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We modify the propagator of the quantum fields for the quarks and gluons. With that
we have finite results (without ultraviolet divergence) in the perturbation theory. Then
we search for a2 p2 → 0 and a2k2 → 0 with fixing the Lagrangian parameters Zi, there-
fore we can ignore our modification. We find the situation a2 p2 → 0 and a2k2 → 0
associates with the free particles situation g → 0 (g is the coupling constant) and the
situation a , 0 associates with the perturbation breaking. We try to give the modifi-
cation terms a2 p2/(1 + a2 p2) and a2k2/(1 + a2k2) physical aspects, for that we find the
corresponding terms in the Lagrangian. To do that we find the role of those terms in
the Feynman diagrams, in self energies, quarks gluons vertex, . . . We see we can relate
the propagator modification to fields dual behavior, pairing particle-antiparticle appears
as scalar particles with mass 1/a. For the quarks we can interrupt these particles as
pions with charges (−1, 0,+1). If we used the propagator modification for deriving the
quarks static potential U(r) of exchanged gluons and pions we find U(0) ∼ 1/a if we
compare this with the Coulomb potential we find the length a equivalent to the smallest
distance between the interacting quarks. We use the static potential in quarks plasma
study. We find the free and confinement quarks phases. We suggest a nuclear compres-
sion. We find there is a decrease in the global pressure due to the nuclear condensation.
We use this decrease in the Friedman equations solutions, we find we can control the
dark matter and dark energy, we can cancel them.

1 Quarks and gluons propagator modification

To remove the ultraviolet (UV) divergences in the quarks and
gluons perturbed interaction, we modify the propagator like:

∆
ab
µν(k

2) =
gµν δ

ab

k2 − iε

(
1 −

a2k2

1 + a2k2

)
for gluons (1.1)

S̄ i j(/p) =
−/pδi j

p2 − iε

(
1 −

a2 p2

1 + a2 p2

)
for quarks (1.2)

the indexes a and b are gluons indexes, i and j color indexes
and a is critical length, ~ = c = 1. We use this modification
in calculating the quarks self-energy for the perturbation in-
teraction with the gluons, then we renormalize the interaction
and search for the condition a2 p2 → 0 and a2k2 → 0. We
have

Fig. 1: The quarks self energy in strong interaction.
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using γµ(−/p − /̀)γµ = 2(−/p − /̀), it becomes
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Now we use the gluon modified propagator
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For massive quarks, the self-energy becomes:

iΣi j(/p) = g2
sC(R)δi j
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with N = γµ(−/p − /̀ + m)γµ, using the Feynman formula:

1
((p + `)2+m2) · (`2+m2

γ) · (1/a2 + `2)

=

∫
dF3

1[
((p + `)2+m2)x1 + (`2+m2

γ)x2 + (1/a2 + `2)x3

]3

with
∫

dF3 = 2
∫ 1

0 dx1dx2dx3 δ(x1 + x2 + x3 − 1) and setting
the transformation q = ` + x1 p with changing the integral to
be over q and making transformation to Euclidean space, the
self-energy becomes [2]
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The linear term in q integrates to zero, using q = ` + x1 p, N
is replaced with [2]
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the integral over q in Euclidean space becomes:
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The self-energy becomes
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We write

Σi j(/p) = C(R)δi j
g2

s

8π2

∫ 1

0
dx1

∫ 1−x1

0
dx2

−(1 − x1)/p − 2m[
a2 f + (1 − x1 − x2)

] (1.5)

with f = −x2
1 p2 + x1 p2 + x1m2 + x2m2

γ this is a finite result
(without divergences).

Now we renormalize the fermions propagator to give the
real states and let a → 0. The interacting quarks propagator
becomes [2]:

S (/p)−1 = /p + m − Σ(/p) . (1.6)

To renormalize the interacting field, we write it as

S (/p)−1 = /p + m − Σ(/p) = Z2/p + Zmm . (1.7)

The parameters Z2 and Zm are the renormalization parameters,
later we try to make them constants. For the interacting field
ψ we have:
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We can rewrite as
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and make m0 = Z−1
2 Zmm and ψ0=

√
Z2ψ with that we have

bare fields ψ0 that are like the free fields and like the classical
fields, so we can make them independent of the interaction, so
∂ψ0/∂p2 = ∂m0/∂p2 = 0 for a→ 0 and by that we renormal-
ize the interaction. We make ψ the interacting field with mass
m the physical mass, but we have to make < [Σ(−m)] = 0 in
(1.6) but with m2

γ < 0. From (1.5) and (1.7) we have
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]
and f = −x2

1 p2 + x1 p2 + x1m2
q + x2m2

γ.

By that we remove the self-energy of the interacting qu-
ark and make the mass variable. For easiness we ignore mq

and mγ so

Z2 = 1 + C(R)
αs

2π

∫ 1

0
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.

Now we fix Z2 = constant and search for the situations −a2 p2

→ 0 for timelike and a2 p2 → 0 for spacelike, we have

αs

(a2 p2)2

[
(a2 p2)2 ln

(
1 +

1
a2 p2

)
−

−a2 p2 + (2a2 p2 + 1) ln
(
a2 p2 + 1

) ]
= c .

For spacelike p2 > 0, we have Fig. 2. According to this figure,
we have a2 p2 = exp(−c/αs) → 0 when αs → 0 this is the
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Fig. 2: The behavior of the length a with fixing Z2.

decoupling; p2 � Λ2
QCD. It is the free quarks and gluons

situation; αs → 0 occurs at high energy for the free quarks
phase. Because ap → 0 so p � 1/a this gives r � a →
0, therefore the propagator modification is ignored. So the
behavior of the length a is like the behavior of the coupling
constant αs and the modification terms are removed ap � 1
at high energy (free quarks phase).

For the limited low energy we fix αs/a2 = constant×σ, σ
is string tension that appears in the low energy static potential
U(r) as we will see, for a→ 0 we have

Z2 = 1+C(R)
αs

4π

(
3
2
− ln

(
p2a2

)
+ O(p2a2)

)
→ 1,when a→ 0

Zm = 1 +C(R)
αs

π

(
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(
p2a2

)
+ O(p2a2)

)
→ 1,when a→ 0

We know the strong interaction coupling constant αs in-
creases extremely at low limited energy, therefore, according
to the figure, we can’t let a→ 0, so we assume when the per-
turbation breaks down the length a could not be removed and
takes non-zero value, let it be a0, so the propagator modifica-
tion takes place.

1.1 The confinement situation

According to Fig. 2 it is possible to have ap > 1 (the coupling
constant αs increases extremely at low energy), therefore p >
1/a → r < a which is the quarks confinement phase at low
energy.

To study the quarks confinement, we use the modified glu-
ons propagator in deriving the static potential of the quark-
quark gluons exchange. We define this potential in momen-
tum space using M matrix elements for quark-quark (glu-
ons exchange) interaction, with ω0 = k0 = 0 (like the Born
approximation to the scattering amplitude in non-relativistic

quantum mechanics [1])

iM = −iṼ(k)Jµ(p′2, p2)Jµ(p′1, p1)

with the transferred current Jµ(p′, p) = ū(p′)γµu(p) where
spinor states u(p) include the helicity states.

We find M matrix elements using the Feynman diagrams
for quark-quark gluons exchange using color representation
for one quark like

u(p)color⊗spinor =
1
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For distinguishable quarks (only one diagram), we have
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i
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with k = p′2 − p2 = p1 − p′1.
Using Gell-Mann matrices, we consider the matrices T a =

λa; λ1, . . . , λ8 as SU(3) generators, and using the modified
gluons propagator we have
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∑
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Therefore the M matrix elements become

M =
1
9

∑
a

∑
i j

(T a) j
i

2

g2
s ū(p′2)γµu(p2)

1
k2

(
1 −

a2k2

1 + a2k2

)
ū(p′1)γµu(p1) .

The Gell-Mann matrices with nonzero sum of the elements
are

λ1 =

0 1 0
1 0 0
0 0 0

 , λ4 =

0 0 1
0 0 0
1 0 0

 and λ6 =

0 0 0
0 0 1
0 1 0

 .
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So ∑
a

∑
i j

(T a) j
i

2

= 3 (2)2 = 12.

Therefore we have
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12g2

s

9
1
k2

(
1 −

a2k2

1 + a2k2

)
ū(p′2)γµu(p2)ū(p′1)γµu(p1) .

We have the potential Ṽ(k) in momentum space as we defined

iM = −iṼ(k)Jµ(p′2, p2)Jµ(p′1, p1)

= i
12g2

s

9
g2

s ū(p′2)γµu(p2)
1
k2

(
1 −

k2

k2 + 1/a2

)
ū(p′1)γµu(p1)

with the transferred currents Jµ(p′2, p2) = ū(p′2)γµu(p2) and
Jµ(p′1, p1) = ū(p′1)γµu(p1). So we have

Ṽ(k) = −
4g2

s

3
1
k2

(
1 −

k2

k2 + 1/a2

)
.

Making the Fourier transformation to the space XYZ, we have
the static potential U(x) (k0 = 0) like the electric potential [1]

U (x) =

∫
d3k

(2π)3 Ṽ(k) eik·x

= −
4g2

s

3

∫
d3k

(2π)3

1
k2

(
1 −

k2

k2 + 1/a2

)
eik·x

= −
4g2

s

3 × 4πr

(
1 − exp

(
−

r
a

))
with r =

√
x2 + y2 + z2 .

For low limited energy we have ap > 1 (Fig. 2) so r < a, the
static potential becomes

U (r) = −
4g2

s

3 × 4πr

[
1 − exp

(
−

r
a

)]
= −u0 + a1r − a2r2 + . . .

with

u0 =
4
3
g2

s

4πa
=

4αs

3a
,

a1 = σ =
g2

s

3 × 2πa2 =
2αs

3a2 ,

a2 =
4αs

3 × 6a3 .

To fix u0 = 4αs/3a we write it as

u0 =
4αs

3a
=

4αs

3a2 a = 2σa

fixing the string tension σ and the length a → a0 at low en-
ergy.

This potential appears at low limited energy and prevents
the quarks from spreading away, r < a so it holds the quarks
inside the hadrons. But starting from the high energies a →

0, although the quarks masses are small but they are created
only at high energies where they are free and by dropping the
energy the situation r < a appears, the length a would run and
becomes higher at low energies, so have −a2k2 > 1 for r < a
which is the confinement. The confinement (at low limited
energy) means when r → a the two interacting quarks kinetic
energy becomes zero (ignore the quark mass), therefore the
highest kinetic energy that the quark can get equals σa which
relates to the potential U(r) = −u0 + σr + . . . for r < a.

We can make U(r) the potential for all quarks in r < a
so σ →

∑
σ and consider r as average distance between the

interacting quarks, so the energy σa becomes the highest ki-
netic energy of all quarks. When r → a the potential becomes
U(0) = −u0 = −4αs/3a = −σa < 0 therefore the total quarks
energy becomes negative.

In this situation the free quarks disappear, they become
condensed in the hadrons. So the role of the potential is re-
ducing the number of free quarks. Therefore the potential
u0 = σa leads to decrease of the free quarks chemical poten-
tial µ0, and we have

µ0 → µ0 + U(r) = µ0 −
αs

r

(
1 − e−r/a

)
= µ(r)

≈ µ0 − u0 + σr for r < a

where we replaced 4αs/3 with αs. We renormalize this step
at high energy for the free quarks, quarks plasma.

2 The quarks field dual behavior

To have finite results in the perturbation interaction, we mod-
ified the propagator like

∆
ab
µν(k

2) =
gµνδ

ab

k2 − iε

(
1 −

a2k2

1 + a2k2

)
for gluons

S̄ i j(/p) =
−/pδi j

p2 − iε

(
1 −

a2 p2

1 + a2 p2

)
for quarks .

We saw we can ignore the modification terms a2 p2/(1+a2 p2)
and a2k2/(1 + a2k2) at high energy, but when the energy drops
down to limited energy, those terms take place, we can give
them a physical meaning, for that we search for the corre-
sponding terms in the Lagrangian.

To do this, we find the role of those terms in the Feynman
diagrams, in self energies, quarks-gluons vertex, . . . We find
that the terms a2 p2/(1 + a2 p2) and a2k2/(1 + a2k2) can be re-
lated to pairing quark-antiquark that appear as scalar particles
with mass 1/a and charges (−1, 0,+1) and we can interpret
these particles as pions.

That appears in the particles-antiparticles composition in
Feynman diagrams which mean for the fields, there is fields
dual behavior, free fields and composite fields, this behavior
leads to the possibility of separating the particles and possi-
bility for their composition, so the dual behavior of the fields
is elementary behavior. In general, for any particle A and its
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antiparticle A, in pertubation interaction, they pair and have a
scalar particle AA, this leads to reduce the currents (charges)
of particles and antiparticles.

That is, for each outcoming particle, in Feynman dia-
grams, there is incoming antiparticle with positive energy and
negative mass, depending on the coupling constant behavior
(this is at high energy for the electromagnetic interaction and
at low energy for the strong interaction, quarks and gluons).
Therefore reducing their interactions with the charges in a
way leads to finite results in the perturbation results.

Using the gluons modified propagator, the quark self-en-
ergy becomes (1.3)

iΣi j(/p) = 2g2
sC(R)δi j

∫
d4`

(2π)4

(−/p − /̀)
(p + `)2

1
`2

(
1 −

a2`2

1 + a2`2

)
.

We can separate it into two parts

1. Quark−gluon part:

iΣi j(/p) = 2g2
sC(R)δi j

∫
d4`

(2π)4

(−/p − /̀)
(p + `)2

1
`2 ;

2. pairing quarks part:

iΣi j(/p) = 2g2
sC(R)

∫
d4`

(2π)4

(−/p − /̀)δi j

(p + `)2

1
`2

(
−

a2`2

1 + a2`2

)
.

It appears that in the pairing part there is a scalar field ϕ prop-
agator:

1
i

1
`2 + 1/a2

which is real scalar particles field propagator with mass 1/a,
to preserve the charges, spin, . . ., this particle must be con-
densed of quark-antiquark |qq〉 (particle-antiparticle in gen-
eral) so we have new diagram (Fig. 3), we rewrite

Fig. 3: Representation the dual behavior, joined particle−antiparticle
with opposite momentum−energy.

iΣi j(/p) = 2(−gs)2C(R)
∫

d4`

(2π)4

(−/p − /̀)δi j

i(p + `)2

−i
(`)2 + 1/a2 .

Therefore we must add new interaction terms to the quarks
Lagrangian, the possible terms are:

∆L = −igϕqϕQ̄Q with gϕq = gs
√

2C(R)

or
∆L = gϕqϕQ̄γ5Q .

We expect the pairing particles-antiparticles preserve the fla-
vor symmetry, so the real scalar field ϕ becomes |qiq j〉. For
two flavors qi and q j we write the quarks field like Q =(
qi q j

)T
so

∆L = −igϕqϕ
aQ̄T a

2 Q or ∆L = gϕqϕ
aQ̄T a

2γ5Q .

The real scalar fields ϕa could interact with itself and have
real non-zero ground value υ then 〈ϕ〉 = υ so we can renor-
malize it like

ϕaT a
2 → ν − iνπaT a

2 + ...

then we have

∆L = −igϕqQ̄ (ν − iνπaT a
2 + ...) Q

= −igϕqνQ̄Q − gϕππQ̄Q + ... Chiral symmetry breaking

or

∆L = gϕqQ̄(ν− iνπaT a
2 + ...)γ5Q→ gπqQ̄γ5Q− igπqπQ̄γ5Q+ ...

Here the particles πaT a
2 → π = (π0, π−, π+) are the pions.

The unusual terms −igϕaνQ̄Q and gπqQ̄γ5Q are not hermitian
and violate the symmetries, so they let the quarks disappear,
damping at low energy r < a :

ei∆Et |Q〉 = e−i∆Lt |Q〉 = e−gϕqνq̄qt |Q〉

=
∑

n

e−gϕqν(q̄q)t |En〉 〈En |Q〉 → |0〉 〈0 |Q〉 .

En is the energy of the quarks in state |n〉 and eiĤt |Q〉 is the
eigenstate of the quarks field operator Q̂(t) in Heisenberg pic-
ture, Q̂(t) = eiĤtQ̂e−iĤt.

Fig. 4: The quarks interaction with pions as a result of dual behavior.

That damping in the states is because of the pairing quark-
antiquark at low energy a , 0, this pairing reduces the charges
(currents) of free quarks (Fig. 5). We can see that if we relate
the minus sign in −a2`2/(1 + a2`2) to the fermions propaga-
tor:

S (x − y) =

∫
d4 p

(2π)4

−/p
p2 eip(x−y) (propagator from y to x)

so

−S (x − y) = −

∫
d4 p

(2π)4

−/p
p2 eip(x−y) =

∫
d4 p

(2π)4

+/p
p2 eip(x−y)
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change p→ −p (propagator from x to y)

−S (x − y) =

∫
d4 p

(2π)4

−/p
p2 e−ip(x−y) =

∫
d4 p

(2π)4

−/p
p2 eip(y−x) .

So it is equivalent to invert the propagator y→x to x→y with
positive energy and negative mass. Therefore it reduces the
charges, currents, energies, . . . of the particles and antiparti-
cles, we have

Fig. 5: Omitting the distance x-y from the propagator.

(p + `) + (−p − `) = 0 and (−`) + (`) = 0

so incoming with p and outcoming with p, it is like to say
the particles jump from y to x, in other words the distance
y − x is removed from the interaction. We expect the fields
dual behavior takes place in negative potential. If there is
no negative potential the paired particles would not survive
(never condense). For the quarks, the case 0 < r < a must
associate with negative potential u and E + u < 0. Because
the behavior of the strong interaction coupling constant at low
energy αs is high, we expect negative potential at low energy
E + u < 0 (E > 0, u < 0), so the quarks condense.

Because of the dual behavior of the quarks field which
leads to quarks composite in scalar charged particles like the
pions (π−, π0, π+) and because of their quantized charges (−1,
0,+1) we expect the hadrons charges to be also quantized
(−Q,−Q+1, . . . 0,+1, . . . ,+Q) this quantization relates to the
dual behavior of the quarks field in different hadrons, pairing
quarks of different hadrons, so these condensed quarks; pions,
kaons, . . . are shared between the hadrons, so we put them to-
gether with the hadrons in groups, like the pions (−1, 0,+1)
which can be inserted in SU(2) generators which can repre-
sent the proton-neutron pairing. Therefore the protons and
neutrons Lagrangian contains the terms −igπNπ

αN̄Tα
2 N with

the nucleon field N =

(
p
n

)
.

3 The quarks plasma

We tried before to explain how the quarks are confined, for
the strong interaction, we have the condition r < a , 0 at
low limited energy and the condition r > a → 0 at high en-
ergies for free quarks where the length a is removed from the
propagators. But it appears to be fixed at low limited energy.
In the last section we showed there is dual behavior for the
quarks field, but when the length a is fixed, the result is scalar

particles (pions) with mass 1/a0 at low limited energy and the
result is the chiral symmetry breaking. We found the length
a appears in the quark-quark strong interaction (gluons ex-
changing) potential U(r)r<a < 0, so it relates to interaction
strength. That is because the behavior of the length a is like
the behavior of the coupling constant αs. The confinement
(at low energy r < a) means when r → a the two interacting
quarks kinetic energy becomes zero (ignore the quark mass),
therefore the highest kinetic energy the quark can get equals
σa which relates to the potential U(r) = −u0 + σr + . . . for
r < a (at low limited energy). When r → a the potential be-
comes U(0) = −u0 = −4αs/3a < 0 therefore the total quarks
energy becomes negative. In this situation the free quarks
disappear (µ0 → 0), they become condensed in the hadrons.

We try here to use statistical thermodynamics to show
how the free quarks disappear at low energies (low tempera-
tures) where the length a becomes fixed, so the chiral symme-
try breaking and the quarks condensation. One of the results
is that the confinement phase (3.14) not necessarily associates
with chiral symmetry breaking, that is, the chiral symmetry
breaking appears at the end of the cooling process when the
expanding and cooling are ended and the length a becomes
fixed, therefore the chiral symmetry breaking occurs and the
pions become massive m = 1/a0.

We start with the massless quarks, their energy in volume
V is

E = c
∫

a3
d3r

∫ ∞

0
dε g(ε) ε

1
eβ(ε−µ(r)) + 1

: g(ε) = gq
V

2π2 ε
2

(3.1)

where µ(r) = µ0 + u(r) with u(r) = −
4αs
3r

(
1 − e−r/a

)
.

Here we inserted the quark-quark strong interaction po-
tential U(r) in the chemical potential (for decreasing the free
quarks energy, as we think, the quarks potential reduces the
free quarks chemical potential and make them condense at
low energy) and because r < a we integrate over the volume
a3: r is the distance between the interacting quarks. We can
replace 4αs/3→ αs.

The constant c is determined by comparing with free qu-
arks high energy where the potential U(r) → 0 and αs → 0
(decoupling) at high energies, so the length a → 0 that is as
we said before, the behavior of the length a is like the behav-
ior of the coupling constant gs therefore the quarks become
free at high energies.

By integrating over the energy (Maple program) we have:

E = cgq
V

2π2

∫
a3

d3r
∫ ∞

0
dε

ε3

eβ(ε−µ(r)) + 1

= cgq
V

2π2β4

∫
a3

d3r
[
7π4

60
+
π2

2
u0(r)2 +

1
4

u0(r)4+

+ 6
∞∑

k=1

(−1)ke−kβµ(r)

k4

]
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with u0(r) = βµ(r) = β(µ0 + u(r)). By integrating over r (the
distance between the interacting quarks) we have

E = cgq
2Va3

πx4

[
3.78 + 2 (βµ0)2

(
0.82 − 1.16

αs

aµ0
+

+ 0.41
(
αs

aµ0

)2 )
+ (βµ0)4

(
0.08 − 0.23

αs

aµ0
+

+ 0.25
(
αs

aµ0

)2

− 0.12
(
αs

aµ0

)3

+ 0.02
(
αs

aµ0

)4 )
+

+ 6
∞∑

k=1

∫ 1

0
x2dx

(−1)ke−kβµ(x)

k4

]
.

gq is the quarks degeneracy number and x = βµ0. For eas-
iness we write αs/aµ0 = 2σa/µ0 = y in the energy relation.
So it becomes

E = cgq
2Va3

πx4

[
3.78 + 2(βµ0)2

(
0.82 − 1.16y + 0.41y2

)
+ (βµ0)4

(
0.08 − 0.23y + 0.25y2 − 0.12y3 + 0.02y4

)
+ 6

∞∑
k=1

∫ 1

0
x2dx

(−1)ke−kβµ(x)

k4

]
. (3.2)

at high energy: x = βµ0 = µ0/T → 0. To find the constant
c we compare with quarks high energy where they are free
massless particles:

Ehigh = gqV
7π2

240
T 4 .

When T is high, x = (µ0/T ) → 0 and y → 0 therefore
βµ(x)→ 0 so we expand e−kβµ(x) near βµ(x) = 0, we have:

Ehigh = cgq
2a3V
πx4

[
3.78 − 1.88 + O(x, y)

]
→ cgq

2a3V
πx4 1.9

→ gq
7π2V
240

T 4 = cgq
2a3V
πx4 1.9→ c =

π

2a31.9
7π2

240
µ4

0 (3.3)

The energy becomes:

E =
1

1.9
7π2

240
µ4

0gq
V

(βµ0)4

[
3.78 + 2(βµ0)2(0.82 − 1.16y +

+ 0.41y2) + (βµ0)4(0.08 − 0.23y + 0.25y2 − 0.12y3 +

+ 0.02y4) + 6
∞∑

k=1

∫ 1

0
x2dx

(−1)ke−ku0(x)

k4

]
.

Now we see the effects of the length a on the energy, at
high energy, by fixing x = µ0/T and varying y = σa/2µ0 < 1:

Ehigh =
1

1.9
7π2

240
gqVµ4

0 x−4
[
1.9 + x(1.8 − 1.24y) +

+ x2(0.82 − 1.18y + 0.42y2) + x3(0.23 − 0.47y +

+ 0.33y2 − 0.08y3) + x4(0.04 − 0.12y + (3.4)

+ 0.13y2 − 0.07y3 + 0.01y4) + . . .
]

x=βµ0→0
.

We expanded e−kβµ(x) near βµ(x) = 0 and fixed the tension σ
as we assumed before, so we have Fig. 6.

Fig. 6: Decreasing the high energy with increasing y.

It appears in the figure that the high energy quarks lose en-
ergy when the length a increases although the temperature is
fixed. That means, when the length a increases the number of
the excited quarks decreases. That is because of the attractive
linear potential σr . . . between the quarks, that potential ab-
sorbs an energy (r < a confinement, section 1), so the quarks
are cooled faster by the expansion. As we said before, the be-
havior of length a is like the behavior of the coupling constant
αs so when the energy dropped to lowest energy, the length
a increased extremely and this is fast cooling (extreme cool-
ing). That occurs when the particles spread away, the length
a, as a distance between the quarks, increases.

To determine the end, we search for the balance situa-
tions, such as zero pressure, confinement condition, ... First
we find the high energy pressure including the effects of the
potential σa. Starting from the general pressure relation:

p = −
∂

∂V
F where F = −T ln Z = −

1
β

ln Z

here we use the relation:

ln Z = c
∫

a3
d3r

∫ ∞

0
dε g(ε) ln

(
e−β(ε−µ(r)) + 1

)
: g(ε) = gq

V
2π2 ε

2

and the pressure becomes

P =
1
3

∂

∂V
E
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so for high energy x = βµ0 → 0 we have the pressure:

Phigh =
1
3

∂

∂V
Ehigh

=
∂

∂V
1

3 × 1.9
7π2

240
gqVµ4

0 x−4
[
1.9 + x(1.8 − 1.24y) +

+ x2(0.82 − 1.18y + 0.42y2) + x3(0.23 − 0.47y +

+ 0.33y2 − 0.08y3) + x4(0.04 − 0.12y +

+ 0.13y2 − 0.07y3 + 0.01y4) + . . .
]
.

Now the key point is, we want to include the potential
effect on the pressure so we replace the volume V with the
volume a3 ∼ y3 so

Phigh →
∂

∂y3 y
3 1

3 × 1.9
7π2

240
gq µ

4
0 x−4

[
1.9 + x(1.8 − 1.24y) +

+ x2(0.82 − 1.18y + 0.42y2) + x3(0.23 − 0.47y +

+ 0.33y2 − 0.08y3) + x4(0.04 − 0.12y + (3.5)

+ 0.13y2 − 0.07y3 + 0.01y4) + . . .
]

which is represented in Fig. 7, without conditions on y or on
the length a.

Fig. 7: The effects of potential σa on the pressure.

It is clear (without conditions on y) the pressure decreases
with increasing the length a (decreasing the quarks energy
−p2) until it becomes zero, then negative. That becomes clear
at low energy where there are conditions on y and so on the
length a.

For the low energy quarks, T → 0 so βµ(x) → ∞ so
e−kβµ(x) → 0. The energy becomes:

Elow =
1

1.9
7π2

240
µ4

0 gq
V

(βµ0)4

[
3.78 +

+ 2 (βµ0)2
(
0.82 − 1.16y + 0.41y2

)
+ (3.6)

+ (βµ0)4
(
0.08 − 0.23y + 0.25y2 − 0.12y3 + 0.02y4

) ]
.

Making x = T/µ0 so

Elow =
1

1.9
7π2

240
µ4

0 gqV x4
[
3.78 + 2x−2

(
0.82 − 1.16y + 0.41y2

)
+ x−4

(
0.08 − 0.23y + 0.25y2 − 0.12y3 + 0.02y4

) ]
.

Now the key point, we want to show the effect of the potential
σa on the energy so we see the behavior of the energy in the
volume a3 with respect to y = 2σa/µ0 the diagram is given
in Fig. 8. That is extreme behavior after y = 0.6 where the

Fig. 8: The extremely decreasing in quarks low energy in the strong
interaction.

energy (E/V) a3 decreases when the volume a3 increases, the
end in y = 1 where the free quarks disappear for y > 1.

Now we can distinguish between the confinement and the
chiral symmetry breaking, when y > 0.6 there is confine-
ment: extreme cooling, negative pressure. But when reach
y = 1 there is chiral symmetry breaking where the length a
becomes fixed, and from the quarks field dual behavior there
are scalar charged particles with mass 1/a appear when the
length a is fixed with non-zero value a0. Here the evidence for
fixing the length a is the lowest limited quarks energy, that is
as we said before, the behavior of the length a is like the be-
havior of the coupling constant αs so when the quarks energy
dropped (extreme cooling) the length a increases extremely
to reach the highest value when y = 1 which is equivalent to
smallest energy E = 0 (the cooling end). Another evidence
for fixing the length a (chiral symmetry breaking) is the low
energy pressure:

Plow =
1
3

∂

∂V
Elow →

1
3

∂

∂y3

Elow

V
y3 .

To include the potential effect we study the pressure using the
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volume a3 ∼ y3 therefore

Plow →
1
3

∂

∂y3

1
1.9

7π2

240
gq µ

4
0 y

3 x4
[
3.78 +

+ 2x−2
(
0.82 − 1.16y + 0.41y2

)
+ x−4

(
0.08 − 0.23y + 0.25y2 − 0.12y3 + 0.02y4

) ]
and therefore

Plow

µ4
0

=
1

9 × 1.9
7π2

240
gq

[
3 × 3.78 x4 +

+ 3 × 2 × x2
(
0.82 − 1.16y + 0.41y2

)
(3.7)

+ 3 × (0.08 − 0.23y + 0.25y2 − 0.12y3 + 0.02y4) +

+ 2yx2 (−1.16 + 0.82y) +

+ y
(
−0.23 + 0.5y − 0.36y2 + 0.08y3

) ]
.

We see its behavior in Fig. 9 below

Fig. 9: The extremely decreasing in the pressure at low energy.

It is clear from the figure, when y > 0.6 the quarks pres-
sure becomes negative. We expect the condensed quarks pha-
se (confinement quarks) has positive pressure, so the pre-
ferred phase is the condensed quarks phase. So when y > 0.6
the quarks condense until y = 1 : a → a0 ≈ 1/(135 −
140 Mev) the quarks disappear, the scalar charged particles
(pions) appear instead of them, that is because of the quarks
dual behavior (free-condensed quarks), but at low limited en-
ergy the condensed phase has a big chance instead the free
phase.

3.1 The confinement phase

In this paper we study two quarks (up and down) conden-
sation in the pions (π0, π+, π−) and baryons (n, p+, p−), so the
degeneracy number is gq = 2 f lavor×2charge×2spin×3color = 24.

We need more clarifying for determining if the quarks
could stay free particles or they condense in hadrons. We

can think they could be free if their energy is enough for cov-
ering the strong interaction potential and stay free particles
with least possible energy (at 0 temperature). Unless they
condense in the hadrons.

To cover the strong interaction potential means to lose an
energy Eu which is transferred to the exchanged static gluons
and pions which are created between the low energy quarks.
So the remaining energy in the volume 4πa3/3 is

Eq,low

V
4π
3

a3 −
Eu

V
4π
3

a3 . (3.8)

This energy must be enough for the least possible free quarks.
Therefore we must determine the chemical potential µ0 of the
free quarks with smallest possible density at 0 temperature.

According to the quarks confinement r < a at low limited
energy, which means the highest possible distance between
the two interacting quarks is a, we expect the least quarks
density is two quarks in the volume 4π (a/2)3/3.

Fig. 10: The quarks confinement at low energy.

From this view we can calculate the least quarks chemical
potential µ0 of free quarks:

2
(

4π
3

( a
2

)3
)−1

=
1
V

∫ µ0

0
g(ε) dε = gq

µ3
0

6π2

→

(
µ0

a
2

)3
=

9π
gq

→ (µ0a)3 =
8 × 9π
gq

1/a is the pion mass when a → a0 in the end of free quarks
phase so 1/a → (135 − 140) Mev. So the least free quarks
energy density in 0 temperature is

ε f ree

V
=

1
V

∫ µ0

0
g(ε) ε dε = gq

µ4
0

4 × 2π2 .

The smallest energy of the free quarks in the volume 4πa3/3
is

ε f ree,a3 = gq
µ4

0

4 × 2π2

4πa3

3
=

4π
3
gq

µ0

4 × 2π2 (µ0a)3

=
4π
3
gq

µ0

4 × 2π2

8 × 9π
gq

=
4π
3

9
π
µ0 (3.9)
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therefore
ε f ree,a3

2µ0
=

4π
3

9
2π

=
4π
3
× 1.43 .

Because the chemical potential µ ∼ 1/a and µ → µ0 when
a→ a0 and because y ∼ a so we modified µ0 → µ0/y so

4π
3
× 1.43→

4π
3
×

1.43
y

. (3.10)

Now we find the least energy Eu which is transferred to the
static exchanged gluons and pions according to the potential

u(r) = −
4αs

3r

(
1 − e−r/a

)
≈ −u0 + σr : r < a .

We absorbed 4/3 to αs so and made αs/aµ0 = 2σa/µ0 = y the
constant σ is the string tension. This potential is inserted to
reduce the chemical potential µ0 and the energy is renormal-
ized at high energy. So we have µ0 → µ0 + u(r) :

µ(r) = µ0 −
αs

r

(
1 − e−r/a

)
≈ µ0 − u0 + σr : r < a .

Therefore we can calculate the least absorbed energy by this
potential, by calculating the changes on the energy density at
0 temperature

ε(αs/a)
V

=
ε(y)
V

=
1
V

c
∫ a

0
4πr2dr

∫ µ(r)

0
g(ε) ε dε

= c
∫ a

0
4πr2dr gq

µ(r)4

4 × 2π2 .

The constant c is determined

c =
π

2a31.9
7π2

240

so the interaction energy is

ε(αs/a)
V

=
ε(y)
V

= gq
π

2a31.9
7π2

240
4π

4 × 2π2

∫ a

0
r2drµ(r)4

= gq
7π2

4 × 1.9 × 240a3

∫ a

0
r2drµ(r)4 .

This becomes

ε(y)
V

= gq
7π2

4 × 1.9 × 240a3

∫ a

0
r2dr

[
µ0 −

αs

r

(
1 − e−r/a

)]4

= gq
7π2

4 × 1.9 × 240a3 (µ0)4
∫ a

0
r2dr

[
1 −

αs

µ0r

(
1 − e−r/a

)]4

Using the change r = ax so

ε(y)
V

= gq
7π2

4 × 1.9 × 240a3 (µ0)4∫ 1

0
a3x2dx

[
1 −

αs

µ0ax
(
1 − e−x)]4

therefore

ε(y)
V

= gq
7π2

4 × 1.9 × 240
(µ0)4

∫ 1

0
x2dx

[
1 −

y

x
(
1 − e−x)]4

.

The spent energy for the interaction in the volume 4πa3/3 is

εu,a3 =
ε(1) − ε(0)

V
4πa3

3

=
4π
3
gq

7π2(µ0a)3µ0

4 × 1.9 × 240
(3.11)∫ 1

0
x2dx

[
1 −

1
x
(
1 − e−x)]4

−

∫ 1

0
x2dx


and it becomes

εu,a3 = −
4π
3
gq

7π2

4 × 1.9 × 240
(µ0a)3µ0 0.33

= −
4π
3
gq

7π2

4 × 1.9 × 240
8 × 9π
gq

µ0 × 0.33 .

Therefore

εu,a3 = −
4π
3
gq

7π2

4 × 1.9 × 240
(µ0a)3µ0 × 0.33 (3.12)

= −
4π
3

7 × 8 × 9 × 0.33π3

4 × 1.9 × 240
µ0 = −

4π
3
× 2.82 µ0 .

So we have
εu,a3

2µ0
= −

4π
3
× 1.41 .

As for E f ree we replace

4π
3
× 1.41→

4π
3
×

1.41
y

.

Now we find the confinement condition at any temperature,
if the quarks energy is not enough to cover the interaction
energy Eu and give free quarks with smallest density, at 0
temperature, then they become confinement (r < a), so the
confinement condition

E(T, y) − εu − ε f ree ≺ 0 . (3.13)

Then

E(T, y)
V

4πa3

3
−
εu

V
4πa3

3
−
ε f ree

V
4πa3

3
≺ 0

or

E(T, y)
2µ0V

4πa3

3
−

εu

2µ0V
4πa3

3
−
ε f ree

2µ0V
4πa3

3
≺ 0 .

We consider

σa3 a =
ε f ree

V
4πa3

3
as critical energy of free quarks for lowest energy, the tension
σa3 here is the volume tension. Therefore this critical energy
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is transferred to the produced hadrons and photons. Using the
quarks low energy

Elow =
1

1.9
7π2

240
gq µ

4
0 V x4

[
3.78 +

+ 2 x−2
(
0.82 − 1.16y + 0.41y2

)
+

+ x−4
(
0.08 − 0.23y + 0.25y2 − 0.12y3 + 0.02y4

) ]
.

With x = T/µ0 � 1, the confinement condition becomes

1
2

1
1.9

7π2

240
µ3

0 gq x4 4πa3

3

[
3.78 +

+ 2x−2
(
0.82 − 1.16y + 0.41y2

)
+

+ x−4
(
0.08 − 0.23y + 0.25y2 − 0.12y3 + 0.02y4

) ]
−

−
εu

2µ0V
4πa3

3
−
ε f ree

2µ0V
4πa3

3
≺ 0 .

It becomes

1
2

1
1.9

7π2

240
gq

4π(µ0a)3

3

[
3.78x4 +

+ 2x2
(
0.82 − 1.16y + 0.41y2

)
+

+
(
0.08 − 0.23y + 0.25y2 − 0.12y3 + 0.02y4

) ]
−

−
4π
3
×

1.41
y
−

4π
3
×

1.43
y
≺ 0 .

We had the relation

(µ0a)3 =
8 × 9π
gq

,

therefore, the condition becomes

1
2

1
1.9

7π2

240
4 × 8 × 9π2

3

[
3.78x4 +

+ 2 x2
(
0.82 − 1.16y + 0.41y2

)
+

(
0.08 − 0.23y + 0.25y2 − 0.12y3 + 0.02y4

) ]
−

−
4π
3
×

1.41
y
−

4π
3
×

1.43
y
≺ 0 .

It becomes

3.78x4 + 2x2
(
0.82 − 1.16y + 0.41y2

)
+

+
(
0.08 − 0.23y + 0.25y2 − 0.12y3 + 0.02y4

)
− (3.14)

− 0.16y−1 ≺ 0

with the curve of Fig. 11.
The critical situation xc with y → 1 (the end of the ex-

treme cooling)

3.78x4
c + 2 × 0.07x2

c − 0.16574 = 0→ xc = 0.438 .

Fig. 11: The critical x2
cyc curve separates the free and confinement

quarks phases.

So the critical temperature of the confinement condition when
y → 1 from xc = Tc/µ0 is Tc = 0.438µ0. We determine µ0
from

(µ0a)3 =
8 × 9π
gq

when y → 1 so a → a0 we set 1/a0 = pion mass = (135 −
140) Mev so therefore, the condition becomes

µ0 =
1
a

(
8 × 9π
gq

) 1
3

→ 135
(

8 × 9π
24

) 1
3

= 285.15 Mev for
1
a0

= 135 Mev.
(3.15)

Hence the critical temperature is Tc = 0.438 × 285.15 =

124.9 Mev.
Now we try to find the produced hadrons, after cover-

ing the potential (3.12), the quarks critical energy (possible
smallest energy) E f ree (3.9) is transferred to the produced
hadrons and photons. The key idea here is: because the cool-
ing is an extreme cooling, it is expanding a : 0 → a0 =

1/(135 − 140 Mev) so this process is thermally isolated from
the other fields (adiabatic change), therefore the produced
particles are in Tc = 124.9 Mev. We assume that the pro-
duced particles are hadrons (fermions and bosons) and pho-
tons. When a : 0 → a0 : y → 1 the pions become massive
m = 1/a0 so we expect the other hadrons become massive at
this stage, we assume that is in T → Tc.

Therefore we assume when T > Tc massless hadrons and
T < Tc massive hadrons. Anyway in xcyc curve we find the
confinement is possible at high energy (T � Tc : a → 0).
First we write using (3.9)

ε f ree

V
=
ε f ree,a3

4πa3/3
= gq

µ4
0

4 · 2π2 (3.16)

=
σa3 a

4πa3/3
→

Ehadrons + Ephotons

V
below xcyc curve
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or
σa3 a

4πa3/3
= gq

µ4
0

4 · 2π2 → ε f + εb + εph .

With the densities

ε f =
E f

V
, εb =

Eb

V
and εph =

Eph

V

for spin 1/2 hadrons (fermions p+, p−, n), spin 0 hadrons (bo-
sons π0, π−, π+) and photons densities. For massless phase
T � Tc and yc ≈ 0 ignoring the chemical potential we have

n f =
N f

V
= g f

3ζ(3)
4π2 T 3 ,

nb =
Nb

V
= gb

ζ(3)
π2 T 3 and (3.17)

εph =
Eph

V
= gph

π2

30
T 4 .

Now the key point, because the cooling is extreme cooling,
to take all the particles (quarks) from high temperature and
put them at low temperature, so the same structure at high
energy will be at low energies, like the charges ratios, energy
distribution over the particles, spins, . . . At T → Tc and yc =

1 the hadrons become massive, we approximate: for bosons
(pions with mass 1/a0 = 135 − 140 Mev) the energy density
becomes:

εb = gb
π2

30
T 4 → εb = gb

π2

30
T 4 + mpionnb

with nb =
Nb

V
= gb

ζ(3)
π2 T 3 and mpion =

1
a0
.

And for fermions (let them be p+, p−, n) we approximate (ig-
noring the chemical potential)

ε f = g f
7
8
π2

30
T 4 → ε f = g f

7
8
π2

30
T 4 + m f n f

with n f =
N f

V
= g f

3ζ(3)
4π2 T 3 .

So (3.15) becomes

σa3 a
4πa3/3

= gq
µ4

0

4 · 2π2 = ε f + εb + εph (3.18)

= g f
7
8
π2

30
T 4

c + m f n f + gb
π2

30
T 4

c +
1
a0

nb + gph
π2

30
T 4

c .

with gquarks = 2 f lavor×2charge×2spin×3color, g f = 3charge×2spin,
gb = 3charge and gph = 2polarization.

Now we calculate (3.17) for 1/a0 = 135 Mev (π0), µ0 =

285.15 Mev, and Tc = 124.9 Mev we have

2.0096 × 109 Mev4 = 6 ×
7
8
π2

30
(124.9)4+

+ m f 6 ×
3ζ(3)
4π2 (124.9)3 + 3 ×

π2

30
(124.9)4+

+ 135 × 3 ×
ζ(3)
π2 (124.9)3 + 2 ×

π2

30
(124.9)4 .

Its solution is m f = 1023 Mev. We keep 2.0096 × 109 Mev4

as smallest possible energy density.
For 1/a0 = 140 Mev, µ0 = 295.7 Mev so Tc = 129.5 Mev

the mass m f becomes m f = 798.4 Mev. Therefore it must be
135 Mev < 1/a0 < 140 Mev.

For 1/a0 = 136.8 Mev we have Tc = 126.56 Mev then the
mass m f becomes m f ≈ 938 Mev so the fermions (hadrons)
are the baryons (p+, p−, n).

Therefore we fix it 1/a0 = 136.8 Mev, we use it to cancel
the dark matter. Maybe there is an external pressure −Pex so
the lost energy is Pex 4πa3/3.

Now we try to calculate the ratio Nq/Nh. From the con-
densation relation

Nqδµq + Nhδµh = 0

Nh is the hadrons (consider only the fermions) and µh is their
chemical potential.

We assumed before the relation for the quarks chemical
potential

µ(r) = µ0 + u(r) with u(r) = −
αs

r

(
1 − e−r/a

)
so δµq(r) = u(r) = −

αs

r

(
1 − e−r/a

)
.

The effect of this changing appeared in y = αs/aµ0 in the
results. For the hadrons we have

δµh = −
Nq

Nh
δµq = −

Nq

Nh
u(r) .

That is right if we consider the hadrons are massless, that is
when T � Tc and y � 1 (in the condensation phase, be-
low the curve xcyc) so we have the chemical potential for the
hadrons

µh(r) = µ0h − u(r) with u(r) = −
αs

r

(
1 − e−r/a

)
therefore we replace y→ (−Nqµ0q/Nhµ0h) y in the quarks en-
ergy to get the hadrons energy. The energy of the hadrons
becomes

EH,low =
1

1.9
7π2

240
µ4

0h gh V x4
[
3.78 +

+ 2x−2
(
0.82 + 1.16

(
Nqµ0q

Nhµ0h

)
y + 0.41

(
Nqµ0q

Nhµ0h

)2

y2
)

+

+ x−4
(
0.08 + 0.23

(
Nqµ0q

Nhµ0h

)
y + 0.25

(
Nqµ0q

Nhµ0h

)2

y2 +

+ 0.12
(

Nqµ0q

Nhµ0h

)3

y3 + 0.02
(

Nqµ0q

Nhµ0h

)4

y4
)]
.
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Assume µ0h = µ0q and y = 1 so

EH,low =
1

1.9
7π2

240
µ4

0q gh V
[
3.78x4 + 2x2

(
0.82 +

+1.16
(

Nq

Nh

)
+ 0.41

(
Nq

Nh

)2 )
+

(
0.08 + 0.23

(
Nq

Nh

)
+

+ 0.25
(

Nq

Nh

)2

+ 0.12
(

Nq

Nh

)3

+ 0.02
(

Nq

Nh

)4 )]
.

So the chemical potential µh of the hadrons becomes

µ4
h = µ4

0q

(
1 +

0.23
0.08

(
Nq

Nh

)
+

0.25
0.08

(
Nq

Nh

)2

+

+
0.12
0.08

(
Nq

Nh

)3

+
0.02
0.08

(
Nq

Nh

)4 )
.

When T < Tc the hadrons become massive, as we assumed
before, so for massive hadrons with m f = 938 Mev we expect
µh = m f = 938 Mev when they cooled with small densities.
Therefore

(938)4 = (285.15)4
(
1 +

0.23
0.08

(
Nq

Nh

)
+

0.25
0.08

(
Nq

Nh

)2

+

+
0.12
0.08

(
Nq

Nh

)3

+
0.02
0.08

(
Nq

Nh

)4 )
.

Its positive solution is Nq/Nh = 3.1 so they are the baryons
(fermions with three quarks). For 0 temperature fermions the
chemical potential is approximated by

µ2
0 = m2 +

(
N
V

6π2

g f

)2/3

.

For low hadrons density we ignored the term(
N
V

6π2

g f

)2/3

.

4 The nuclear compression

The cooled hadrons have high density, so there is hidden high
pressure, that pressure makes influence δa so δy near y = 1
or it makes y = 1 + δy: δy ≈ 0.005 so the cooled quarks
inside the hadrons fluctuate, this depends on the energy, if the
energy is high then there are new hadrons. These processes
let the interacting hadrons lose kinetic energy and form the
pions.

Because the number of quarks increases although the ha-
drons are fixed, therefore the hadrons energy decreases and
they cannot spread away. We can see how the chemical poten-
tial of the interacting hadrons changes under the fluctuation
δy ∼ δa (due to the quarks interaction) from the condensation

relation Nqδµq + Nhδµh = 0 we have δµh = −Nqδµq/Nh for
the fluctuation δy we have

δµh = −
Nq

Nh

∂µq

∂y
δy

from quarks chemical potential (4.4), we find

∂µq

∂y
≺ 0 so −

∂µq

∂y
� 0

therefore we have

δµh =
Nq

Nh

(
−
∂µq

∂y

)
δy ≺ 0 when δy ≺ 0

which is the quarks compressing, when the hadrons collide
together this leads to δy < 0 (compression) so the hadrons
lose energy and new hadrons are created. And when they try
to extend (spread away) δy > 0 so δµh > 0, there will be a
negative potential.

For the interacting hadrons pressure we have the phase
changing relation VqδPq + VhδPh = 0 : V volume, we have

δPh = −
Vq

Vh
δPq = −

Vq

Vh

∂Pq

∂y
δy

because ∂Pq/∂y < 0 → −∂Pq/∂y > 0 therefore when the
hadrons collide together δy < 0 so their pressure decreases,
they lose energy, so new hadrons are created.

We have

δy =

(
−

Vq

Vh

∂Pq

∂y

)−1

δPh at y = 1 .

So the hadrons chemical potential becomes

δµh =
Nq

Nh

(
−
∂µq

∂y

) (
−

Vq

Vh

∂Pq

∂y

)−1

δPh : y = 1 .

It becomes

δµh =
NqVh

NhVq

(
∂µq

∂y

) (
∂Pq

∂y

)−1

δPh : y = 1 . (4.1)

We can relate this changing to a constant nuclear potential.
Like to write

δµh = −V0 . (4.2)

V0 is the potential for each hadron.
So when the hadron (fermions, like protons or neutrons)

join, their density increases δµh > 0 so their pressure rises
δPh > 0, therefore there is a negative potential V0 < 0. At low
energies this potential prevents them from spreading away.

Now we calculate

δµh =
NqVh

NhVq

(
∂µq

∂y

) (
∂Pq

∂y

)−1

δPh : y = 1 .
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We use the pressure at low energy (3.7)

Plow/µ
4
0 = (9 × 1.9 × 240)−1 7π2gq

[
3 × 3.78x4+

+ 3 × 2 × x2
(
0.82 − 1.16y + 0.41y2

)
+ 3 (0.08 − 0.23y+

+ 0.25y2 − 0.12y3 + 0.02y4) + 2yx2 (−1.16 + 0.82y) +

+y
(
−0.23 + 0.5y − 0.36y2 + 0.08y3

) ]
and we get

∂Pq

∂y
= −

0.076 × 7 × π2 × gqµ
4
0

240 × 3 × 1.9
: xc = 0.438 , y = 1 . (4.3)

Using the relation

µ0 =
1
a0

(
8 × 9π
gq

) 1
3

we have

µ0 = 285.15 Mev for gq = 24 and 1/a0 = 135 Mev for π0

µ0 = 295.7 Mev for 1/a0 = 140 Mev for π− and π+ .

So the chemical potential µ0 is in the range from 285.15 Mev
to 295.7 Mev therefore

∂Pq

∂y
= −6.06 × 108 Mev4 for µ0 = 285.15 Mev

∂Pq

∂y
= −7.01 × 108 Mev4 for µ0 = 295.7 Mev .

Now we try to calculate ∂µq/∂y, according to low energy

Elow = (1.9 × 240)−1 7π2 µ4
0 gq V x4

[
3.78+

+ 2x−2
(
0.82 − 1.16y + 0.41y2

)
+ x−4

(
0.08 − 0.23y + 0.25y2 − 0.12y3 + 0.02y4

) ]
we can equivalence

µ4 = µ4
0

(
1 −

0.23
0.08

y +
0.25
0.08

y2 −
0.12
0.08

y3 +
0.02
0.08

y4
)
. (4.4)

But ∂µ/∂y→ ∞ when y→ 1 so we replace

∂µq

∂y
→

µy=1 − µy=0

1 − 0
=

0 − µy=0

1 − 0
= −µy=0 = −µ0 .

Therefore we have

δµh =
NqVh

NhVq

(
∂µq

∂y

) (
∂Pq

∂y

)−1

δPh

=
NqVh

NhVq
µ0

(
0.09µ4

0

)−1
δPh

=
NqVh

NhVq

(
0.09µ3

0

)−1
δPh .

So we have

δµh =
NqVh

NhVq

(
0.09 µ3

0

)−1
δPh

= 4.7 × 10−7 NqVh

NhVq
δPh for µ0 = 285.15 Mev

and

δµh = 4.2 × 10−7 NqVh

NhVq
δPh for µ0 = 295.7 Mev . (4.5)

We use them to cancel the dark matter and dark energy.

5 The Big Bang

We assume there were two universal phases, high energies
massless particles phase (let them be the quarks plasma) and
then the massive low energies particles (let them be the ha-
drons).

The first phase associated with high energy density (drops
from infinity to finite), the time of that stage is τ : 0 → a0 =

1/(135−140) Mev then the massive hadrons phase begins (the
time t : 0→ ∞).

In both stages the highest universal expansion must not
exceed the light speed, for the first phase, high energies mass-
less quarks phase, the density of the energy is the same in all
space points so the universal expansion is the same in every
point in the space, we let the speed of that expansion equal
the light speed, therefore the Hubble parameter H(t < a0) of
this stage t < a0 is given by (5.2).

To find the Hubble parameter for the massive hadrons
phase H(t > a0), we suggest the geometry transformation
(5.3) in which the time τ : 0→ a0 for the quarks corresponds
to the time t : 0→ ∞ for the massive hadrons phase. We can
relate that change in the geometry to the high differences in
the energy densities of the two phases. The phase τ : 0 → a0
high quarks energy, uniform high energy density, massless,
. . . The phase t : 0 → ∞ the massive hadrons, low energy
density, separated particles, . . .

Now we try to explain how the universe exploded and ex-
panded, we start from our assumptions we made before and
find the Hubble parameter and try to find the dark energy
and matter. We found that the quarks expand to the length
a0 = 1/(135 − 140) Mev then the hadrons appear instead.

We assume that the universe was created in every point in
two dimensional space XY then the explosion in the Z direc-
tion. That is by the quarks, in each point in the XY plane the
quarks were created and then they expanded in each point XY
to the length a0 then the explosion in the Z direction, the result
is the universe in the space XYZ. There was no universal ex-
plosion in the XY plane, the universal explosion was only in
the Z direction, in the plane XY there was extension due to the
quarks expanding from r = 0 to r = a0 = 1/(135 − 140) Mev
the plane XY was infinity before the quarks expansion and it
is infinity after that expansion, what happened is an increase
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in the number of the XY points, then the explosion in the Z
direction. We assume both expansion (XY and Z) occurred
with the light speed c.

To find the lost matter, dark matter and dark energy, we
use the relation (4.5) we found before:

δµh =
NqVh

NhVq

(
0.09 µ3

0

)−1
δPh

= 4.7 × 10−7 NqVh

NhVq
δPh for µ0 = 285.15 Mev

and

δµh = 4.2 × 10−7 NqVh

NhVq
δPh for µ0 = 295.7 Mev .

Here we relate this changing in the pressure δP (indepen-
dent of time) to the hadrons condensation process to form
the nucleuses, where the global pressure δP = δPh dropped
extremely due to the nuclear attractive potential (make it the
nuclear binding energy) V0 = (−7−8) Mev [3]. This pressure
δPh remains contained in the nucleuses, but globally is not
visible.

So there is hidden global pressure δPh and we have to
include that problem in the Friedman equations solutions, we
notice that the nuclear attractive potential leads to increasing
in the cooled hadrons densities. Therefore the decreasing in
the hadrons pressure associated with the increasing of their
densities (inside the nucleuses). The result is excess in the
local energy density, that effects appear in the equations, that
is, the matter density appears to be larger than the right energy
density. So there is neither dark matter nor dark energy, it is
just global and local densities.

We start from the definition of the scale parameter R(t) for
the universe expansion, we write [6]

ds2 = −dt2 + R2(t)
(

dr2

1 − kr2 + r2dΩ2
)
. (5.1)

We set k = 0 flat Universe. Now we try to find the Hubble
parameter

H(t) =
1

R(t)
dR(t)

dt
=

Ṙ(t)
R(t)

.

There are two phases t < a0 free quarks phase and t > a0
hadrons phase which is the expansion in the Z direction. That
means there are two different spacetime geometry, t < a0 and
t > a0.

In the first phase τ = t < a0 the expansion is the same in
all space points, so the expansion velocity

dR1

dt
= Ṙ(t) r

is the same in all space points and equals the light speed c =

~ = 1 here, so
1 = Ṙ(t)r : t < a = a0 .

Therefore
Ṙ(t) =

1
r

: t < a = a0 .

So we can write

R(t) =
t
r

: t < a = a0 .

So the Hubble parameter becomes

H(t) =
Ṙ(t)
R(t)

=
1/r
t/r

=
1
t

: t < a = a0 . (5.2)

Now we want to find the Hubble parameter in the phase t > a0
low energy phase. Actually when the quarks expand from
r = 0 to r = a → a0 there will be infinity points expanding,
so infinity expanding distance in XY space, but the expansion
cannot exceed the light speed c = 1 therefore an explosion
occurs in the Z direction, so the universal explosion. There-
fore the time t = τ : 0 → a0 for the free quarks phase will
associate with t : 0 → ∞ for the universal expansion, so we
make the geometry transformation

t =
−c0

τ − a0
: τ < a0 . (5.3)

c0 is constant, we can relate that relation to a difference in
spacetime geometry. That means if the quarks space r < a0 =

1/(135 − 140) Mev is flat, so the hadrons space is not, it is
curved space, where we live. It is convenient to consider the
quarks space (r < a0 large energy density) is curved not our
space (low energy density).

Now we can find the Hubble parameter for the universe
t : 0 → ∞. We can find the Hubble parameter H(t > a0) for
the geometry t : 0→ ∞ from H(t < a0) :

H(τ < a) =
1

R(τ < a)
dR(τ < a)

dτ

=
1

f (r, θ, ϕ)R(t > a)
d
dτ

f (r, θ, ϕ)R(t > a) .

We set the geometry transformation

R(τ < a) = f (r, θ, ϕ) R(t > a)

so

1
τ

=
1

f (r, θ, ϕ)R(t > a)
d
dτ

f (r, θ, ϕ)R(t > a)

=
1

R(t > a)
d
dτ

R(t > a) (5.4)

or

1
τ

=
1

R(t > a)
dt
dτ

d
dt

R(t > a)

=
dt
dτ

1
R(t > a)

d
dt

R(t > a) =
dt
dτ

H(t > a) .
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Using the geometry transformation

t =
−c0

τ − a0
: τ < a→ a0 ,

we have the Hubble parameter of the low energy density of
the cold Universe

H(t > a0) =
1

R(t > a0)
d
dt

R(t > a0)

=
c0

t(a0t − c0)
=

1

t
(

a0
c0

t − 1
) =

1

t
(
c′0t − 1

)
where c′0 is constant.

The Friedman equations can be written, for k = 0, like [6]

3
Ṙ2(t)
R2(t)

= 8πGNρ + Λ (1)

−
R̈(t)
R(t)

+
Ṙ2(t)
R2(t)

= 4πGN(ρ + p) (2) (5.5)

d
dt

(ρ + δp) = −3(ρ + p)
Ṙ(t)
R(t)

. (3)

To control (or cancel) the dark matter and energy, we make
the transformations in the Friedman equations which keep the
Hubble parameter unchanged

3
Ṙ2(t)
R2(t)

= 8πGN(ρ + δP) + Λ − 8πGNδP (1′)

−
R̈(t)
R(t)

+
Ṙ2(t)
R2(t)

= 4πGN(ρ + δP + p − δP) (2′) (5.6)

d
dt

(ρ + δp) = −3(ρ + δP + p − δP)
Ṙ(t)
R(t)

. (3′)

So we have (for same Hubble parameter we had before)

ρ′ = ρ + δph

p′ = p − δph

Λ′ = Λ − 8πGNδph = 0 .

For the universal nuclear condensation, we assume the uni-
versal change δρ = δP = δph > 0 is independent of the time.

We can say ρ′, p′ and Λ′ = 0, P′ = 0 are for the located
matter, when the hadrons are cooled, they condense and lo-
cate in small volumes with high matter density, because of
the strong nuclear attractive interaction, so their pressure de-
creases extremely P′ ≈ 0. That pressure is contained (hidden)
in the nucleus. It is like to condense a gas with certain mass m
and fixed volume V , the density m/V is the same before and
after the condensation, but the real density of the produced
liquid is not. Like that we consider ρ the right matter ρmatter

and the problems; the increasing ρ′ = ρ + δph and Λ , 0 are
because of the phase changing.

We set ρ′ = ρ(t) and solve the two equations:

−
R̈(t)
R(t)

+
Ṙ2(t)
R2(t)

= 4πGNρ(t) (2′)

d
dt

(ρ + δp) = ρ̇(t) = −3ρ(t)
Ṙ(t)
R(t)

(3′)

using the Hubble parameter

H(t) =
1
R

dR
dt

=
1

t
(
c′0t − 1

) : t > a0 .

From (3’) we have

−
1
3

R(t)
Ṙ(t)

ρ̇(t) = ρ(t)

so (2’) becomes

−
R̈(t)
R(t)

+
Ṙ2(t)
R2(t)

= −
4πGN

3
R(t)
Ṙ(t)

ρ̇(t) .

This equation becomes

Ṙ(t)
R(t)

(
−

R̈(t)
R(t)

+
Ṙ2(t)
R2(t)

)
= −

4πGN

3
ρ̇(t)

or

H(t)
(
−

R̈(t)
R(t)

+ H2(t)
)

= −
4πGN

3
ρ̇(t) .

Using
d
dt

Ṙ(t)
R(t)

=
R̈(t)
R(t)
−

Ṙ2(t)
R2(t)

we get

H(t)
d
dt

H(t) =
4πGN

3
ρ̇(t)→

1
2

H(t)2 =
4πGN

3
(ρ(t) − ρ0) .

For finite results we put ρ0 = 0 so

1
2

H(t)2 =
4πGN

3
ρ(t) .

Now we calculate the contributions of the vacuum energy to
the total energy using the cosmological constant Λ′ from (1’)

ΩΛ′ =
ρ′

Λ

ρc
=

Λ′

3H2 =
3H2 − 8πGNρ(t)

3H2

= 1 − 2
4πGN

3H2 ρ(t) = 1 − 2
1

H2

1
2

H(t)2 = 0

with the critical energy density

ρc =
3H2

8πGN
.

So the vacuum energy density is canceled, and the total en-
ergy is the matter energy Ωmatter = 1 so ρ(t)/ρc = 1. Here
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ρ(t) = ρc is ρ(t) = ρ′ = ρmatter + δph, so ρ(t) is higher than the
right matter ρmatter.

Now we see if this relation is satisfied or not. We use the
global change on the pressure δp = δph > 0 which we derived
in (4.5):

δµh =
NqVh

NhVq

(
0.09µ3

0

)−1
δPh

= 4.7 × 10−7 NqVh

NhVq
δPh for µ0 = 285.15 Mev

and

δµh = 4.2 × 10−7 NqVh

NhVq
δPh for µ0 = 295.7 Mev .

Now we try to find Vq/Vh the quarks volume Vq = S dq and
the hadrons volume Vh = S dh as shown in Fig. 12 where the

Fig. 12: The universal explosion in Z direction starting from XY flat.

universal explosion is in the Z = d direction. If we assume
the explosion speed is the same for both hadrons and quarks,
light speed ν = c = 1, so for the quarks

Hq(t) =
Ṙ(t)q

R(t)q
=
νq

dq
=

1
dq
.

For the hadrons

Hh(t) =
Ṙ(t)h

R(t)h
=
νh

dh
=

1
dh

therefore
Vq

Vh
=

S dq

S dh
=

dq

dh
=

Hh

Hq
,

Hh is the universal Hubble parameter, today is

H = 71 km/s/mpc = 2.3 × 10−18 s−1

= 2.3 × 10−18 × 6.58 × 10−22 Mev = 151.34 × 10−41 Mev .

The quarks Hubble parameter Hq = 1/τ→1/a0 = (135 −
140) Mev. So we have (for 135 Mev)

Hh

Hq
=

151.34 × 10−41 Mev
135 Mev

= 1.127 × 10−41 .

Therefore
Vq

Vh
=

Hh

Hq
= 1.127 × 10−41 .

We set δµh = −V0 = (7 − 8) Mev the nuclear potential (nu-
cleon binding energy). Therefore, from (4.5), we have

δρ = δPh = −
Nh

Nq
× 1.127 × 10−41 ×

−V0

47
× 108 Mev4

for
1
a0

= 135 Mev : µ0= 285.15 Mev

and

δρ = δPh = −
Nh

Nq
× 1.087 × 10−41 ×

−V0

42
× 108 Mev4

for
1
a0

= 140 Mev : µ0= 295.7 Mev .

For Nh/Nq = 1/5, like the interaction P++π− → n the neutron
n appears to have five quarks, that is acceptable according to
the fields dual behavior. Therefore

δρ = δPh = −
1
5
× 1.127 × 10−41 ×

−7
47
× 108 Mev4

= 335.7 × 10−37 Mev4

for µ0= 285.15 Mev and V0 = −7 Mev

and

δρ = δPh = −
1
5
× 1.087 × 10−41 ×

−8
42
× 108 Mev4

= 414 × 10−37 Mev4

for µ0= 295.7 Mev and V0 = −8 Mev.

So the change δρ = δPh is in the range:

from 335.7 × 10−37 Mev4 to 414 × 10−37 Mev4 .

Therefore the visible matter is in the range

from ρmatter = ρc − δph = 335.7 × 10−37 Mev4

to ρmatter = ρc − δph = 414 × 10−37 Mev4 .

For the critical energy ρc = 406×10−37 Mev4 the visible mat-
ter is in the range

from ρmatter = 0 to ρmatter = 70 × 10−37 Mev4 .

The right baryonic matter energy density is

ρb = 4.19 × 10−31g/cm3 ≈ 17.97 × 10−37 Mev4

which belongs to the range 0 to 70 × 10−37 Mev4. We can
control this and have

ρmatter=ρc − δPh = 406 × 10−37 − δPh = 17.97 × 10−37 Mev4
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by finding r:

140r + 135(1 − r) =
1
a0

where 1/a0 satisfies

406 × 10−37 Mev4 − δPh = 17.97 × 10−37 Mev4.

For 1/a0 = 136.8 Mev (we used it in (3.17) to have m f ≈

938 Mev), the chemical potential becomes µ0 = 288.95 Mev.
And with V0 = 7.776 Mev we get

δρ = δPh = 335.7 × 10−37 ×

(
288.95
285.15

)3

×
7.776

7
Mev4

= 388 × 10−37 Mev4 .

The matter density becomes

ρmatter = 406 × 10−37 Mev4 − 388 × 10−37 Mev4

= 17.9 × 10−37 Mev4 .

which is the right matter (global visible matter density). The-
refore we can control the dark matter and dark energy. We
can cancel them.
Note that not all of those ideas are contained in the references.
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