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It is suggested in this article that part of the signal in the 1.3 mm range from Sagittarius
A* originates inside the central collapsar, rather than coming entirely from its accretion
disc. The suggestion has its origin in the discovery that the classic article of Oppen-
heimer and Snyder contains a basic error in its assertion that the light, from a collapsing
object lying entirely within its own photonsphere, is progressively cut off as the object
shrinks towards its gravitational radius, where a large part of the Oppenheimer-Snyder
collapsar’s material is concentrated. The signal from the collapsar has certain features
which may make it possible to distinguish its image from that of the accretion disc.

1 Introduction

At the centre of our galaxy, 8 kp distant from us, there is an
object named Sagittarius A* whose mass is 4.1 megasuns. It
is popularly classified as a black hole, with a spherical∗ region
of radius 1.2 × 107 km around it bounded by an “event hori-
zon”; according to black-hole theory no light from Sagittarius
A* can cross this horizon.

In two recent articles [1, 2] it was shown that there is a
solution of the field equations of General Relativity for such
a supermassive object, which has no singularity at r = 0,
and which allows light signals to cross the horizon. The latter
property of the solution was demonstrated for the case of rays
which are normal to the event horizon, and the present article
demonstrates that it may be extended to all orientations. In
addition we consider the range of angles for which light orig-
inating at the surface of such a collapsar crosses the photon-
sphere, at 1.5 times the gravitational radius, and consequently
may reach a terrestrial telescope. There is currently a project
called the Event-Horizon Telescope [3] (EHT) designed to
look at the signal from the neighbourhood of Sagittarius A*
in the 1.3 mm range.

Central to the widespread belief in the validity of black-
hole theory is the article of Oppenheimer and Snyder (OS)
[4]. This reported, without giving details, an investigation of
the light signal from a supermassive object, arriving at the
following conclusion

All energy from the surface of the star will be
reduced very much in escaping . . . by the gravi-
tational deflection of light which will prevent the
escape of radiation except through a cone about
the outward normal of progressively shrinking
aperture as the star contracts. The star thus tends
to close itself off from any communication with
a distant observer.

The property of the OS metric claimed by Penrose, which
he needed as a prerequisite for his singularity theorem [5],

∗For the purposes of this article we ignore its spin.

was the stronger one known as the trapped surface. The pub-
lications cited above show that neither of these properties in
fact holds for the OS metric.

In the following two sections we shall use precisely the
OS metric to show that the progressively shrinking aperture
of the emission cone has no effect on the size of the image of
the collapsing object, and only a marginal effect on its total
luminosity. This result leads us to suggest that the signal from
Sagittarius A* comes partly from the surface of the collapsar
itself, and not entirely from the accretion disc, as is assumed
in most current analyses. The accretion disc may well have
a substantially higher temperature than the collapsar, but that
is probably offset by the vastly greater area of the latter. Note
also that the millimetre range of wavelength investigated by
the EHT corresponds to the maximum of a Planck spectrum
of just a few degrees Kelvin; to support our analysis, the col-
lapsar must retain only the merest relic of its thermal energy.

The OS article reached another conclusion, stated in their
Abstract, namely

. . . an external observer sees the star asymptoti-
cally shrinking to its gravitational radius.

This result contradicts directly Penrose’s description of the
OS results and was verified by me in [1]. The point is that
OS showed that there is a common system of coordinates ap-
plicable to both the exterior and interior of the collapsar. My
article [1] demonstrated that the density distribution of the
OS “dust cloud” becomes concentrated near the surface as it
shrinks to the gravitational radius; no exotic process like the
modern black-hole one of “spaghettification” [6] occurs when
a notional spaceship crosses the event horizon. OS should be
considered responsible for the notion that further shrinkage
occurs within the gravitational radius only in so far as they
gave their article the misleading title “On continued gravita-
tional contraction”.

It should be noted that in the exterior, and hence in what
should now be recognized as the universal, time frame the
collapsar’s shrinkage to the gravitational radius takes an in-
finite lapse of time. We shall show in the following section
that in the limit there is an underlying infinite red shift, which
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causes not only the surface itself, but also all light signals ap-
proaching it, to be infinitely slowed down. This is the real
significance of the event horizon, but it is my contention that
a real collapsar, with an internal pressure resulting from the
intervention of forces other than gravitational, stops shrink-
ing before it reaches the gravitational radius. For example,
we have investigated [7] a collapsar whose equation of state
is an idealized form of neutron fluid∗, and for which, above
a certain mass, its maximum density lies between the event
horizon and the photonsphere.

2 The exterior light orbits

Darwin [9, 10] described the null geodesics of the Schwarz-
schild metric

ds2 =
r − 2m

r
dt2 − r

r − 2m
dr2 − r2dθ2 − r2 sin2 θ dϕ2, (1)

where 2m is the gravitational radius. He extended the stan-
dard theory of light deflection, his method being equivalent to
minimising the action integral for a light ray with small im-
pact parameter starting from infinity; for orbits in the plane
θ = π/2,

δ

∫
Ldϕ = 0, (2)

with the lagrangian

L =
[
r − 2m

r
t′2 − r

r − 2m
r′2 − r2

]1/2

, (3)

where a prime denotes differentiation with respect to ϕ. The
Lagrange equation for the cyclic coordinate t is[

d
dϕ
− L′

L

]
r − 2m

r
t′ = 0. (4)

The corresponding conservation integral for ϕ enables us to
put L′/L = 2r′/r, so we obtain

t′ =
r3

p(r − 2m)
, (5)

the constant p being the impact parameter

p = lim
r→∞

r2 dϕ
dt
. (6)

The ray orbit is then obtained by substituting for t′ and then
putting L = 0, that is

r′2 =
r4

p2 − r2 + 2mr . (7)

Darwin deduced that a ray with impact parameter p
greater than 3m

√
3 returns to r = ∞; the deflection angle may

∗This model is simply that of Oppenheimer and Volkoff [8] with a dif-
ferent boundary condition at the origin.

be many multiples of 2π as p approaches 3m
√

3, and in the
limiting case p = 3m

√
3 the ray circles indefinitely at r = 3m,

which is nowadays called the photonsphere. For p less than
this, the ray is captured, and it goes to what Darwin termed
the “barrier”, nowadays called the event horizon, at r = 2m.
He also repeated the point previously made by OS, that the
journey from r = 3m to r = 2m takes an infinite time. When
the collapse is incomplete, the surface being at r = r1 > 2m,
a ray arrives there making an angle with the normal of

ξ = tan−1

 r2
1

p2 − 1 +
2m
r1

−1/2 , (8)

and in the limiting case r1 = 2m this becomes

ξ = tan−1
( p
2m

)
. (9)

We may deduce directly the orbits of rays exiting from
the barrier; those falling within a cone of semiangle
tan−1(3

√
3/2) = 68.9 degrees go to our telescope at “infin-

ity”, forming an image of parallax 6m
√

3. Any collapsar with
2m < r1 < 3m has this same parallax, but at 3m the cone has
opened up fully to 90 degrees. A collapsar bigger than 3m
has a parallax bigger than 6m

√
3, while for much larger col-

lapsars, like white dwarfs of solar mass, light deflection is
negligible, and the parallax is then simply twice the surface
radius. In Figure 1 a number of rays have been plotted, leav-
ing various points in the surface, when r1 = 2.2m, and going
towards our telescope; we note that the rays going to the edge
of the image come from points on the “invisible face” of the
collapsar.

Fig. 1: The light rays issuing from the surface of a collapsar at 1.1
times the gravitational radius, collimated towards a distant telescope.
The outer rays are close to the edge of the image, which has a diame-
ter of 5.2 times the gravitational radius; these rays have their sources
on what, in the absence of gravitational lensing, would be the invis-
ible part of the surface. The unit of distance is the gravitational
radius.
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For Sagittarius A* the minimum parallax, according to
the above analysis, and with the distance of EHT from the
galactic centre equal to 2.4×1017 km, is 52 arc microseconds,
which exceeds the best available current value [3] by about 50
percent. The image profile, that is its intensity C(p) as p goes
from zero to 3m

√
3, is given by

C(p) =
∣∣∣∣∣ r1 sin ϕ0 cos ξ

p
dϕ0

dp

∣∣∣∣∣ , (10)

where ξ is given by (8), that is

cos ξ =

√
r3

1 − p2r1 + 2p2m

r3
1 + 2p2m

, (11)

and ϕ0 is the angle between the outward normal at the surface
and the ray’s final direction, that is

ϕ0 =

∫ ∞

r1

pdr√
r4 − p2r2 + 2mp2r

, (12)

leading to

dϕ0

dp
=

∫ ∞

r1

r4dr(
r4 − p2r2 + 2mp2r

)3/2 . (13)

Note that, for r1 ≫ 2m, ξ = ϕ0, p = r1 sin ϕ0, and C(p) =
1/r1 = const. with ϕ0 going from −π/2 to π/2, giving a uni-
form circular image of radius r1; for our case ϕ0 takes all real
values. In Figure 2 the image profile C(p) is plotted. The
edge of the image is at p = 3m

√
3 = 2.598 r0, where r0 is the

gravitational radius. Note that, though C(p) drops to zero at
p = 2.388r0, there is a bright fringe between that value and
p = 2.588 r0; though not shown in the Figure, there is a series
of narrower fringes between the latter value and the edge of
the image at p = 2.598 r0. The fringes result from light rays
circling close to the photonsphere before finally escaping to
reach the telescope, their minima occurring at p-values for
which ϕ0 are integer multiples of π.

A ray which leaves the surface in a direction falling out-
side the limiting cone, that is with an orbit described by p >
3m
√

3, turns round before reaching the photonsphere, and re-
turns to the barrier after an infinite time.

None of this accords with the OS description, in which
the cone closes down to zero at r = 2m.

3 The interior light orbits

According to the OS [4] model, the surface of the collapsar
completely contracts to the barrier only at t = ∞; in the words
of that article

. . . an external observer sees the star asymptoti-
cally shrinking to its gravitational radius.

Specifically r1(t) is given by

t = −2
3

√
r3

1

2m
− 2

√
2mr1 + 2m ln

√
r1 +

√
2m

√
r1 −

√
2m
. (14)

Fig. 2: The image profile C(p) formed by the rays in Figure 1. Again
the gravitational radius is the distance unit on the horizontal axis p,
and C(p) is normalized to C(0) = 1.

For r < r1 the OS metric is

ds2 =
r3

2mR3

(
dr
r
− dR

R

)2

− r2

R2 dR2 −

− r2dθ2 − r2 sin2 θ dϕ2 , (15)

where the coordinate R lies between 0 and 1, and is related
to t in a manner to be determined by matching conditions
imposed at the surface.

The interior null geodesics in the plane θ = π/2 are con-
structed from the Lagrangian

L =

 r3

2mR3

(
r′

r
− R′

R

)2

− r2

R2 R′2 − r2

1/2

. (16)

The Lagrange equations for r and R are, putting L′/L = 2r′/r
as in the exterior case,

2rr′′

R3 −
2r2R′′

R4 − 3r′2

R3 −
2rr′R′

R4 +
5r2R′2

R5 +

+
4mrR′2

R2 + 4mr = 0 (17)

and

2r2r′′

R4 − 2r3R′′

R5 − 3rr′2

R4 −
2r2r′R′

R5 +
5r3R′2

R6 +

+
4mr2R′′

R2 − 4mr2R′2

R3 = 0 . (18)

Combining these to eliminate r′′, we obtain

R′′ = R +
2R′2

R
, (19)

for which a sufficiently general solution, for 0 < R < 1, is

R = sin ϕ0 csc ϕ (ϕ0 < ϕ < π − ϕ0) . (20)
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Then, as in the exterior case, we obtain a first order equation
for r by substituting this in L and putting L = 0, namely

r′ =

√
2mr sin3 ϕ0

sin5 ϕ
− r cot ϕ , (21)

with the solution

r =
m sin ϕ0

2 sin ϕ
(A − sin ϕ0 cot ϕ)2. (22)

A ray which arrives at R = 1, that is ϕ = ϕ0, with r = r1 has
A = 2

√
r1/(2m) + cos ϕ0; the special case ϕ0 = 0 was given

in eq (14) of [1]. At this point the ray has gradient

r′ = csc ϕ0

√
2mr1 − r1 cot ϕ0 . (23)

4 Matching at the surface

OS [4] matched their metric with the exterior (1) by defining
the cotime y(r,R) related to t by

t
2m
= −2

3
y3/2 − 2

√
y + ln

√
y + 1
√
y − 1

; (24)

this they required to satisfy y(r1, 1) = r1/(2m). To match the
two metric tensors at R = 1 they then put

y =
r

2Rm
+

R2 − 1
2
. (25)

With the metrics matched at the surface, that means the
refractive indices are also matched, so the corresponding light
rays should join smoothly there. Eq (23) for the interior ray
gives, at r = r1,

r′2 + r2 − 2mr =
(
r1 csc ϕ0 −

√
2mr1 cot ϕ0

)2
, (26)

so the value

p =
r2

1 sin ϕ0

r1 −
√

2mr1 cos ϕ0
(27)

gives a smooth connection between the interior (23) and exte-
rior (7) rays at r = r1. Differentiating (24) and (25), we then
find that the values of t′ also match at r1, which confirms that
the light speed r′/t′ is continuous there.

It may now be seen that, as r1 approaches 2m, the speed
of light at the surface goes to zero, which generalizes the par-
ticular case treated in [1], where the light ray was normal to
the surface. Such behaviour may be understood as resulting
from the infinite “dust” density there (see below). This be-
haviour will be modified by the intervention of nongravita-
tional forces; in particular we have studied the effect of the
Fermi degeneracy pressure in a neutron star [7], for which
the density has a finite maximum well separated from both
the surface and r = 0. Thus, for a collapsar made of real stel-
lar matter, it makes sense to consider a state of equilibrium

whose radius exceeds the gravitational, and for which light
leaves the surface with a finite speed; this was the situation
depicted in Figure 1.

I add that the matching relation (25) is not unique, though
OS stated that it was. In my previous articles [1, 2] the alter-
native

y =
r

2Rm
− (1 − R)(5 − R)

4
(28)

was given. This is part of a wider family of matching rela-
tions, and, for this particular choice, has certain advantages
in respect of causality.

The infinite surface density of the OS final state may be
seen in their calculation of the scalar density ρ, namely

ρ =
3R3

8πr3 . (29)

Multiplying this by their three-volume element, we obtain

ρ
√−g dR dθ dϕ =

3R2 sin θ
8π

dR dθ dϕ , (30)

which, in terms of r, gives the density

ρ
√−g dr dθ dϕ =

3R2 sin θ
8π

(
∂R
∂r

)
t

dr dθ dϕ . (31)

The partial derivative is given, at cotime y = 1, by(
∂R
∂r

)
t
=

(
∂R
∂r

)
y

=
1

3m(1 − R2)
, (32)

giving infinite density at R = 1.
Actually we have found that the density in the shell just

inside r1 is very much reduced for a supermassive object like
Sagittarius A*, and I propose that the material there is an
electron gas with a nearly stationary nucleonic background∗

which should have broadly similar optical properties to both
the OS dust cloud and the neutron star. In these cases the light
speed will still be considerably reduced near the surface, but
will remain finite.

5 Discussion

The suggestion about the origin of the EHT image of Sagittar-
ius A*, namely that part of the light we receive comes from
the collapsar itself, has implications for the direction future
observations with the telescope should take. A central prob-
lem is to explain the present-day value of the parallax, which
is 37µas as opposed to the 52µas we obtained in Section 2. We
note that the size of this image is not at all well defined, be-
cause of the need to separate the signal from the background
noise of nearby objects; this is reflected by the wide error bar
in the above parallax. It should be noted also that the image
of the accretion disc has almost the same diameter as the one

∗This entails classifying Sagittarius A* as a supermassive white giant.
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described in Section 2 if the disc is inside the photonsphere,
and that its image is larger if it lies outside the photonsphere.

The fringes of the image, described in Section 2, do not
seem to have been noticed previously, though they are surely
present also in the image of the accretion disc. To distinguish
between the two images, arising, as they do, from two su-
perimposed sources of almost the same diameter, will require
further analysis along the lines of Section 2; the principal dif-
ference is the three-dimensional form of the collapsar, as op-
posed to the flat, effectively two-dimensional form of the disc.
Some progress, both in image enhancement and in theoretical
modelling, would help to clarify matters.

The classic article of Oppenheimer and Snyder [4], based
in turn on the equally classic one of Tolman [11], was essen-
tial for the construction of the matched orbits. In particular
these articles (see also [12]) enable us to identify the comov-
ing coordinate R used in Section 3. But the step required
to describe fully the orbits of particles of “dust”, that is the
stellar material, and of light rays near the surface, is the iden-
tification of the time coordinate t(r,R) made in our earlier ar-
ticle [1] and in Section 4 of this one.
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