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and the Newtonian Laminar Current of a Liquid
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This work presents a two-dimensional and three-dimensional geometrical research of

a ray system. We consider trajectories of motion of the particles having a half-integer

spin. Interpretation of Pauli Principle showing distribution of electrons on power levels

of the atom is given herein. The number of the electron shells in our model of the

atom doesn’t exceed 8. We give a geometric interpretation of the main, azimuthally,

magnetic and spin numbers in the form of angles and distances. We show forth that the

hyperbolic dependence of energy on the main quantum number n of the hydrogen atom

(En ∼ –1/n2) known from experimental spectral studies, Bohr’s theory and Quantum

Mechanics can also be obtained from our geometrical formulation of Pauli Principle.

Also, in the framework of research of the suggested ray model, the step structure of the

layers at a laminar current of a liquid is deduced.
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Introduction

Descriptive geometric models are used for the evident de-

scription of various phenomena, including quantum phenom-

ena [1].

In works [2, 3], we already introduced a geometric model

on the plane consisting of systems of paraxial rays describing

distribution of light in lasers, turbulent and laminar flows of

a liquid on pipes, and also finding an electron in the infinite

deep potential. In work [3] we noted that the aforementioned

model can be used for a descriptive interpretation of moving

particles with the integer or half-integer spin.

In the works [3, 4] it was devoted to study the integer ray

system (see [3]) by such means that possible to describe mov-

ing particles having the integer spin. However, even in the

works [2, 5] we actually investigated a systems of ray trajec-

tories which can be characterized as a half-integer ray sys-

tem [3] by means of which it is possible to describe moving

particles having a half-integer spin.

We aim, in the present work, to study a half-integer ray

system, two-dimensional and three-dimensional geometric

models of motion of the particles having a half-integer spin.

A geometric interpretation of Pauli Principle showing dis-

tribution of electrons on energy levels of the atom (such as

those described in the physics textbooks [6, 7]) is suggested

herein.

The geometric interpretation of the main, azimuthally,

magnetic and spin numbers is given in the present work in

the form of small angles and distances.

Also, we show a possibility of the existence of the final

number of electron shells in the elements of the Mendeleev

Periodic System of Chemical Elements. The shells and sub-

shells of the atoms are interpreted as a system of the wave

trajectories consisting of direct inclined pieces.

Geometric interpretations of the hydrogen atom and its

power levels respectively are separately given in the work

as well.

So forth, on the basis of the research of the half-integer

ray model, we introduce the step structure of layers in a lam-

inar current of a liquid (such a liquid is described in most

textbooks, see [8]).∗

∗The laminary liquid current was first described long time ago by New-

ton. The Netwon theory was rechecked many times (see [8]).
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Numerical calculations, presented in the present work, as

well as those published in [3], were represented by means of

three-dimensional tables created in Excel.

For the convenience of readers, reference drawings taken

physics textbooks are given in Appendix, while the research

part of our publication contains only originally calculated

drawings and tables.

1 Half-integer system of eight groups of rays

1.1 Two-dimensional projection of Gaussian (paraxial)

rays

In the work [3], we briefly described a paraxial binary (shar-

ing in two) flat system of trajectories. This system consists of

groups of rays, in which the rays are inclined under p angles,

small to an axis, multiple to the angle γ:

p =

(

i +
1

2

)

γ, i = 0,±1,±2, . . . (1)

We called this system of rays: “(i + 1/2)γ-system” or half-

integer ray system [3]. We will describe this system in more

detail in Fig. 1.

This binary system of rays consists of eight groups of the

rays and their links. The rays and links of each of these

groups aren’t imposed on the rays of other groups, but can

cross them.

Branching points of the rays will be spaced from a sym-

metry axis on small distances of q, multiple to 1
2

k length:

q =
jk

2
, j = 0,±1,±2, . . . (2)

Further, we more precisely will refer to “(i + 1/2)γ-system”

as “
[

p = (i + 1/2)γ, q = jk/2
]

-system”.

In this work, as well as in the previous works [2–5] we

assume that the rays extend along the branching links; there-

fore the number of the rays N can be summarized. We also

assume that K is a number of the links generally N > K.

In Fig. 1 (a-d, f-i) eight groups of rays of the aforemen-

tioned
[

p = (i + 1/2)γ, q = jk/2
]

-system are shown: K′′,

L′′, M′′, N′′, O′′, P′′, Q′′, R′′.

This system is placed on a rectangular coordinate grid.

The size of a cell of a grid has height of 1
2

k and length of L,

L ≫ 1
2

k, L≫ 1
2

jk.

Groups in Fig. 1 (a-d) and in Fig. 1 (f-i) are shifted from

each other down on the 1
2

k distance. Groups in Fig. 1 (f-i) are

shifted concerning groups in Fig. 1 (a-d) on distance of L.

In Fig. 1 (e) and Fig. 1 (j) the image of groups of the rays

K′′, L′′, M′′, N′′ and O′′, P′′, Q′′, R′′ respectively, are com-

bined altogether. In Fig. 1 (k) all eight groups of rays are

combined together.

1.2 Three-dimensional projection of Gaussian (para-

xial) rays

In the work [3] we considered the three-dimensional image

of a binary paraxial system of rays in the form of a nonlinear

arithmetic parallelepiped: In a nonlinear arithmetic paral-

lelepiped all numbers are located in the rectangular planes

of identical sizes, and these planes are located layer-by-layer

one under another since parallelepiped top.

In this case, the nonlinear arithmetic parallelepiped [3]

has a NL height, a length of D = 1
2

km′ + 1 and a width Γ =

γm + 1, where L, k are distances, while γ is a small angle

in the two-dimensional binary ray system (Fig. 1) and at the

same time a small distance in a three-dimensional nonlinear

parallelepiped [3], and N, m, m′ are natural numbers or zero.

After a large number of passes (iterations) of N→ ∞ and

NL ≫ L, we write down the rule of consecutive filling with

numbers of a nonlinear arithmetic parallelepiped as well as

in [3]:

A = B +C, (3)

where

A =





















N

p

q





















, B =





















N − 1

p − 1

q + p − 1





















, C =





















N − 1

p + 1

q + p + 1





















.

For creation of various types [3] of nonlinear arithmetic paral-

lelepipeds it is necessary to set various additional boundaries

and initial conditions.

1.3 Periodic and acyclic trajectories

The system
[

p = (i + 1/2)γ, q = jk/2
]

of rays generally

consists of periodic and acyclic trajectories. In Fig. 2, one

of eight groups of the rays of this system are shown for the

case of D = 4k, Γ = 7γ.

We will set the first boundary conditions [3] for number

A in formula (3) for nonzero N-layers:

A = 0 (4)

for q = | qmax|, where qmax =
1
2

D.

Further we will set the first boundary conditions for num-

bers B and C in formula (3) for nonzero N-layers:

B = 0, C = 0 (5)

for | q + p − 1 | > qmax and | q + p + 1 | > qmax rectively.

We now set the initial conditions [3] for the numbers B

and C in formula (3) for the sequence of numbers q of a zero

layer (N = 0):
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p

q





















= 1 (6)

for |q| 6 qmax and




















0

p
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= 0 (7)

for other q.
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Fig. 1: Periodic trajectories. Eight groups of rays: K′′, L′′, M′′, N′′, O′′, P′′, Q′′, R′′of the
[

p = (i + 1/2) γ, q = jk/2
]

system. k/2, and L are

the minimum distances on a vertical and a horizontal respectively. N is the number of pass of rays (the number of iteration). Dash-dotted

lines with arrows showed axes of a coordinate grid in which trajectories are placed.
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Fig. 2: Periodic and acyclic trajectories. One of eight groups of rays

(K′ group) of the
[

p = (i + 1/2) γ, q = jk/2
]

system is shown here.

Figures about the shown links illustrate the number of the rays of N

and the summation process of number of the rays extending along

the number of the links K for the first five passes (N = 0 − 4).

In Fig. 3, calculation formulas (given in MS Excel) of a

nonlinear arithmetic parallelepiped (Figs. 1, 2) for D = 4k,

Γ = 7γ case for zero, the first and second passes of the ray

system, i.e. N = 0, 1, 2. The calculation was made according

to the rule (3) of the consecutive filling with the numbers of

an arithmetic rectangle taking into account the boundary (4,

5) and the initial (6, 7) conditions. Three rectangles in Fig. 3

are the layers of a nonlinear arithmetic parallelepiped.

Results of numerical calculation for the first five passes of

rays, i.e. N = 0 − 5 are given in Fig. 4. Five rectangles are

layers of a nonlinear arithmetic parallelepiped.

Results of numerical calculations for 32 pass of rays, i.e.

for N = 32 (a) are given in Fig. 5. The envelopes of distribu-

tion of number of rays of K(q) on the section (b) and K ′(p)

at the angle (c) are provided.

1.4 Periodic trajectories and step layers in the laminar

current of a liquid

In a specific case, the [p= (i+ 1/2)γ, q= jk/2] system of rays

consists only of periodic trajectories. Fig. 6 shows one of the

eight groups of rays of this system for the case, where D= 4k,

Γ= 3γ.

In this case, we need to further set special initial and

threshold conditions to create the appropriate nonlinear arith-

metic parallelepiped [3].

Let’s consider here a simple and illustrative (as compared

to the description given in [3]) way (an Excel algorithm) of

setting special initial and threshold conditions for the paral-

lelepiped that describes the system consisting only of periodic

trajectories.

Let’s set the second threshold conditions for A, B, and C

in formula (3) for nonzero N-layers:

A = 0, (8)

if B= 0 and C = 0, and

B= 0 and C = 0, (9)

if A= 0.

Let’s set additional initial conditions for B and C for a

zero layer (N= 0):

B= 0 and C = 0, (10)

if A = 0.

The offered way (the algorithm) can be easily implement-

ed in numerical calculations in Excel.

At first, we completely fill with units a numerical rect-

angle of the zero layer (N= 0) according to formula (6) and

formula (7).

Then we fill with numbers a numerical rectangle of the

first layer (N= 1) according to formulas (3 to 5). Some zeroes

appear in the first layer.

Then we delete numbers (units) from the cells of the zero-

layer rectangle which don’t influence cells of the first-layer

rectangle.

Then we delete numbers from the cells of the first-layer

rectangle which don’t depend on the cells of the zero-layer

rectangle. We have some new zeroes in the first layer again.

Then again we delete numbers (units) from the cells of

the zero-layer rectangle which don’t influence the cells of the

first-layer rectangle.

And so we repeat this process several times. As a result,

we still have cells filled with meaningful numbers which in-

fluence other cells, and the cells which depend on other cells.

The remained cells describe the [p= (i+ 1/2)γ, q= jk/2] sys-

tem consisting only of periodic trajectories.

[p= (i+ 1/2)γ, q= jk/2] is the system of rays consisting

only of periodic trajectories as shown in Fig. 7. The results of

calculation of a nonlinear arithmetic parallelepiped (Figs. 1

and 6) are for D= 4k, Γ= 3γ for the zero, first, and second

passes of the ray system, i.e. (N= 0, 1, 2). The calculation

was made according to the rule (3) of consecutive filling with

numbers of an arithmetic rectangle taking into account the

first and the second threshold (4 and 5; 8 and 9) and initial

(6, 7, and 10) conditions, including the algorithm (8 to 10).

The three rectangles shown in Fig. 7 are the layers of a non-

linear arithmetic parallelepiped.

Fig. 8 shows the images of layers of a nonlinear arith-

metic parallelepiped and a numerical example of calculation

of the [p= (i+ 1/2)γ, q= jk/2] system of periodic trajecto-

ries (Fig. 7) for D= 4k, Γ= 3γ for zero and the subsequent

four passes of rays, i.e. for N= 0− 4.

Fig. 9 shows numerical calculations and graphics made in

Excel. Numerical calculation for the 32nd pass of rays, i.e.

for N= 32, is given in (a). It also shows the envelopes of

distribution of the number of rays of N(q) on the section (b)

andN ′(p) at the angle (c) for D= 4k, Γ= 3γ.
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Fig. 3: Calculation of the filling with the numbers of a nonlinear arithmetic parallelepiped for D = 4k case in Excel. The
[

p = (i + 1/2) γ, q = jk/2
]

system of 8 groups of rays of periodic and acyclic trajectories; the first three pass through the rays. Each

of the eight groups is marked by an own color.
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Fig. 4: Results of numerical calculation in Excel for the first five passes of rays (iterations). Arrows showed dependent cells. Each of eight

groups K′, L′, M′, N′, O′, P′, Q′, R′ of the
[

p = (i + 1/2) γ, q = jk/2
]

system of periodic and acyclic trajectories. Each of the eight

groups is marked by an own color.
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Fig. 5: Results of the numerical calculations for 32 pass of rays, i.e. for N = 32 for periodic and acyclic trajectories of the considered
[

p = (i + 1/2) γ, q = jk/2
]

system (a); each of the eight groups of the system is marked by an own color; a thick framework in the central

part is noted the system of periodic trajectories. The envelopes of distribution of the number of the rays of K(q) on the section (b) and

K ′(p) at the angle (c) are given. We note that for this case, as show our calculations, the form of envelope (b, c) practically doesn’t change

approximately after the 15th pass.

Fig. 6: Periodic trajectories. It shows one of eight groups of rays (K′′ group) of the [p= (i+ 1/2)γ, q= jk/2] system.

Fig. 7: Calculation of filling with numbers of a nonlinear arithmetic parallelepiped for D= 4k in Excel, and the [p= (i+ 1/2)γ, q= jk/2]

system of eight groups of rays of periodic trajectories — the first three passes of rays. Each of the eight groups is marked in a separate

color.

A. V. Yurkin. On the Geometric Interpretation of Pauli Principle, and Its Sequels 155



Volume 12 (2016) PROGRESS IN PHYSICS Issue 3 (April–July)

Fig. 8: Results of numerical calculation in Excel for the first five passes of rays (iterations). The arrows point to dependent cells. Each of

the eight groups — K′′, L′′, M′′, N′′, O′′, P′′, Q′′, and R′′ — of the [p= (i+ 1/2)γ, q= jk/2] system of periodic trajectories is marked in

a separate color.

Fig. 9: Results of numerical calculations for the 32nd pass of rays, i.e. for N= 32, for periodic trajectories of the [p= (i+ 1/2)γ, q= jk/2]

system (a). Each of the eight groups of the system is marked in separate color. It also shows the envelopes of distribution of number N of

rays of N(q) on the section (b) and N ′(p) at the angle (c). Note, according to our calculations, in this case, there is virtually no change in

the form of the envelope, (b) and (c), approximately after the 15th pass.
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Fig. 10: Periodic (wavy) trajectories. It shows one of the eight groups of rays (K′′ group) of the [p= (i+ 1/2)γ, q= jk/2] system. The

group contains 35 links within one pass of N. Crests and troughs of the “waves” are located (attached) between the horizontals marked in

dark color. These horizontals have thickness of 0, 5k and are located at identical distance of 2k from each other.

Fig. 10, similar to Figs. 1 and 6, shows one of the eight

groups of rays of the [p= (i+ 1/2)γ, q= jk/2] system of rays

of periodic trajectories for D= 22k, Γ= 9γ.

In Fig. 10, some of wavy geometric trajectories for the

considered [p= (i+ 1/2)γ, q= jk/2] system of rays are shown

as heavy lines. Wavy trajectories consist of the links inclined

at small angles of p= (i+ 1/2)γ. The D size of the binary ray

system can accommodate one “wave” or packages of “waves”

of different length.

Let’s denote the length of wavy trajectories by λn. With

increasing D this λn is growing discretely:

λn = 2 (2n − 1) L, (11)

where n = 1, 2, . . .

Let’s denote the height of this “wave” by νn. The νn height

is proportional to the squared λn length:

νn =

(

n2 − n + 1
2

)

k
∼ λ2

n . (12)

Wavy trajectories in Fig. 10 can settle down in any part of the

coordinate grid between horizontals within D.

Fig. 11, similar to Fig. 9, shows numerical calculations

and graphs made in Excel. Numerical calculation for the

128th pass of rays, i.e. for N= 128, is given in (a). There are

also envelopes of distribution of number N of rays of N(q)

on the section (b) and N ′(p) at the angle (c) given for the
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Fig. 11: Results of numerical calculations for the 128th pass of rays, i.e., N= 128, for eight periodic trajectories of the [p= (i+ 1/2)γ,

q= jk/2] system. Thirty five cells (corresponding to 35 rays within one pass in Fig. 10) of one of the eight groups of the system (K′′ group)

are highlighted with the darker color and heavy external borders of the cells (a). The figure also shows the envelopes of distribution of

number N of rays of N(q) on the section (b) andN ′(p) at the angle (c). Note, according to our calculations, in this case, there is virtually

no change in the form of the envelopes, (b) and (c), approximately after the 70th pass.
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[p= (i+ 1/2)γ, q= jk/2] system for all the eight groups for

D= 22k, Γ= 9γ.

The darker cells with heavy external borders shown in

Fig. 11 correspond to one of the eight groups of the system

(K′′ group) shown in Fig. 10.

Forms of the envelopes of distribution of the number of

rays for the half-integer system are similar to the forms of

the envelopes for the integer system described in [3]. The

form of the envelope N(q) in Fig. 11(b) on the section after

a large number of passes (Fig. 11b) is close to a parabola of

the fourth degree, and the form of the envelope N ′(p) at the

angle (Fig. 11c) is close to Gaussian distribution.

In [3] we noted that the form of the envelope N(q) on

the section for periodic trajectories corresponds to the form

of the envelopes of speed distribution at zero pass (N= 0) and

volume distribution after a large number of passes (N→∞)

of liquid in pipe section at laminar flow.

In Fig. 11(b) we can see that the envelope N(q) has a

stepped structure compared to the more smooth form of the

envelopeN ′(p) (Fig. 11c). Similar results were received from

numerical calculations for the integer system in [3], but the

half-integer model gives the more accurate image of the

“steps” compared to the integer model.

It can be assumed that such a stepped structure of the en-

velopeN(q) explains the existence of layers of final thickness

in liquid at laminar flow [8]. The speed and volume of liquid

do not change within each of these layers of a certain final

thickness.

2 Gaussian (paraxial) rays and Pauli Principle

2.1 Angles, distances and quantum system

Pauli Principle [6, 7] is correct for electrons and other parti-

cles with half-integer spin in a quantum system.

The condition of each electron in an atom is characterized
by four quantum numbers [6, 7]:

Principal n (n= 1, 2, 3, . . . )

Azimuthal l (l= 0, 1, 2, . . . , n− 1)

Magnetic ml (ml =− l, . . . ,−1, 0,+1, . . . ,+l)

Spin ms

(

ms = +
1
2
, − 1

2

)







































. (13)

Fig. 23 of the Appendix illustrates an example from [6] of

spatial quantization.

In monographs [6] and [7] the spin is also denoted by one

letter “s”:

ms = s = ±
1

2
. (13a)

According to Pauli Principle in a quantum system, for exam-

ple in an atom, there can’t be two electrons possessing iden-

tical quantum numbers: n, l, ml, ms. That is, two electrons

cannot be in the same state simultaneously. No more than

2n2 electrons can be in a state with n value in an atom [6, 7].

If

n = 1 there can be 2 electrons

n = 2 there can be 8 electrons

n = 3 there can be 18 electrons

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



































. (14)

Electrons having identical value of the quantum number n

form a shell. Shells consist of subshells, differing in value

of the quantum number l.

Shells are denoted by characters according to value of
n [6] and [7]:

Value of n 1 2 3 4 5 6 7 . . .

Designation of the shell K L M N O P Q . . .















. (15)

The electron which is in condition of l= 0 is called an s elec-

tron, l= 1 — p electron, l= 2 — d electron, l= 3 — f elec-

tron, followed by g, h, etc. alphabetically. The value of the

principal quantum number n is specified before the symbol of

the azimuthal quantum number l [7].

The division of possible conditions of an electron in an

atom into shells and subshells [7] is presented in the form of

a periodic table of conditions of an electron (see Fig. 24 of

the Appendix).

The process of building electron shells [7] (according to

Pauli Principle) of the first 36 elements of the Mendeleev Pe-

riodic System is presented in the form of a periodic table of

elements (see Fig. 25 of the Appendix).

Now let’s give an algorithm of creation of another specific

case of the binary [p= (i+ 1/2)γ, q= jk/2] system of rays of

periodic trajectories (considered in Section 1.4). We will be-

gin with the minimum quantity of rays consistently passing to

the more complicated configurations of the system. Thus, we

will compare the properties of our system to the data provided

in periodic tables in Figs. 24 and 25 of the Appendix.

We accept that, for our paraxial beams, all the angles of

γn, are small and multiple to the small angle of γ, and the

small distance of k is as follows:

k ≈ γL. (16)

For perfect correspondence between our geometric construc-
tions and expressions (13 and 13a), including the data pro-
vided in periodic tables in Figs. 24 and 25 of the Appendix,
we will enter the following assumptions:

Principal number n∼ γi∼ k j , (17)

(n= 1, 2, . . . ; i= 1, 2, . . . ; j= 1, 2, . . . ),

Azimuthal number l= n− 1∼ γ (n− 1) , (18)

Magnetic number ml =± l∼± k (n− 1) , (19)

Spin number s=±
1

2
∼±
γ

2
and ms =±

1

2
∼±

k

2
. (20)
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Fig. 12: K shell and the first parts of the periodic tables of (a) con-

ditions of an electron, and (b) elements.

Fig. 13: One of the eight groups of rays of the {p= (i+ 1/2)γ ,

q= jk/2} subsystem of periodic trajectories, and K shell. (a) and (b)

correspond to an atom of hydrogen, (c) — to an atom of helium.

n= 1∼ γ∼ k, l= 0, ml = 0, s=± 1/2∼± γ/2, ms =± 1/2∼±k/2.

Dash-dotted lines show axes from which sizes of angles and dis-

tances are counted.

Fig. 14: L shell and the second parts of the periodic tables of (a)

conditions of an electron, and (b) elements.

2.2 Periodic tables and geometrical constructions

2.2.1 Creation of the first shell of a quantum system

Fig. 12(a) shows the first (top) part of the periodic table of

conditions of an electron (Fig. 24 of the Appendix) describ-

ing the first shell of K. Fig. 12(b) shows the top part of the

periodic table of elements (Fig. 25 of the Appendix) describ-

ing the first two elements:

Fig. 13 shows one of the eight similar to (Figs. 1 and 6)

groups of rays of the [p= (i+ 1/2)γ, q= jk/2] system of pe-

riodic trajectories.

These trajectories correspond to the first electron shell of

K shown in Fig. 12(a).

To be specific, let’s call this system of periodic trajecto-

ries an {p= (i + 1/2)γ, q= jk/2} subsystem of periodic tra-

jectories of the [p= (i+ 1/2)γ, q= jk/2] system of periodic

trajectories.

Fig. 13 (a and b) shows two trajectories with opposite

(↑ symbol and ↓ symbol) orientation of a spin (one 1s elec-

tron). These trajectories correspond to an atom of hydrogen

with random orientation of the spin (Fig. 12b).

Fig. 13c shows a trajectory with anti-parallel (↑↓ symbol)

spin orientation (two 1s electrons). This trajectory corre-

sponds to an atom of helium (Fig. 12b).

The atom of helium is closing filling of the K shell.

2.2.2 Creation of the second shell of a quantum system

Fig. 14 (a) shows the second part of the periodic table of con-

ditions of an electron (Fig. 24 of the Appendix) describing the

second cover of L. Fig. 14 (b) shows the second part of the pe-

riodic table of elements (Fig. 25 of the Appendix) describing

the elements number three to ten.

Fig. 15 shows one of the eight similar to (Figs. 1 and 6)

groups of rays of the {p= (i+ 1/2)γ, q= jk/2} subsystem of

periodic trajectories. These trajectories correspond to the sec-

ond electron shell of L in Fig. 14 (a and b).

Fig. 15 (a) shows the L shell in the form of a periodic tra-

jectory consisting of the subshell L1 (one 1s electron) for

Li. The form of this shell is the same as in Fig. 13(a) or

in Fig. 13(b). The form of K shell for Li is the same as in

Fig. 13(c).

Fig. 15 (b, c, d, e, f, g, and h) shows the L shells (L1(2s)

and L2(2p) subshells) for Be, B, C, N, O, F, and Ne respec-

tively (Fig. 14a and b):

The K shell for these elements is the same as that for Li

(see Fig. 13c).

The K shell and L shell of the elements (Figs. 12 to 15)

can settle down in our geometric model similar to arrange-

ment of K′′ group of rays and L′′ group of rays respectively

(Figs. 1, 7 and 8).

The atom of Ne is closing filling the L shell.

2.2.3 Creation of the third and fourth shells of a quan-

tum system

Geometric schemes of Pauli Principle and elements of pe-

riodic table are further constructed in compliance with the

above algorithm. Therefore, we will confine ourselves to giv-

ing specific examples.

The second part of the periodic table of conditions of

an electron (Fig. 24 of the Appendix) describing the third M
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Fig. 15: One of the eight groups of rays of the {p= (i+ 1/2)γ,

q= jk/2} subsystem of periodic trajectories and consecutive pro-

cess of filling L shell according to Fig. 14 (a and b). Designations of

quantum numbers are similar to these in Fig. 13. Dash-dotted lines

show axes from which sizes of angles and distances are counted.

shell and the fourth N shell is given in Fig. 16(a). Eight ele-

ments of the third part of the periodic table of elements (see

Fig. 25 of the Appendix) are given in Fig. 14(b) on a selective

basis (see Fig. 16).

Shells of K and L (Fig. 16a) for all the elements shown in

Fig. 16(b) are the same as in Fig. 13(c) and Fig. 15(h).

The shell of M (3s subshell) for Na is the same as in

Fig. 13(a) or Fig. 13(b).

The subshells 3s and 3p of the shell of M for Ar and K

(Fig. 16b) has the same forms as shown in Fig. 15(h).

The shell of N (4s subshell) for K and Cr (Fig. 16b) is the

same as in Fig. 13(a), Fig. 13(b), and Fig. 15(a).

The shell of N (4s subshell) for Sc and Ni is the same as

Fig. 16: Shells of M and N, and the third parts of the periodic tables

of (a) conditions of an electron, and (b) eight elements.

in Fig. 13(c) and Fig. 15(b).

The shell of N (subshells 4s and 4p) for Ga is the same as

in Fig. 15(c).

The shell of N (subshells 4s and 4p) for Kr is the same as

in Fig. 15(h).

Fig. 17 (a, b, c, and d) shows the shell of M (subshells

3s, 3p, and 3d) for (Sc), (Cr), (Ni), (Ga and Kr) respectively

(Fig. 16a and b):

Three or four shells of K, L, M, and N (Figs. 13 to 17) for

the elements can settle down in our geometric model similar

to the arrangement of groups of rays of K′′, L′′, M′′, and N′′

in Figs. 1, 7 and 8.

The geometric schemes of Pauli Principle and elements of

the periodic table are also further created in compliance with

the above algorithm.

However, our geometric model similar to (Figs. 1 and 6)

of groups of rays of the {p= (i+ 1/2)γ, q= jk/2} subsystem

of periodic trajectories consists only of eight groups of rays.

Therefore, while remaining within the offered model, it is

possible to assume that the number of shells of an atom is

no more than eight either. If we continue increasing the num-

ber of ray groups to more than eight, the rays will overlap,

and the shells will merge.

Thus, if the number of shells does not exceed eight, the

total number of elements of the periodic system (14) cannot

exceed 128.

Deviations from the sequence of filling the periodic sys-

tem (e.g., for the elements such as K, etc.) (Fig. 16b) hypo-

thetically reduce (or increase) the total number of elements of

the periodic system.
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Fig. 17: One of the eight groups of rays of {p= (i+ 1/2)γ, q= jk/2}

subsystem of periodic trajectories and consecutive process of filling

M and N shells for eight elements according to Fig. 16 (a and b).

Designations of quantum numbers are similar to these in Figs. 13

and 15. Dash-dotted lines show axes from which sizes of angles and

distances are counted.

2.2.4 Pauli Principle and the geometric system of the hy-

drogen atom

Monographs on quantum mechanics [6] and [7] consider the

simplest quantum mechanical system of an atom of hydrogen

(Figs. 26 to 28 of the Appendix). Let’s make a review of this

example too.

Fig. 18 shows the fifth shell of O:

Fig. 18: Shell of O of the periodic table of conditions of an electron.

Fig. 19 shows one of the eight groups similar to (Figs. 1

and 6) of rays of the {p= (i+ 1/2)γ, q= jk/2} subsystem of

periodic trajectories. These trajectories correspond to the fifth

electron shell of O shown in Fig. 18. In this example, the O

shell is filled completely and contains five subshells.

The {p= (i+ 1/2)γ, q= jk/2} subsystem for an atom of

hydrogen can be constructed geometrically in accordance

with Pauli Principle and similar to the construction method

described in previous Sections.

The {p= (i+ 1/2)γ, q= jk/2} subsystem shown in Fig. 19

is in many respects similar to the [p= (i+ 1/2)γ, q= jk/2]

system in Fig. 10, but contains the smaller quantity of rays

and the smaller quantity of the wavy trajectories consisting of

these rays.

The wavy trajectories shown in Fig. 19 settle down in the

lower part of the coordinate grid and are “attached” to the

lower horizontal unlike the wavy trajectories in Fig. 10, which

can settle down in any part of the coordinate grid within D

size.

In principle, the creation of the O shell in Fig. 19 does not

differ from creation of other shells shown in Figs. 13, 15, 17.

Upon comparison of angles multiple p in Fig. 10 and mul-

tiple n in Fig. 19, it can be seen that the relationship between

these angles is as follows:

n ∼ |p| +
1

2
. (21)

In Fig. 19 we illustrated the allowed quantum transitions [6]

and [7]:

∆n = ±1 and ∆l = ±1 (22)

in the form of angles, but not distances as in Figs. 26 to 28

of the Appendix. However, considering ratios (16 to 20) for

small angles, sizes (22) can be illustrated (in principle) in the

form of distances as well, since:

∆n = ±1 ∼ ±γ ∼ ±k and ∆l = ±1 ∼ ±γ ∼ ±k . (23)
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Fig. 19: One of the eight groups of rays of the considered {p= (i+ 1/2)γ, q= jk/2} subsystem of periodic (wavy) trajectories. The shell

of O is completely filled according to Fig. 18. This group contains 15 links (K= 15) within one pass of N. Troughs of the “waves” are

located (“attached to”) only on the lower horizontal, while crests of the “waves” are located (“attached to”) on several higher horizontals.

The horizontals are marked in separate color. These horizontals have thickness of 0, 5k and are located at the increasing distance of 2kn

from each other from the bottom upwards. The designations of the quantum numbers are similar to these in Figs. 13 to 17. Dash-dotted

lines show axes from which sizes of angles and distances are counted. Quantum transitions ∆n=± 1 and ∆l=± 1 are shown in the form

of angles between dash-dotted lines. On the right, location of five subshells is indicated by curly braces. Figures put next to links (for

N= 0− 3) show the number of rays of N and the process of summation of rays spreading along the links.

Fig. 20 gives images of layers of a nonlinear arithmetic paral-

lelepiped and a numerical example of calculation of O shell

of the {p= (i+ 1/2)γ, q= jk/2} subsystem of periodic trajec-

tories (Fig. 19) for zero and the subsequent three passes of

rays, i.e. for N= 0− 4. Four rectangles shown in Fig. 20 are

the layers of the nonlinear arithmetic parallelepiped.

n and l values are given on the right in Fig. 20 with taking

into account the ratios (18 and 21).

The calculation was made according to the rule (3) of con-

secutive filling of an arithmetic rectangle with numbers tak-

ing into account the first and the second threshold (4 and 5;

8 and 9) and initial (6, 7, and 10) conditions, including the

algorithm (8 to 10).

Each of the four layers of the arithmetic parallelepiped

shown in Fig. 20 is similar to the layer represented in Fig. 11,

but there are differences as well. Therefore, it is necessary to

set the third threshold conditions. We took these conditions

for our example directly from Fig. 19. As this approach is

illustrative for us, the total number of rays is not that big. All

the wavy trajectories are “attached” to the lower horizontal.

The third threshold conditions can be set in other illustrative

ways, e.g., by means of special nomograms.

Thus, we made calculations in Excel according to expres-

sion (3). The appropriate formulas for the respective p and q

can be taken from Fig. 3 or Fig. 7, for example.

Fig. 21 shows results of numerical calculations of layers

of the nonlinear arithmetic parallelepiped for O shell (Fig. 20)

in Excel are given in the form of envelopes of distribution of

the ray number. In a, c, e, g, and i (the left column), you can

see the envelopes of distribution of the ray number at the an-
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Fig. 20: One of the eight groups of rays of the {p= (i+ 1/2)γ, q= jk/2} subsystem of periodic (wavy) trajectories. The O shell is completely

filled according to Figs. 18 and 19. Numerical calculation in Excel was made for the first four passes of rays (iterations). Arrows show

dependent cells. Fifteen highlighted cells within one pass of N (one layer of a parallelepiped) correspond to fifteen links (K= 15) within

one pass of N shown in Fig. 19. Figures in the highlighted cells correspond to the number of rays of N extending along the links of K.
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Fig. 21: This Figure shows the results of numerical calculations (Fig. 20) for N= 0, 32, 128, 129 (a to h) of the completely filled O shell for

the {p= (i+ 1/2)γ, q= jk/2} subsystem of periodic (wavy) trajectories. The envelopes of distribution of the ray number at the angle K(p)

are given in the left column. The envelopes of distribution of the ray number at the angle K(n) are given in the right column. The shared

envelopes for N= 128, 129 are given in (i and j). Graphs (e to j) are shown in a normalized form. Note, according to our calculations, in

this case, there is virtually no change in the form of the envelope approximately after the 70th pass.
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Fig. 22: This Figure shows results of numerical calculations of the completely filled 8th shell of R for the {p= (i+ 1/2)γ, q= jk/2}

subsystem of periodic (wavy) trajectories. In (a) and (b), you can see the envelopes of distribution of the ray number at the angle K(n)

for passes N= 131, 132. Results of joint calculations for passes N= 131 and N= 132 in the form of the envelope are given in (c) and

these in a form of histograms are given in (d) and (e). Envelopes (a to c) and histograms (d and e) are presented in the normalized form.

Note, according to our calculations, in this case, there is virtually no change in the form of envelopes approximately after the 100th pass

(N= 100). The histogram in (e) is similar to Fig. 28 of the Appendix.

gle K(p). In b, d, f, h, and j (the right column), you can see

the envelopes of distribution of the ray number at the angle

K(n) (taking into account expression (21). The results of nu-

merical calculation for zero pass of rays, i.e. for N= 0, are

given in a and b; for N= 3 — in c and d; for N= 128 — in e

and f; and for N= 129 — in g and h.

Shared graphs of K(p) and K(n) for N = 128 and N =

129 are given in i and j, namely:

K(p)N= 128, N= 129 =
1

2

[

K(p)N= 128 +K(p)
N= 129

]

(24)

and

K(n)N= 128, N= 129 =
1

2

[

K(n)N= 128 +K(n)N= 129

]

, (25)

whereK(p) and K(n) are in the normalized form.

In this work, like in previous works [2] to [5], we assume

that the number of rays of N extending along the number of

multiplicative links of K is proportionate to energy. For neg-

ative energy of an electron — E extending along these rays,
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we have the following:

|En| ∼ K (n) , (26)

|En| ∼ K(n)N, N+1. (27)

If we consider Fig. 21 (f and h) and especially Fig. 21(j),

we will see that the form of the envelope after a large num-

ber of passes resembles more of a hyperbole of the following

type:

En ∼ −1/n2. (28)

This ratio obtained from our geometric constructions corre-

sponds to experimental results in spectroscopy and theoretical

results of Bohr’s theory and quantum mechanics [6] and [7].

Fig. 22 shows the results (similar to those that were shown

in Fig. 21 f, h, and j) of numerical calculations of layers of

the nonlinear arithmetic parallelepiped for the eighth R shell

in the form of envelopes of distribution of the ray number.

In (a) and (b), you can see the envelopes of distribution of

the ray number at the angle K(n) for passes of rays N= 131,

132. Results of joint calculations for passes of N= 131 and

N= 132 in the form of the envelope are given in (c), and these

in a form of histograms are given in (d) and (e).

If we consider Fig. 22 (a and b) and especially Fig. 22 (c

to e), we will see that the form of the envelope after a large

number of passes resembles more of a hyperbole (28).

Fig. 22 (e) similar to Fig. 22 (c and d) should be compared

to Fig. 28 of the Appendix.

Our numerical calculations show that with an increase in

the number of passes of N, and an increase in the number of

subshells of a shell and the main number n, the form of an

envelope, Fig. 21 (j) and Fig. 22 (c), increasingly resembles a

hyperbole of (28) type. If the number of subshells exceeds

eight (e.g., you can construct eleven), eight of eleven sub-

shells can be subsumed to subshells, while the rest three can

be subsumed to a continuous spectrum [6] and [7]. Such cre-

ation of a continuous spectrum does not contradict Pauli Prin-

ciple.

Conclusions

In our illustrative geometric researches, using just one basic

summation formula of A= B+C (3), Excel, and various ini-

tial and threshold conditions set, we have revealed a number

of new regularities like we did in previous works [3] and [4].

It appeared that quantum systems can be geometrically in-

terpreted by means of our model of a half-integer rays system

in an illustrative way.

We have described Pauli Principle, shells and subshells of

atoms of the periodic table. At the same time, the number of

shells and subshells in our model does not exceed eight, and

all the subshells starting with the ninth can be considered a

continuous spectrum.

By means of our model, it is possible to interpret the prin-

ciple, azimuthal, magnetic, and spin quantum numbers in the

form of angles and distances.

By means of our model, we have given a separate geo-

metric interpretation of an atom of hydrogen and its power

levels. We have interpreted transitions of an electron from

one level to another in the form of angles, but not distances

as it is commonly interpreted [6] and [7]. In this work, we

have also shown that the hyperbolic dependence of energy of

a hydrogen atom of En ∼−1/n2 (28) known from experimen-

tal spectral studies, Bohr’s theory and quantum mechanics,

can be also obtained from our geometric constructions on the

basis of Pauli Principle.

Based on the research of a half-integer ray model, we have

illustrated the stepped structure of layers at laminar flow of

liquid [8]. The similar stepped structure was observed in re-

search of integer ray model made by us in [3], but the half-

integer model gives the more accurate image of “steps” in

comparison with our integer model.
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Appendix: reference tables

Fig. 23: Illustration of the principle of spatial quantization. Possible

values of projections of the orbital momentum to the direction of a

magnetic field for l= 3 and l= 2. (Fig. 231 from [6]).

Fig. 24: Division of possible conditions of an electron in an atom

into shells and subshells. (Table 36.1 from [7]).

Fig. 25: The process of building electron shells of the first 36 ele-

ments of the periodic system. (Table 37.1 from [7]).
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Appendix: reference tables (continue)

Fig. 26: Orbits of a hydrogen atom in Bohr’s theory. The radial ar-

rows located between circles show transitions of an electron from

one level to another. (Fig. 228 from [6]).

Fig. 27: Scheme of levels of energy of a hydrogen atom. The ver-

tical arrows located between horizontal lines show transitions of an

electron from one level to another. (Fig. 229 from [6]).

Fig. 28: Scheme of levels of energy of a hydrogen atom. The in-

clined lines located between horizontal lines show transitions of an

electron from one level to another according to the rule of selection

∆l=± 1. It means that only transitions upon which l changes by unit

are possible. (Fig. 28.1 from [7]).
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