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The Oppenheimer-Snyder metric for a collapsing dust ball has a well defined equilib-
rium state when the time coordinate goes to plus infinity. The entire ball is contained
within the gravitational radius r0, but half of its content lies within a thin shell between
r0 and 0.94r0. This state has the acausal property that no light ray escapes from it,
but if one boundary condition at the surface, which Oppenheimer and Snyder imposed
without justification, is removed, then all points in the interior remain in causal contact
by null geodesics with the exterior. This modification causes the half shell’s interior
radius to increase to 0.97r0. Together with the results of a previous article on the den-
sity inside a spherosymmetric neutron star, the present results indicate that, in contrast
with the universal attraction of Newtonian gravity, General Relativity gives gravitational
repulsion at high density.

1 Introduction

The modern concept of black hole originates with Chandra-
sekhar’s [1] discovery of an upper bound for the mass of a
Newtonian white dwarf; it has been claimed (see, for exam-
ple [2] section 11.3) that the replacement of Newtonian gravi-
tation by General Relativity (GR) makes no significant differ-
ence. Using GR, Oppenheimer and Volkoff [3] (OV) found a
similar result for neutron stars, the upper bound being some-
what lower than in the white-dwarf case. The OV article, in
its footnote 10, did indicate that the GR field equations allow
for a stable solution having zero density at the origin in place
of the maximum density there of the Newtonian solution, but
gave no further attention to this possibility; there seems to
have been no serious attempt to return to it since, though a
well known text ( [5] after equation 23.20) has described it
as “unphysical”. We showed [4] that solutions of the OV-
footnote variety may easily be obtained. The only new fea-
ture of such solutions which could conceivably qualify for the
“unphysical” label is that the metric has a simple-pole singu-
larity at the origin. This singularity is curiously similar to that
now very widely used to describe a black hole, but with the
crucial difference that its residue is positive, so that instead of
infinite density there we find zero density.

In our previous article we advocated a field, rather than
the geometric interpretation of GR, constructing a field en-
ergy tensor to explain why the stellar material is concentrated
in a spherical shell and not at the origin. Here we shall use
an exclusively geometric description, but will nevetheless be
able to demonstrate, by studying the particle geodesics inside
the shell, that the picture which emerges almost demands that
we accept there is gravitational repulsion in the interior of the
shell. We conclude that the black hole is a Newtonian con-
cept, superseded by GR.

Our geometric investigation is based on what seems to be
the only time-dependent study of a collapsar, namely that of

Oppenheimer and Snyder [6] (OS). In an early stage of black-
hole theory this article’s conclusion was seriously misquoted
by Penrose [7] who stated:

“The general situation with regard to a spherically sym-
metrical body is well known [6]. For a sufficiently great mass,
there is no final equilibrium state (our emphasis). When suf-
ficient thermal energy has been radiated away, the body con-
tracts and continues to contract until a physical singularity is
encountered at r = 0.”

OS did not say anything resembling this assertion of Pen-
rose. Indeed we shall show below that the OS density distri-
bution approaches a stationary distribution, whose diameter
is twice the gravitational radius, as the time goes to plus in-
finity. It is true that OS also found that in this limit there
is a region inside the collapsar from which light may not be
emitted, but we shall show below that this is not a real prop-
erty of the model, and that it may be easily repaired so that
all points of the physical space, exterior and interior, remain
causally connected at all times. Nobody has demonstrated
that any real collapse situation leads to the “trapped surfaces”
of the Penrose article, and I would argue that such surfaces
would violate the kind of causality described in Weinberg’s
text ( [2] section 7.5). This conclusion was also stated re-
cently by Chafin [8].

2 The OS metric

OS used the comoving coordinates (τ,R, θ, φ) with the metric

ds2 = dτ2 −
8m3R

r
dR2 − r2

(
dθ2 + sin2 θdφ2

)
, (1)

r = 2m
(
R3/2 −

3τ
4m

)2/3

,

in the exterior region R > 1 and

ds2 = dτ2 −
r2

R2 dR2 − r2
(
dθ2 + sin2 θdφ2

)
, (2)
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r = 2mR
(
1 −

3τ
4m

)2/3

,

in the interior region 0 < R < 1. By the transformation

t =
4m
3

R3/2 −
2
3

√
r3

2m
− 2
√

2mr + 2m ln
√

r +
√

2m
√

r −
√

2m
, (3)

the exterior metric converts to the Schwarzschild form

ds2 =
r − 2m

r
dt2 −

r
r − 2m

dr2 − r2
(
dθ2 + sin2 θdφ2

)
. (4)

We note that, since R is a comoving coordinate, R =

const. is a freefall geodesic and in particular the surface r1(t),
that is R = 1, satisfies

t =
4m
3
−

2
3

√
r3

1

2m
− 2

√
2mr1 + 2m ln

√
r1 +

√
2m

√
r1 −

√
2m

, (5)

and also any such geodesic, for R > 1, has its speed v in-
creasing up to a maximum v = 2c/(3

√
3) and then decreasing

asymptotically to zero as r approaches 2m. This confirms
the OS statement [6] “. . . an external observer sees the star
asymptotically shrinking to its gravitational radius”.

For 0 < R < 1, OS identified an “internal time” t by
defining a cotime y as

t =
4m
3
−

4m
3

√
y3 − 4m

√
y + 2m ln

√
y + 1
√
y − 1

, (6)

and then putting

y =
r

2mR
+

R2 − 1
2

. (7)

This not only gives a continuous match for the internal and
external t at R = 1, but also the metric in 0 < R < 1 is

ds2 =
2mr2(y − 1)2

Ry3(r − 2mR3)
dt2 −

r
r − 2mR3 dr2 −

− r2
(
dθ2 + sin2 θdφ2

)
, (8)

which is continuous with (4) at R = 1.
From (6) and (7) we now see that the equilibrium state of

the OS model is given by

r = mR(3 − R2) (0 < R < 1) , (9)

which contradicts the conclusion stated by Penrose and
quoted in the previous section of this article. The density ρ is
obtained from the curvature tensor of (1)

ρ =
mR3

4πr3 , (10)

and since
√
−g =

r3

R
sin θ , (11)

it integrates over the volume of the collapsar to give∫
R<1

ρ
√
−g dR dθ dφ = m . (12)

In the remote past, when r ∼ yR, y → ∞, the dust particles
are distributed uniformly over the sphere’s interior, but as col-
lapse proceeds their trajectories, R = const, crowd near the
surface. This may be shown by considering that in the remote
past half of the particles are contained within a shell between
R = 2−1/3 = 0.7937 and R = 1, and that their final positions
are r = mR(3 − R2), so that they end up between r = 1.881m
and r = 2m.

3 A problem with causality

At no time does the entire content of the collapsar go inside
the sphere r = 2m, so Figure 1 of Penrose [7] is an incorrect
picture of the OS collapsar, as is the discussion about trapped
surfaces on which the figure is based. There is, however a
causal anomaly in the OS model, in that, for any R < 1, there
is a value of t beyond which no light signal emerges.

For the region R < 1 we introduce the coordinates
(x,R, θ, φ), where x = r/(2mR). The metric is

1
4m2 ds2 = xdx2 − x2dR2 − x2R2

(
dθ2 + sin2 θdφ2

)
. (13)

A radial light wave or radial null geodesic (RNG) satisfies

dR
dx

= −
1
√

x
, (14)

that is
R = 2

√
x(0) − 2

√
x = 2

√
x0 − 2

√
x . (15)

In order to reach the surface at R = 1 we need x(1) > 1 and
therefore x0 > 9/4, but from (7) we find that the minimum
value of x0 is 3/2, reached at cotime y = 1, that is when t is
plus infinity. It follows that, for y > 7/4, an RNG from the
origin cannot escape.

It is a simple matter to repair this flaw in the OS model;
we replace (7) by

y = 1 + x −
(R − 3)2

4
, (16)

so that all RNGs for y > 1 escape and causality is preserved.
I have established [9] that the metric tensor with these coor-
dinates is again continuous at R = 1. It differs from (8) in
that the tensor component grt is not zero in R < 1, but only
at R = 1. It was the unjustified imposition of the condition
grt = 0 which led OS to claim that the connection (7) between
the (x,R) and the (t, r) coordinates is unique. Our amendment
of the OS metric leads to a more concentrated shell, because
the equilibrium state is now specified by

r =
mR(3 − R)2

2
, (17)

which, putting R = 2−1/3, leaves half of the original dust mat-
ter in a shell between r = 1.932m and r = 2m.
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4 Gravity becomes repulsive at high densities

We have all believed since 1687 that gravity is universally at-
tractive, so it requires some effort to adjust to the idea that
gravity may repel; even the new mode of thought which came
with GR did not change the paradigm of attractive gravity. We
have attempted to show elsewhere [4] how a full appreciation
of the gravitational field may cause us to change our intuition.
However, for the present article we shall stay within the geo-
metric presentation of GR, merely pointing the way towards
an understanding of repulsive gravity.

We consider the motion of a foreign dust particle of small
mass which crashes radially into the surface R = 1 at time t,
that is at the point r = r1(t) given by (5), with a speed greater
than that at which the surface itself is moving. We ignore the
gravitational force exerted by this foreign particle, so it moves
along a radial geodesic of the metric (13). The coordinate R
is cyclic, so we have a conservation equation

x2 dR
ds

= −C , (C > 0) , (18)

and it then follows that
dR
dx

=
C

√
C2x + x3

. (19)

This equation, when integrated with initial conditions (x,R) =

(r1/2m, 1), leads to a relation between the final values x∞ and
R∞ at t equal to plus infinity

R∞ = 1 −
∫ r1/2m

x∞

C
√

C2x + x3
dx . (20)

Now substituting y = 1 in (16) provides a second such rela-
tion, so eliminating x∞ we obtain R∞ in terms of r1 and C.
This is not a difficult process numerically, but in the limiting
ultrarelativistic case C → ∞ – effectively a null geodesic – it
becomes especially simple

R∞ = 2 −
√

r1/(2m) , (r1 < 8m) . (21)

If r1 > 8m such a particle passes through the centre and exits
at the opposite end of the diameter. A particle which crashes
into the collapsar when the latter is close to its final state –
r1 close to 1 – does not penetrate it beyond the surface shell
described in the previous section.

As long as we stay within the constraints of the geometric
interpretation of GR, we are not able to draw inferences about
what causes such a dramatic deceleration; we could, for ex-
ample [10], continue to insist that it results from time dilation
of the metric. I suggest, however, that a return to the lan-
guage of field theory offers us, at the very least, an attractive
alternative; we may claim that the force of repulsive grav-
ity which decelerates the incident particle is the very same as
the one which compresses the particles of the collapsar into
a thin shell. In the context of a collapsar having a more re-
alistic equation of state we pursued this point of view in our
previous article [4].
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