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Advection diffusion equation with constant and variable coefficient has a wide range

of practical, industrial and environmental applications. Due to the importance of at-

mospheric dispersion equation, we present this study which deals analytically with the

atmospheric dispersion equation. The present model is proposed to estimate the con-

centration of an air pollutant in an urban area. The model is based on using Differential

Transform Method (DTM) to solve the atmospheric dispersion equation. The model

assumes 1) the pollutant is released from an elevated continuous point source; 2) there

exist an elevated inversion layer; 3) the dispersion coefficients are parameterized as a

function of downwind distance in a power law dependence. To test the model accuracy,

the model predictions have been applied and compared with the experimental data for

the Inshas research reactor (Egypt). The model predictions are shown to be in good

agreement with the measurement of field data.

1 Introduction

The advection-diffusion equation of air pollution in the atmo-

sphere is essentially a statement of conservation of the sus-

pended material. The concentration of turbulent fluxes are

assumed to be proportional to the mean concentration gradi-

ent which is known as Fick-theory.

This assumption, combined with the continuity equation,

leads to the steady-state advection-diffusion equation, Black-

adar [1]
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where C(x, y, z) denotes the concentration, kx, ky, kz are the

cartesian components of eddy diffusivity and u, v, w are the

cartesian components of wind speed, where x, y are cartesian

horizontal distance and z is the height above ground surface.

In order to solve (1) we included the following assump-

tions: the pollutants are inert and have no additional sinks or

sources downwind from the point source, the vertical w and

lateral v components of the mean flow are assumed to be zero,

kx is neglected, ky and kz are functions of downwind distance.

The mean horizontal flow is incompressible and horizontally

homogeneous (steady state). Then, (1) is simplified to be:
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Both z and y are confined in the range 0 < z < h and 0 <

y < Ly where h is the height of the planetary boundary layer

(PBL) and Ly is a cross-wind distance faraway from the sour-

ce, while the downwind distance x > 0. The mathematical

description of the dispersion problem (2) is completed by the

following boundary conditions:

u C(x, y, z) = Q δ(z) δ(y) , at x = 0 (3)

C(x, y, z) = 0 , at x, y, z→ ∞ (4)

∂C

∂y
= 0 , at y = 0, Ly (5)

C(x, y, z) = R , at y = 0 (6)

∂C

∂z
= 0 , at z = h (7)

kz

∂C

∂z
= −vd C , at z = 0 (8)

where vd is the deposition velocity, Q is the emission rate and

R(x, z) is a variable.

The modeling of air pollution dispersion, including dry

deposition, was first attempted by modifying the Gaussian

plume equation (Chamberlain [2] and Overcamp [3]) and in-

cluding operative algorithm, as in the surface depletion mod-

els (Horst [4,5]). Ermak [6] found also an analytical solution

but with diffusivity and wind as functions of down distance

only and Berkowicz and Prahm [7] gave a numerical solution

for the dependent time two dimensional equation including

dry deposition. The solutions proposed by Smith [8] and Rao

[9] also retained the framework of invariant wind speed and

eddies with height (as the Gaussian approach). Tsuang [10]

proposed a Gaussian model where the dispersion coefficients

(the so-said “sigma”) are functions of time and height.

Recent analytical solutions of the advection diffusion eq-

uation with dry deposition at the ground have utilized height-

dependent wind speed and eddy diffusivities (Horst and Slinn

[4], Koch [11], Chrysikopoulos et al. [12] and Tirbassi [13]).

However, these solutions are restricted to the specific case in

which the source is located at the ground level and/or with re-

strictions to the wind speed and eddy diffusivity vertical pro-
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files. It is to be noted that the previous works, Moreira et

al. [14, 15] assumed boundary conditions only of the second

type (zero flux to the ground) and also Tirabassi et al. [16],

but Tirabassi et al. [17] assumed boundary conditions of the

the third kind (with deposition to the ground), which encom-

pass the contaminant deposition speed and eddy, where eddy

diffusivity profiles are functions in the z direction only.

The differential transform method is used in many fields

and many mathematical physical problems such as a system

of differential equations [18], a class of time dependent partial

differential equations (PDEs) [19], wave, Laplace and heat

equations [20], the fractional diffusion equations [21], two-

dimensional transient heat flow [22], nonlinear partial dif-

ferential equations [23], diffusion-convection equation [24],

convection-dispersion problem [25], linear transport equation

[26], two-dimension transient atmospheric pollutant disper-

sion [27], Helmholtz equation [28].

The aim of this work is to find the analytical solution de-

veloped for concentration of the pollutant released from an

elevated source in an inversion layer by using the differential

transform method (DTM) [29, 30] with different formulas of

dispersion parameters (σ).

The paper is organized as follows. In section 2, we intro-

duce the analytical solution using the differential transform

method. In section 3, we apply both the standard method,

power law, Briggs formula and other sigma to specific prob-

lems in analytical solution.

The validity of the present model is examined by compar-

ing its results with the data for Cs137 which were performed

around the Atomic Energy Authority (AEA) First Research

Reactor in Egypt. The results are tabulated with the observed

data and clarified in the conclusion.

2 Analytical solution

Applying DTM for (2) with respect to x, we get:
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+ (i + 1)(i + 2) kzUi+2(x, y) (9)

where the inverse of the differential transform is defined as:

C(x, y, y, z) =
∑
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ziUi(x, y) ; (10)

from boundary condition (8), we obtain:
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By using separation of variables method for (14), we get:
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The solution of (14) becomes:

U0(x, y) = c1 e
∫

(A−B)dx cos λy (17)

where λ = nπ/ly.

For practical application of solutions, we need to find the

dispersion parameters σy, σz and the wind speed u. The dis-

persion parameters are an important function of downwind

distance and stability. The empirical σy, σz curves suggested

by Pasquill [31], Gifford [32] and Turner [33] have often been

used and are based on the stability. There are different meth-

ods to find these parameters.

The meteorological conditions defining Pasquill turbulen-

ce types are

A- Extremely unstable conditions

B- Moderately unstable conditions

C- Slightly unstable conditions

D- Neutral conditions

E- Slightly stable conditions

F- Moderately stable conditions .

Here, we used four methods for estimating dispersion pa-

rameters:

1. Standard method: This method is based on a single at-

mospheric stability. Analytical expressions based on

Pasquill-Gifford (P-G) curves used for the dispersion

estimates have the forms [34]: .

σy =
rx

(1 + x/a)p , (18)

σz =
sx

(1 + x/a)q , (19)

where r, s, a, p and q are constants depending on the

atmospheric stability. Table 1 shows the values of these

constants for different stability classes [35].
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Table 1: Meteorological data of the eight convective test runs [35]

Pasquil classes A B C D E F

σθ 25◦ 20◦ 15◦ 10◦ 5◦ 2.5◦

a(km) 0.927 0.370 0.283 0.707 1.07 1.17

s(m/km) 102.0 96.2 72.2 47.5 33.5 22.0

q -1.918 -0.101 0.102 0.465 0.624 0.70

r(m/km) 250 202 134 78.7 56.6 37.0

p 0.189 0.162 0.134 0.135 0.137 0.134

2. Power law of sigma: In this methodσz andσy can be cal-

culated from:

σy = cxm (20)

σz = dxn . (21)

The parameters c, d,m, n in Smith’s (1968) [8] are esti-

mated in table 2.

Table 2: Meteorological data of the eight convective test runs [36]

Pasquil classes c m d n

A-B 1.46 0.71 0.01 1.54

C 1.52 0.69 0.04 1.17

D 1.36 0.67 0.09 0.95

E-F 0.79 0.70 0.40 0.67

3. Briggs formulas: Formulas had been recommended by

Briggs 1973 [37]; they should be used in place of the

formulas in Table 3 to estimate σz and σy.

Table 3: Meteorological data of the eight convective test runs [35,37]

stability σy σz

class

A-B 0.32x (1 + 0.0004x)−
1
2 0.24x (1 + 0.001x)

1
2

C 0.22x (1 + 0.0004x)−
1
2 20x

D 0.16x (1 + 0.0004x)−
1
2 0.14x (1 + 0.0003x)−

1
2

E-F 0.11x (1 + 0.0004x)−
1
2 0.08x (1 + 0.00015x)−

1
2

4. Hosker expression: Hosker 1973 [38] well-known ana-

lytical ”best-fit” expression as:

σz =

(

αxβ

1 + γxδ

)

F(z0, x) (22)

where z0 is the roughness length, α, β, γ and δ are con-

stants depending on the stability classes in Table 4 and

F(z0, x) is defined as:

F(z0, x) = ln

(

mxg
[

1 +
(

lx j
)

−1
])

, z0 > 0.1m (23)

where m, g, l, j are constants depend on the value of the

roughness length, where our application z0 (roughness

length) = 0.5, so l = 18.6, m = 5.16, j = 0.225 and

g = 0.098.

Table 4: The constant values of the roughness length, α, β, γ and

δ [38]

Pasquil classes α β γ δ

A 0.112 1.06 5.0 × 10−4 0.815

B 0.130 0.950 6.52 × 10−4 0.750

C 0.112 0.920 9.05 × 10−4 0.718

D 0.098 0.889 1.35 × 10−3 0.688

E 0.0609 0.895 1.96 × 10−3 0.684

F 0.0638 0.783 1.36 × 10−3 0.672

On the other hand, Briggs 1973 [37] proposed a series

of algebraic interpolation formulae based on a wide va-

riety of data sources containing surface and elevated

sources with a range of initial buoyancies:

σy = b1(1 + b2x)b3 . (24)

The coefficient values b1, b2 and b3 were derived for

both rural and urban terrain and are given in Table 5

[37].

Table 5: The coefficient values b1, b2 and b3 for equation (24) [37]

PG stability b1 b2 b3

A 0.20 0 –

B 0.12 0 –

C 0.08 0.0002 -0.5

D 0.06 0.0015 -0.5

E 0.03 0.0003 -1

F 0.016 0.0003 -1

3 Results and discussion

Meteorological data provided by Inshas meteorological tower

for four months at a smooth flat site (Inshas area, Egypt) for

the year (2006) are given in Table 6, [39]. Air samples were

collected from 98 m to 186 m around the first and second re-

search reactor in AEA, Egypt. The study area is flat, dom-

inated by sand soil with poor vegetation cover. The study

area was divided into 16 sectors (with 22.5o width for each

sector), beginning from the north direction. Aerosols were

collected at a height of 0.7 m above the ground of 10.3 cm di-

ameter filter paper with a desired collection efficiency (3.4%)
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Table 6: Meteorological Data of the nine Convective test runs at Inshas Site

No. Stability Down Mixing Emission rate Wind Initial wind

distance height Q (Bq) speed velocity

x (m) (m) (m/s) u0(m/s)

1 A 98 600.85 0.555429 4 3.95

2 A 100 801.13 0.567 4 3.7

3 B 106 973.0 0.023143 6 5.1

4 C 106 888.0 0.254577 4 3.95

5 A 135 921.0 0.266143 4 3.1

6 D 136 443.0 0.277714 4 3.95

7 E 154 1271.0 0.543857 4 3.95

8 C 165 1842.0 0.563529 4 3.1

9 A 186 1642 0.558321 4 3.95

Table 7: Observed and calculated concentrations (Bq/m3) for nine experiments

Run no. Observed Calculated concentrations

Con. [39] Standard Power law Briggs Hosker

Model of sigma formulas expression

1 0.002 0.0140799 0.0189143 0.013563 0.01379

2 0.004 0.0153392 0.011873 0.01475 0.014014

3 0.005 0.00448 0.00507518 0.004391 0.04422

4 0.007 0.0062904 0.013799 0.00624019 0.00625

5 0.009 0.00859466 0.00870 0.0081565 0.0081117

6 0.007 0.0070497 0.01596 0.0068969 0.00674

7 0.007 0.0137824 0.015015 0.019399 0.013155

8 0.019 0.0177893 0.019194 0.0171672 0.017135

9 0.006 0.0141444 0.01312 0.0132115 0.01311

using a high volume air sampler with 220 V / 50 Hz bias. The

air sampler had an air flow rate of approximately 0.7 m3/min

(25 ft3/min). Sample collective time was 30 min with an air

volume of 21.2 m3 (750 ft3). This air volume was corrected

to standard conditions (25 Co and 1013 mb) [39].

Table 7 indicates comparison between experimental data

of the nine convective test runs at Inshas site and our calcula-

tion of concentration by Briggs formula, power law variation,

standard method and Hosker’s expression, which shows that

the power law formula for the dispersion coefficients achieves

the best agreement with the experimental results.

3.1 Statistical evaluation

Statistical analysis of the predictions and observations is cen-

tral to the model performance evaluation. The predicted and

the corresponding observed concentrations are treated as pairs

in this evaluation.

The statistical index FB indicates weather the predicted

quantities underestimate or overestimate the observed ones.

The statistical index NMSE represents the quadratic error of

the predicted quantities in relation to the observed ones. Best

results are indicated by values nearest zero in NMSE, FB,

nearest 1 in MG,VG and FAC2 and are factor of two if are

greater than 1 and less than 2. The statistical measures chosen

to compare performances of the models described here [40]:

(i) Fractional bias FB is defined as:

FB =
C̄o − C̄p

0.5(C̄o + C̄p)

where the subscripts o and p refer to the observed and pre-

dicted values, respectively, and the overbars indicate mean

values. A good model should have FB value close to zero.

(ii) Normalized mean square error (NMSE) is defined as:

NMSE =
(Co −Cp)2

C̄oC̄p

.

This provides information on the overall deviations between

predicted and observed concentrations. It is a dimensionless

statistic and its value should be as small as possible for a good

model.

(iii) The geometric mean bias is defined as:

MG = exp
(

ln Co − ln Cp

)

.

(iv) The geometric variance is defined as:

VG = exp
(

(ln Co − ln Cp)2
)

.
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Table 8: Comparison between the Standard method, Power law of sigma, Briggs formulas and Hosker expression in terms of FB, FAC2,

NMSE, MG and VG

Standard method Power law of sigma Briggs formulas Hosker expression

FB -0.42543 -0.65368 -0.445 -0.69646

FAC2 1.540371 1.971068 1.572352 2.068563

NMSE 0.189565 0.478407 0.208342 0.551991

MG 0.605381 0.46362 0.601944 0.490099

VG 1.286468 1.805587 1.293883 1.662927

(v) Fraction within a factor of two (FAC2) is given by:

0.5 6 (Cp/Co) 6 2 .

Statistical evaluation of the models results are given in

Table 8, which compares the Standard method, Power law of

sigma, Briggs formulas and Hosker expression in terms of

FB, FAC2, NMSE, MG and VG.

4 Conclusion

In the present study, an analytical treatment for the dispersion

of air pollutant released from point source is formulated. A

mathematical solution has been obtained for the steady-state

form of the three-dimensional advection-diffusion equation

using the Differential Transform Method. Different realis-

tic formulae for the dispersion coefficients as a function of

downwind distance have been adopted (namely: Briggs for-

mula, power law variation, standard method and Hosker’s ex-

pression). In order to validate and verify our model, and for

the sake of comparison, we apply our obtained mathematical

formulae on the experimental data performed for the release

from the first Research Reactor in Egypt. The comparison

shows that the power law formula for the dispersion coeffi-

cients achieves the best agreement with the experimental re-

sults. Finally, the good agreement between the power law

variation of the dispersion parameter and the experiential data

gives us confidence to extend this work for the case of differ-

ent sources types, namely, line, area and volume sources. In

addition, it is also our intention to perform the mathematical

analysis of this method for the case of high penetrated in-

version layer (i.e. different stability conditions that permits

the pollutant penetration and diffusion through the mixing

height).
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