subsec. 4.1 a time-dependent spherically symmetric met-
ric in spherical polar coordinates is presented and the corre-
sponding Einstein field equations are specified. Secondly, a
dust-like energy momentum tensor for a purely radial motion
with account of an ultrarelativistic collapsing matter and ther-
mally emitted radiation is obtained in subsec. 4.2. Temporal
evolution of the metric components is studied in subsec. 4.3,
with the absence of emitted thermal radiation being detailed
as a particular case. Fourthly, in subsec. 4.4 it is shown that
there should exist a limit where the inwards flux of collaps-
ing matter and the outwards flux of thermal radiation become
compensated. It is also shown the asymptotic character of the
approximation to this limit. Some additional considerations
about the total mass and the edge of the collapsing body will

be made in subsec. 4.5. Finally, our results are discussed in
Sec. 5, paying a special attention to the plausibility of the
different hypothesis and the implications of their alternatives.

2 Important historical results concerning black holes

Several historical results in General Relativity led to the con-
cept of black hole. The following list includes some of the
most important ones:

1. K. Schwarzschild found in 1916 an exact solution of
the Einstein field equations describing the field created
by a point particle [1]. (According to Birkhoff’s theo-
rem, this solution is also valid for any spherically sym-
metric body at a distance larger than its radius [2].)

2. J. R. Oppenheimer and G. M. Volkoff discovered in
1939 the existence of upper limit for the mass of neu-
tron stars, above which gravitational collapse could not
be avoided [3].

3. In 1967 J. Wheeler used the term “black hole” to name
a “gravitationally completely collapsed star” [5].

4. S. Hawking and R. Penrose proved in 1970 that, un-
der certain circumstances, singularities could not be
avoided. This is known as the Hawking-Penrose the-
orem of singularity [6].
All these results concerning black holes arise basically
from Einstein’s General Relativity. On the other hand,
there exist two important features in the description of
black holes which require from both Thermodynamics
and Quantum Field Theory (QFT):

5. J. Bekenstein defined the entropy of black holes in 1972
and, based on thermodynamic grounds, deduced the
need for black-hole radiation [7].

6. In 1974 S. Hawking justified Bekenstein’s speculations
about the existence of black-hole radiation from the
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point of view of QFT. Hawking model implies the cre-
ation of particles of negative mass near the event hori-
zon of black holes. The conservation of information is
not clearly ensured by this model [8].

3 Some open problems in gravitational collapse

In this section we discuss if the previous historical results
genuinely imply the actual existence of black holes as physi-
cal objects. It is widely believed that these findings prove the
existence of black holes. The argument supporting black hole
formation is the following:

1. There exist stars which are massive enough to exceed
the Oppenheimer-Volkoff limit at the end of their “vital
cycle”. Those stars must finally enter collapse.

2. According to the Hawking-Penrose theorem of singu-
larity, all the mass inside an event horizon must reach a
single central point, that is, form a singularity.

3. The solution of the Einstein field equations for the met-
ric of a “point mass” is the Schwarzschild metric, that
describes a black hole.

Entering collapse, however, does not immediately lead to
the formation of an event horizon and, while the event hori-
zon is not formed, the Hawking-Penrose theorem of singu-
larity is not properly applicable (notice that one of its condi-
tions of application is equivalent either to the existence of an
event horizon, or to an expanding Universe taken as a whole).
Hence, a priori entering collapse must not necessarily lead to
a complete collapse.

Certainly, the period of time involved in the process of
collapse may be proven to be infinite from the point of view of
any external observer (that is, from our perspective on Earth).
On the other hand, a “free falling observer” would measure
a finite period of time for the collapse, at least if nothing de-
stroys it before reaching its goal [4, 10]. A well-known fea-
ture of General Relativity is that space and time are relative
but events are absolute. Consequently, it is necessary to rec-
oncile the observations from both reference frames.

It is usually assumed that the free falling observer actually
reaches the singularity in a finite time, and the infinite-lasting
collapse measured by the external observer is justified in the
following way: the free falling body has already reached the
central singularity, but as the light emitted from the body in-
side the black hole never escapes from it, we cannot see it
falling; furthermore, the light emitted near the event horizon
of the black hole comes to us with a great delay, making us
believe that it is still falling.

In fact, there are compelling reasons that make us doubt
about the previous explanation: The Schwarzschild metric
is symmetric under temporal inversion, which suggests that
trajectories in the corresponding space-time should be also
reversible, in contrast to the most common interpretation of
black holes and their event horizon. Furthermore, General

Relativity is not only intended to explain what an observer
“sees” in a given reference frame, but what truly “occurs” in
there. Additionally, S. Hawking defended the incompatibility
of event horizons with Quantum Mechanics [9].

Solution of this apparent paradox requires a careful analy-
sis of what an external observer would exactly see when look-
ing at a body free falling towards a black hole. On the one
hand, it would see the free-falling body approaching asymp-
totically to the event horizon of the black hole, without ever
crossing it. On the other hand, according to Hawking’s law of
black hole radiation, the observer should also see the whole
black hole evaporating in a very large, but finite period of
time. The evaporation of the whole mass of the black hole
must logically include that of the free-falling body as well.
Were it not to be like this, that is, if the crossing of the event
horizon had to be accomplished before the emission of ther-
mal radiation, it would never emit thermal radiation and the
laws of Thermodynamics would be infringed. As the tem-
poral order of causally-related events is always the same for
all reference frames, we must conclude that the free falling
observer should also observe its own complete evaporation
before having reached the event horizon. If it had reached the
singularity in a finite period of time, its complete evaporation
must have occurred in a finite and lesser period of time.

Not only should these considerations be valid for the free-
falling body approaching a black hole, but also for the pro-
cess of collapse itself [28]. Consequently, collapsing bod-
ies should never becomes black holes. On the contrary, they
should asymptotically tend to form an event horizon until the
time at which they become completely emitted in the form
of radiation. An equivalent thesis has already been defended
by Mitra [14–18], Robertson and Leiter [19–21], Vachaspati
et al. [11, 12], and by Piñol and López-Aylagas [13]. In ad-
dition, there exist some calculations in string theory which
point towards the same direction [22].

Thus, the metric of a collapsing body shall never be in a
strict sense Schwarzschild’s one (as it never completely col-
lapses) but a time-dependent metric. In the next section, we
solve the Einstein field equations of a time-dependent spher-
ically symmetric metric. Several simplifications are consid-
ered to make calculations plausible, but the essential Physics
of the problem is respected.

4 Deduction of a metric for gravitational collapse

4.1 Einstein field equations

As we have already pointed out, our goal in this paper is to
study the temporal evolution of a spherically symmetric grav-
itational collapse. Rotations and local inhomogeneities are
beyond the scope of the present work. Therefore, the starting
point shall be a time-dependent spherically symmetric metric,
which in spherical polar coordinates is given by the expres-
sion

dτ2 = eνdt2 − eλdr2 − r2dΩ2, (1)
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where ν = ν(r, t) and λ = λ(r, t). Notice that geometrized
units have been used (G = 1, c = 1). The corresponding Ein-
stein field equations for such metric are the following [23]:
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Subtraction of 3 from 2 yields the identity
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It will be useful to define a function φ(r, t)

−2φ ≡ ν + λ (8)

so that

ν = −λ − 2φ , 8π
(
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1

)
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r
(
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)
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A mathematical structure for the stress-momentum tensor
must be specified in order to solve the previous equations,
which will be discussed in next subsection.

4.2 A dust-like stress-momentum tensor of ultrarela-
tivistic particles

The stress-momentum tensor of a perfect fluid may be written
in terms of the energy density ρ, the pressure p and the four-
velocity uα as:

Tα
β = gβδ (ρ + p) uαuδ − ηαβ p . (10)

If the pressure appears to be very small compared to the
energy density, in the limit p → 0 one obtains the stress-
momentum tensor of dust:

Tα
β = gβδ ρ uα uδ. (11)

In our model we deal with a dust-like stress-momentum
tensor. For the sake of simplicity, we shall consider the per-
fect fluid splitting into two perfectly radial fluxes: a flux of in-
going collapsing matter and a second flux of outgoing thermal
radiation. Both the ingoing collapsing matter and the outgo-
ing thermal radiation are going to be dealt as ultrarelativistic

particles. It has been already established that the matter in
a process of gravitational collapse reaches celerities near the
speed of light [24]. It is also a well-known fact that, despite
photons being “massless”, a photon gas may be assimilated
to a gas of ultrarelativistic particles with an effective mass
density [25].

It could be expected that the relation between pressure
and mass-energy density should be given by the identity
p =

ρ
3 due to the particles being ultrarelativitic. A closer

insight into this points out that the above identity would only
be properly applicable to an isotropic gas and not to the higly
directed movement considered in the present work. The con-
sideration of two purely “radial” fluxes shall simplify calcula-
tions and it is in this sense that a “dust-like” stress-momentum
tensor may be used. A similar approach has been already
adopted by Borkar and Dhongle [26].

With account of the metric 1 the coefficients of the dust
energy-momentum tensor 11 become

T 0
0 = e−2φ e−λ ρ

(
u0

)2
, (12)

T 1
1 = − eλ ρ

(
u1

)2
, (13)

T 1
0 = e−2φ e−λ ρ u0 u1. (14)

For a purely radial movement (characterized by dΩ = 0)
Eq. 1 leads to the relation

dτ2 = e−2φe−λdt2 − eλdr2 (15)

which, with account of the identities dt
dτ ≡ u0 and dr

dτ ≡ u1,
becomes

1 = e−2φe−λ
(
u0

)2
− eλ

(
u1

)2
. (16)

Isolating
∣∣∣u1

∣∣∣ =

√(
u1)2, we obtain

∣∣∣u1
∣∣∣ = e−φe−λu0

1 − e2φeλ(
u0)2

 1
2

. (17)

In the ultrarelativistic limit u0 → ∞ (u0 � e2φeλ) the compo-
nent u1 of the four-velocity becomes∣∣∣u1

∣∣∣ = e−φe−λu0. (18)

Notice that this same relation could have been obtained by
imposing the identity dτ ∼ 0 in Eq. 15.

Concerning the sign of u1, it is clear that u1 < 0 for ingo-
ing matter and u1 < 0 for outgoing thermal radiation, i.e.

u1
in = −e−φ e−λ u0, (19)

u1
out = e−φ e−λ u0. (20)
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4.2.1 Stress-momentum tensor of the ingoing matter

If we denote the energy density of the infalling matter by ρin,
according to Eqs. 12, 13, 14 and 19 we have

T 0
0,in = e−2φ e−λ ρin

(
u0

)2
, (21)
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(
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)2
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T 1
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(
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)2
= −e−φ e−λ T 0

0,in . (23)

4.2.2 Stress-momentum tensor of the outgoing thermal
radiation

Denoting the energy density of the outgoing thermal radiation
by ρout, according to Eqs. 12, 13, 14 and 20 we obtain

T 0
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(
u0

)2
, (24)

T 1
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(
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)2
= −T 0
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T 1
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(
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)2
= e−φ e−λ T 0

0,out . (26)

4.2.3 Total stress-momentum tensor of the collapsing
body

Addition of the stress-momentum tensors of both the infalling
matter and the outgoing thermal radiation leads to the to-
tal stress-momentum tensor of the collapsing body, which is
given by the expressions
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)2
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(
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)
T 0

0 .

Once the mathematical structure of the stress-momentum
tensor of the collapsing body is established, we are able to
study the temporal evolution of the collapse by solving the
Einstein field equations 2-6.

4.3 Temporal evolution of collapse

Substitution of T 1
0 by Eq. 27 in Eq. 6 leads to the following

equation:

−e−φ e−λ
(
ρin − ρout

ρin + ρout

)
8πT 0

0 = −e−λ
λ̇

r
. (30)

From this an expression for the temporal evolution of λ may
be isolated:

λ̇ = e−φ
(
ρin − ρout

ρin + ρout

)
8πrT 0

0 . (31)

Initially it is expected that ρin � ρout, as the amount of
energy emitted in the form of thermal radiation should rea-
sonably correspond to a very small proportion of the total en-
ergy of the collapsing body. In that case,

(
ρin−ρout
ρin+ρout

)
∼ 1 and

λ̇ ∼ e−φ
(
8πrT 0

0

)
, so that λ shall be a strictly increasing func-

tion with time and it is expected to acquire considerably large
values. In any case, for λ � 1 we have the asymptotic ex-
pression

8πT 0
0 =

1
r2 + O(e−λ) , (32)

and therefore,

λ̇ = e−φ
(
ρin − ρout

ρin + ρout

)
1
r

+ O(e−λ) . (33)

On the other hand, we need to estimate as well the value
of φ. From Eqs. 9 and 28 we obtain

φ′ = −
1
2

eλ 8πr
(
T 0

0 − T 1
1

)
= −eλ

(
8πrT 0

0

)
, (34)

which combined with Eq. 32 yields

φ′ = −
eλ

r
+

(
1
r
− λ′

)
∼ −

eλ

r
. (35)

According to Birkhoff’s theorem, outside the radius R of
the collapsing body the space-time geometry will be exactly
Schwarzschild-like, so that φ = 0 for r > R. Inside the col-
lapsing body T 0

0 > 0 and consequently φ′ < 0. This yields
φ > 0 for r < R and φ(R, t) = 0 because of the analytic char-
acter of this function.

Equations 33 and 35 are not trivial to resolve analytically.
For any time t, however, Eq. 33 and the fact that φ > 0 for
any r < R lead to the following inequality:

λ(t, r) < λ(0, r) +
t
r
. (36)

4.4 Asymptotic approach to a pseudo-stability phase

According to the results obtained in the previous section, for
any given time t the function λ(r, t) is analytic on the domain
r > 0. Nonetheless, as Eq. 36 is an inequality, no specific
values for this function have been provided.

It has been discussed that the ingoing flux of infalling
matter is initially expected to be much larger than the out-
going flux of thermal radiation. Despite this, as λ becomes
larger, according to Eq. 35 |φ′| must also increase. On the
other hand, as φ > 0 the ingoing flux must decrease accord-
ing to Eq. 23.

As the values of T 1
0,in may become as small as wanted, if λ

and φ were not upper bounded it would not be unreasonable
to think that the ingoing flux of infalling matter may even-
tually become compensated by the outgoing flux of thermal
radiation. It could be discussed as well that, according to Eq.
26, the flux of outgoing thermal radiation may also become
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arbitrarily small, but we proceed first to analyse the details
concerning the compesation of fluxes and the consequences
of this hypothesis.

The condition for the compensation of both fluxes is nat-
urally given by the equation

T 1
0,in,s + T 1

0,out,s = 0 . (37)

It must not be misunderstood as a transgression of Oppen-
heimer-Volkoff’s theorem. The star is not in equilibrium. It is
actually collapsing, as nothing prevents the infalling matter of
keeping in collapse. There would simply be an additional flux
(arguable in the basis of thermodynamic grounds, and justi-
fiable by the conversion of a portion of the collapsing matter
into thermal radiation due to the interaction of their respective
fields) that would compensate the energy interchange across
a given surface of r−radius.

In that hypothetical state of “stability”, from Eqs. 23 and
26 a relation between the energy densities ρin and ρout can be
derived

ρin,s = ρout,s =
1
2
ρs , (38)

where the subindex s stands for “stability” (notice that the
aforementioned relations are specific of that hypothetical
phase). Several considerations concerning the emission of
thermal radiation due to collapsing bodies must be made in
order to proceed further with the theoretical development.

4.4.1 A model of Hawking-like radiation

According to Hawking [8], the temperature of a black hole is
proportional to the inverse of its Schwarzschild radius (RS )
and the thermal radiation emission rate is proportional to the
inverse of the square of RS :

ṀH = −
k

R2
S

. (39)

We have denoted the thermal emission by ṀH as it implies a
loss in the total mass of the black hole.

In what follows, both the approach and the nomenclature
adopted in the study of the mass and its mathematical relation
with the components of the stress-momentum tensor and with
the functions ν(r, t) and λ(r, t) of the metric 1 are the ones
given in Ref. [23]. The total mass of a spherically symmetric
body of radius R is given by the following expression:

M =

∫ R

0
4πr2T 0

0 (r, t)dr. (40)

Analogously, the mass contained inside a surface of radius r
(concentric to the spherically symmetric body of interest) is
given by

m(r, t) =

∫ r

0
4πr̃2T 0

0 (r̃, t) dr̃. (41)

Comparing Eqs. 2 and 41, the following relation can be
set between m(r, t) and λ(r, t):

e−λ(r,t) = 1 −
2m(r, t)

r
, (42)

and therefore we have −e−λλ̇ = − 2ṁ
r or, equivalently,

λ̇ =
2ṁ
r

eλ. (43)

Despite the fact that there is solely “one” function λ(r, t),
it is useful to split λ̇ into the sum of λ̇in (due to the ingoing
flux ṁin of collapsing matter) and λ̇out (due to the outgoing
flux ṁout of thermal radiation). In so doing we obtain

λ̇ = λ̇in + λ̇out (44)

with
λ̇in =

2ṁin

r
eλ, λ̇out =

2ṁout

r
eλ. (45)

As pointed out before, the thermal emission of black holes
ṁH is given by Eq. 39. On the other hand, Vachaspati et al.
showed that the thermal emission of a collapsing shell ap-
proaching the Schwarzschild’s radius of a black hole would
follow a law of the same style [11]: according to their cal-
culations, the temperature of the collapsing shell turns out
to be proportional to the Hawking’s one (TV ∼ 2.4TH , where
TV stands for Vachaspati’s temperature and TH for Hawking’s
temperature).

With account of Eq. 42 the metric 1 becomes

dτ2 =

(
1 −

2m(r, t)
r

)
e−2φ(r,t) dt2 −

−

(
1 −

2m(r, t)
r

)−1

dr2 − r2 dΩ2,
(46)

where the resemblance with Schwarzschild’s metric results
evident. Certainly, there exist two main differences between
Eq. 46 and the Schwarzschild’s metric: 1) the mass is not a
constant, but a function of the radius. 2) there is an additional
factor e−2φ(r,t) in the coefficient g00.

However, if we 1) deal with motions whose variation in
the r-coordinate is small enough and 2) assume a temporal
proximity to the hypothetical stationary case that we postu-
lated (i.e., ṁ(r, t) ∼ 0 and φ̇(r, t) ∼ 0), then the metric 46 may
be locally transformed into the Scwarzschild’s one.

In fact, in the vicinity of a given radius Ra, where m(r, t) ∼
Ma and φ(r, t) ∼ Φa, we have

dτ2 ∼

(
1 −

2Ma

r

)
dt̃2 −

(
1 −

2Ma

r

)−1

dr2 − r2dΩ2, (47)

with
dt̃ ≡ e−Φa dt. (48)

At this point it is time to introduce our Hawking-like ra-
diation model. We will conceptually split the collapsing body
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into a sequence of concentric spherical shells, each of which
asymptotically approaches its corresponding radius r = 2Ma

in the coordinate system given by the metric 47. We as-
sume that these collapsing shells do not interact with each
other. Along the lines of Ref. [12] it can be deduced that
the radiation law obtained for a spherical shell asymptotically
approaching in time t the event horizon of a black hole is
also valid for any of the concentric shells asymptotically ap-
proaching in time t̃ its corresponding r = 2Ma radius in our
model. Consequently,

dmout

dt̃
= −

k
r2 (49)

and so

ṁout ≡
dmout

dt
=

dt̃
dt

dmout

dt̃
= −e−φ

k
r2 . (50)

From this, we straightforwardly obtain the identity

λ̇out =
2eλ

r

(
−e−φk

r2

)
= −e−φ

2k eλ

r3 . (51)

On the other hand, according to Eqs. 6 and 23 an equiva-
lent expression for λ̇in is given by

λ̇in = e−φ
(
8πrT 0

0,in

)
. (52)

From Eqs. 12, 21 and 32 we conclude that, asymptotically,

8πT 0
0,in =

ρin

ρin + ρout

1
r2 + O(e−λ) (53)

and therefore, with account of Eq. 38, we obtain

λ̇in = e−φ
(

ρin

ρin + ρout

)
1
r
' e−φ

1
2r

. (54)

The stability phase is naturally defined by the condition

λ̇s = 0 (55)

and therefore, from Eqs. 44, 51, 54 and 55 we obtain the re-
lation

−e−φs
2k eλs

r3 + e−φs
1
2r

= 0. (56)

Equivalently,

eλs =
1
4k

r2, (57)

from which a functional dependence of λ on r is obtained for
the stability phase

λs(r) = − ln (4k) + ln
(
r2

)
. (58)

Taking into account Eq. 35, from the previous equation
we easily obtain an expression for φs:

φ′s = −
eλs

r
= −

r
4k
. (59)

Integration over r with account of the contour condition
φ(R, t) = 0 ∀t discussed in the previous section yields the
identity

φs (r) =

∫ r

R
φ′s (r̃) dr̃ =

1
8k

(
R2 − r2

)
, (60)

and thus
e−φs(r) = e

−1
8k (R2−r2). (61)

It must be noticed that the existence of the postulated
stability phase is self-consistent and that it may be clearly
derived from equations 45: both

∣∣∣λ̇in

∣∣∣ and
∣∣∣λ̇out

∣∣∣ decrease as
φ(r, t) increases by a factor e−φ(r,t), but only

∣∣∣λ̇out

∣∣∣ increases as
λ(r, t) increases (by a factor eλ(r,t)). Consequently, even when
initially

∣∣∣λ̇out

∣∣∣ � ∣∣∣λ̇in

∣∣∣ at large enough times both quantities
should become of the same magnitude.

Nonetheless, a significant issue concerning the behaviour
of λ(r, t) for small values of r must be remarked. We are going
to deal it with detail in the following subsection.

4.4.2 Corrections to the equation of λs for small radii

From Eq. 42, as m(r, t) > 0 ∀r, t, it becomes evident that also
λ(r, t) must be > 0 ∀r, t. However, in Eq. 58, it can be checked
that it yields λs = 0 at r = 2

√
k and λs < 0 for r < 2

√
k.

Consequently, the mentioned expression cannot be valid for
small radii.

As it has been clearly established in subsec. 4.3, if no out-
wards flux of thermal radiation is taken into account the val-
ues of λ(r, t) would grow in an unlimited way. Thus, at large
times, it would become great enough to imply the T 0

0 compo-
nent of the stress-momentum tensor to approach the asymp-
totic expression given in Eq. 32. By contrast, in the previ-
ous subsection we have actually taken into account the emis-
sion of thermal radiation, and it has been performed with the
Hawking-like law specified in Eq. 39, which entails a most
prominent emission rate for inner shells. As a consequence,
λs values decrease at small radii (or, what is the same, it re-
sults to be a strictly increasing function with r).

For radii r � 2
√

k, all the calculations which have been
deduced after Eq. 32 are completely justified. Fortunately,
that corresponds to most values of r, since k � 1 (certainly,
the thermal evaporation process takes place at a considerably
slow rhythm).

Thus, the steps which we have followed in order to de-
termine λs(r) must be reviewed in order to obtain a valid ex-
pression for small radii. A suitable analytical solution to the
problem is far from being straightforward, but we are going
to analyse it a bit more of care in the following lines.

Firstly, the complete identity of T 0
0 in Eq. 2 must be used

instead of Eq. 32. Therefore, the expression for λin, instead
of the one specified in Eq. 54, according to 52 will be

λ̇in = e−φ
1
2r

(
1 − e−λ

(
1 − rλ′

))
. (62)
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From this, keeping the same radiation law of Eq. 39 and
the expression for λout of Eq. 51, it is not hard to follow that
the stability condition in Eq. 55 entails

eλs =
r2

4k

(
1 − e−λs

(
1 − rλ′s

))
. (63)

When λs � 1, Eq. 57 is recovered. As we had already
signalled, its resolution in the regions where the mentioned
limit ceases to be valid is far from being trivial. Nonetheless,
a possibility could consist in the application of an iterative
method. Instead of making eλs → 0, in the right side of the
equation we may use as a first approximation (well, actually
as a second approximation) the expression for λs obtained in
Eq. 58 (being its derivative λ′s = 2/r):

e∗λs ∼
r2

4k

(
1 −

4k
r2

(
1 − r

2
r

))
=

r2

4k
+ 1, (64)

where the asterisk (*) stands for “iterated”.
Thus,

λs∗ ∼ ln
(

r2

4k
+ 1

)
, (65)

which can be assimilated to Eq. 58 for large values, but that
has the advantage of accomplishing the necessary condition
λ(r, t) > 0 ∀r, t.

In the next subsection, we are not going to have longer
into account the corrections for small radii, but we will fo-
cus onto temporal variations of λ(r, t) when approaching the
stability phase described by 58 (only valid for r > 2

√
k).

4.4.3 Small variations of λ(r,t) before the stability phase

According to Eqs. 44, 51 and 54 we have

λ̇(r, t) = e−φ
(

1
2r
−

2keλ

r3

)
. (66)

In the stability phase, defined by Eq. 55, the functional
dependence of λ is given by Eq. 57. Now we proceed to study
small variations of λ(r, t) before it acquires the stability value,
that is,

λ(r, t) = λs(r) − λ∆(r, t) . (67)

Notice that, by definition, λ̇s(r) = 0. This fact implies

λ̇(r, t) = −λ̇∆(r, t) . (68)

Furthermore, because of the inequality λ∆ � λ, we will con-
sider φ ' φs. Therefore, from Eqs. 57, 66, 67 and 68 we
obtain the expression

λ̇∆ = −
e−φs

2r

(
1 − e−λ∆

)
. (69)

In the limit λ∆ � 1 we can approximate 1 − e−λ∆ ∼ λ∆,
so that

λ̇∆ = −
e−φs

2r
λ∆ + O

(
λ2

∆

)
, (70)

whose integration over t leads to the following solution

λ∆ = A(r) exp
(
−

e−φs

2r
t
)

= A(r) exp
(
−e

−1
8k (R2−r2) t

2r

)
, (71)

where A(r) is an arbitrary positive defined function depending
on the initial conditions of the problem.

Therefore, according to the hypothesis of the model, λ(r,t)
asymptotically approaches its stability value:

λ(r, t) = − ln(4k) + ln
(
r2

)
− A(r) exp

(
−e

−1
8k (R2−r2) t

2r

)
. (72)

4.5 Some considerations about the mass and the edge of
the collapsing body

From Eq. 19 the infalling velocity ṙin of any collapsing shell
in the present model is given by

ṙin ≡
dr
dt

=
dr
dτ

dτ
dt

=
u1

in

u0 = −e−φe−λ. (73)

According to Eqs. 42 and 73 and with account of the con-
tour condition φ(R, t) = 0 ∀t, the motion of the edge R of a
collapsing body of mass M must be given by the expression

Ṙ = −

(
1 −

2M
R

)
, (74)

whose solution for large enough times is

R = 2M + ∆R0e
−t
2M (75)

with ∆R0 being a constant depending on the initial conditions
of the collapse.

An important detail must be pointed out. In the previous
equations we have dealt with the total mass M of the collaps-
ing body as if it was a constant. It may be actually considered
constant in practice for long periods of time but, in fact, it
slowly diminishes due to the emission of thermal radiation,
unless the surrounding background presents a greater CMB
temperature or news amounts of infalling mass are provided.
Thus, having into account that RS = 2M, from Eq. 39,

Ṁ =
−k
R2

S

=
−k

4M2 . (76)

Therefore,

M(t) =

(
M3

0 −
3kt
4

) 1
3

, (77)

from which the evaporation time tv may be isolated:

tv =
4M3

0

3k
. (78)
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5 Discussion

The model of gravitational collapse presented in this paper
contains an important number of simplifications which have
allowed us to find analytical solutions of the coefficients of
the metric all over the space at any given time (for small ra-
dius values, we have seen that some special considerations
must be taken into account, but no essential contradiction is
risen). The results obtained are self-consistent and do not lead
to the formation of an event horizon, what would provide a
simpler interpretation of the information loss problem: if no
event horizon is formed, thermal radiation should be directly
emitted by the collapsing body. Hence, there is no need for
postulating a special mechanism of radiation such the one that
S. Hawking proposed ad hoc for black holes. Let us now anal-
yse more carefully the hypothesis that we have made, their
implications and the consequences that would have been de-
rived from making slightly different considerations.

Our starting point has been a time-dependent spherically
symmetric metric. It is a well-known fact that spherical sym-
metry is an almost universal approximate characteristic of any
celestial body. Two kind of phenomena certainly prevents it
from being perfect: the first one is rotation (which implies
the modification from spherical surfaces to ellipsoidal ones),
while the second one consists of the local inhomogeneities of
any real system.

Concerning rotation, it constitutes per se a very interest-
ing but mathematically complex problem. To deal properly
with a rotating process of gravitational collapse, a kind of
modified time dependent Kerr metric should be formulated
(in the same way that in this paper a kind of “time-dependent
Schwarzschild metric” has been proposed). From an intu-
itive point of view, however, one would expect that rotation
should lead to a genuinely slower collapsing process (due to
the “centrifugal” effect of angular momentum). Concerning
local inhomogeneities, a detailed study of the effect of small
perturbations on the metric could constitute another per se at-
tractive problem, but a priori it is not unreasonable to assume
that the emission of gravitational waves should tend to dimin-
ish these effects with time. This is a consequence of the “no
hair” theorem for black holes (even when we have found no
black hole in the mathematical development of this article).

About the temporal dependence of the metric coefficients,
it appears to be a strict logical requirement of the problem.
The displacement of the infalling matter along the collapsing
process must necessarily imply a temporal change in the met-
ric coefficients. In this sense, Schwarzschild metric -a good
solution for the stationary “punctual mass” problem- is not
the best choice for the question of collapse itself. In words
of J. A. Wheeler, “matter tells spacetime how to curve, and
curved spacetime tells matter how to move”. With our choice
of time-dependent metric, Kruskal-Szekeres coordinates are
not needed because the ordinary polar spherical coordinates
cover the entire spacetime manifold and the functions λ(r, t)

and ν(r, t) are analytic all over the space.

With respect to the choice of stress-momentum tensor,
its dust-like nature has been greatly aimed for the sake of
simplicity. As it has been already emphasized in the perti-
nent section, it seems paradoxal to consider simultaneously
the features of “dust-like” and “ultrarelativistic” because the
relation between pressure and energy density in an ultrarela-
tivistic gas turns out to be p = 1

3 ρ. Nonetheless, two subtle
points should be raised here: First of all, the concept of “ul-
trarelativistic dust” is not as strange as it appears to be, since a
privileged direction of motion has been considered (the ultra-
relativistic motion is highly “directed” towards purely radial
lines). Secondly, even if a relation of proportionality between
p and ρwould have been chosen, that would not have changed
the fact that all the other stress-momentum tensor components
could be expressed as a product of certain factors and T 0

0 . It
is straightforward to check that changing the aforementioned
factors would not alter drastically the subsequent mathemati-
cal development. As a matter of fact, the “linearity” between
T 1

0 and T 0
0 has allowed us to set a temporal dependence for λ.

In fact, as λ̇ turns out to be proportional to T 0
0 , the function λ

would only diverge if T 0
0 became infinite too. Nevertheless,

when λ increases T 0
0 does not diverge but tends to 1

8πr2 . In a
similar way, it may be proved that ν, or φ = − 1

2 (ν + λ), is also
a well-behaved function despite [reasonable] modifications in
the stress-momentum tensor.

Thus, whether we consider thermal radiation or not, the
study of the temporal evolution of a spherically symmetric
gravitational collapse in spherical polar coordinates does not
lead to incoherences, but constitutes a sensible alternative to
the usual black hole model. In addition, when thermal radi-
ation is considered, very high (but finite) values of λ are ob-
tained at any given r. Definitely, the radiation law proposed
in this paper has been deduced in a rather “heuristic” way
by assuming the extensibility of the calculations detailed in
Ref. [12] to a model of scarcely interacting collapsing shells.
Certainly, in the original paper by Vachaspati et al. the emis-
sion of radiation was calculated from a spherical Nambu-
Goto domain wall using the functional Schrödinger formal-
ism, with vacuum close to the wall. Therefore, our analytical
extension of their results to “inner shells” may be cautiously
considered, but it is a reasonable hypothesis, specially hav-
ing into account Birkhoff theorem (according to which, in a
system with spherical symmetry, the gravity in a surface is
basically determined by the mass of the matter contained in
the inner, not outer, shells). As a matter of fact, it is a much
more consistent assumption than some of those that may be
found in the published works, as the use of a strictu sensu
Hawking radiation in a process of gravitational collapse (as,
for instance, in Ref. [28]), as Hawking radiation implies (es-
sentialy, not just formally) a transition from vacuum, and in
truth a collapsing star is not void.

On the other hand, even if the genuine radiation law ap-
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peared to be completely different, it would still be true that an
asymptotic approach to a “stationary” phase (where the value
of λ would stop increasing) should happen. In fact, this phase
should be always reached just by assuming the reasonable hy-
pothesis that the outgoing flux of thermal radiation should not
diminish with time (the temperature of the collapsing body
should be expected to rise with the progression of collapse),
while the ingoing flux of collapsing matter should become
smaller as the spacetime deformation becomes larger.

In summary, even when several of the assumptions of the
model of gravitational collapse proposed in this paper may
be considered excessively “idealistic”, it provides an illustra-
tive description of how a time-dependent metric should be the
most logical choice for the study of gravitational collapse and
that the polar spherical coordinates of an asymptotic observer
(a scientific on the Earth, not an astronaut falling into a black
hole) are sufficient to cover the whole collapsing process.
The supposed completion of the collapsing process in a finite
proper time for a co-mobile observer would never be truly
accomplished due to the invariance of causal order for any
relativistic system (in a finite and lesser proper time, the co-
mobile observer would be fully evaporated by the emission
of thermal radiation). The astronomic objects already identi-
fied as “black holes” could equally correspond to “asymptot-
ically collapsing bodies”. Empirically, few differences would
be expected. From a theoretical point of view, the latter ones
may be obtained in a very natural way from the Einstein field
equations and avoid many of the paradoxes and illogical as-
pects of the former ones. Thus, according to Occam’s razor,
asymptotic collapse should be preferred to black holes.
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