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The Structure of the Photon in Complex Vector Space

Kundeti Muralidhar
Physics Department, National Defence Academy, Khadakwasla, Pune-411023, India. E-mail: kundetimuralidhar@gmail.com

Considering the complex vector electromagnetic field, the energy of the photon is ex-
pressed as an even multivector consisting of a scalar kinetic energy part and a bivector
rotational energy part. Since any even multivector can be expressed as a rotor represent-
ing internal rotations, the electromagnetic energy even multivector represents internal
complex rotations. It has been shown that the spin angular momentum is the generator
of rotations in the plane normal to the propagation direction and the orbital angular mo-
mentum is the generator of rotations in a plane normal to the spin plane. The internal
structure of the photon may be visualized as a superposition of electromagnetic field
flow or rotation in two normal orientations in complex vector space. The cause of such
complex rotations is attributed to the presence of electromagnetic zeropoint field.

1 Introduction

Even after the photon inception into the field of physics over a
century ago, the obscurity in understanding the photon struc-
ture persists. The concept of the photon, the energy quanta
of electromagnetic radiation, was introduced by Planck in the
blackbody radiation formula and Einstein in the explanation
of the photoelectric effect. The photon is normally consid-
ered as a massless bundle of electromagnetic energy and the
photon momentum is defined as the ratio between the energy
of the photon and the velocity of light. It is well known from
Maxwell’s theory that electromagnetic radiation carries both
energy and momentum [1]. The linear momentum density
is given by the Poynting vector E × B and the angular mo-
mentum is the cross product of the Poynting vector with the
position vector. Poynting suggested that circularly polarized
light must contain angular momentum and showed it as the
ratio between the free energy per unit volume and the angular
frequency. In 1936, Beth [2] first measured the angular mo-
mentum of light from the inference that circularly polarized
light should exert torque on a birefringent plate and that the
ratio between angular momentum J and linear momentum P
was found to be λ/2π, where λ is the wavelength of light. The
measured angular momentum agreed in spin magnitude with
that predicted by both wave mechanics and quantum mechan-
ics. The Beth angular momentum is in general considered as
the photon spin angular momentum.

The energy momentum tensor of the electromagnetic field
T µν is not generally symmetric. By adding a divergence term
∂µUµαν to T µν, one can construct a symmetric energy momen-
tum tensor Θµν which is normally known as the Belinfante
energy momentum tensor [3]. The tensor Uµαν is asymmet-
ric in the last two indices. The symmetric energy momen-
tum tensor satisfies the conservation law ∂µΘ

µν = 0. The
advantage of the symmetric energy momentum tensor is that
the angular momentum calculated from Θk0 is a conserved
quantity. Belinfante established the fact that the spin could
be regarded as a circulating flow of energy and this idea was
well explained by Ohanian [4]. In an infinite plane wave, the

electric and magnetic field vectors are perpendicular to the
propagation direction. In a finite transverse extent, the field
lines are closed loops and represent circulating energy flow
and imply the existence of angular momentum whose orien-
tation is in the plane of circulation and it is the spin angular
momentum. Further, as the electromagnetic waves propagate,
the energy also flows along the direction of propagation. The
translational energy flow implies the existence of additional
orbital angular momentum. The magnetic field vector can be
expressed as the curl of a vector potential A and the angu-
lar momentum density becomes E × A. A close inspection
shows that the total angular momentum has two components:
one the spin angular momentum associated with the polariza-
tion and the other the orbital angular momentum associated
with the spatial distribution [1]. The total angular momentum
J can be split into a spin angular momentum S and an orbital
angular momentum L [5]

J =
1

4π

∫
E × A d3r +

1
4π

∫
En(r × ∇)An d3r . (1)

The first term on the right is dependent on polarization and
hence it is called spin angular momentum S and the second
term is independent of polarization and depends on spatial
distribution and identified with orbital angular momentum L.
It has been argued that the photon angular momentum cannot
be separated into a spin part and an orbital part in a gauge
invariant way and the paradox was a subject for several papers
and in standard textbooks for the past few decades [6].

In recent times the definitions of these angular momenta
raised certain controversy. In all these definitions the angular
momentum is defined as a vector product containing the posi-
tion coordinate. The decomposition of total angular momen-
tum of the photon into spin and orbital parts basically involves
how we split the vector potential in a gauge invariant way and
it has been studied by several authors and a detailed discus-
sion is given in the review article by Leader and Lorce [7].
The absence of any rest frame for the photon suggests that
the total angular momentum is observable but not separately
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as spin angular momentum and orbital angular momentum.
Though this separation is normally considered to be unphysi-
cal and not observable, Van Enk and Nienhuis [8] argued that
both spin and orbital angular momenta are separately measur-
able quantities and gauge invariant. The gauge invariant spin
and angular momentum parts are expressed as

J =
1

4π

∫
E × A d3r +

1
4π

∫
r × En∇An d3r . (2)

In this expression A = A⊥ and therefore both terms are gauge
invariant. The canonical expression En∇An gives pure me-
chanical momentum which is responsible for the orbital an-
gular momentum of a photon. The azimuthal flow of elec-
tromagnetic field is given by En∇An which is half of E × B
and the other half is spin flow [9]. In an analogous way, in
quantum chromodynamics, the gluon angular momentum can
be decomposed into a spin part and an angular momentum
part which plays an important role in understanding nucleon
structure. Recently, Chen et al. [10] decomposed the gauge
potential into pure and physical parts: A = Apure + Aphys,
the pure part is related to gauge invariance and the physical
part is related to physical degrees of freedom. In the decom-
position by Wakamatsu et al. [11], the orbital angular mo-
mentum is defined similar to a classical expression r × Pkin,
where Pkin = − 1

4π

∫
Aphys × E d3r and in this decomposition

each term is gauge invariant and observable. Further studies
by several authors revealed the fact that there could be in-
finitely many different ways to perform such decomposition
in a gauge invariant way [7, 12]. In Beth’s experiment, ac-
tually the spin angular momentum was measured. The mea-
surement of orbital angular momentum has been performed in
recent times. The amplitude of a Laguerre-Gaussian mode of
light wave has an azimuthal angular dependence of exp(−ilφ),
where l is the azimuthal mode index. The ratio between the
angular momentum to the energy is 1/ω or L = l (E × B)/ω
and for Laguerre-Gaussian laser mode, it has been shown that
the angular momentum is equal to l~ and the total angular mo-
mentum of the whole light beam is (l+σz)~, whereσz is a unit
vector along the direction of propagation [13]. The measure-
ment of orbital angular momentum was reported by several
authors [14–16].

Another important aspect of the photon is its internal zit-
terbewegung motion. It is well known from the first observa-
tion of Schrödinger [17] that a Dirac electron possesses zit-
terbewegung motion which is the oscillatory motion of the
electron with very high frequency ω = 2mc2/~ with inter-
nal velocity equal to the velocity of light. Such internal mo-
tion arises because of the classical electromagnetic fluctuat-
ing zeropoint field present throughout space [18]. The spin
angular momentum of the electron is identified as the zero-
point angular momentum [18, 19]. On the basis of electron
internal oscillations, classical models of electron were devel-
oped [20–22]. It is quite interesting that such zitterbewe-
gung motion for the photon was derived from the relativis-

tic Schrödinger like equation of the photon by Kobe [23].
It has been proved that the photon velocity contains paral-
lel and perpendicular components with respect to the direc-
tion of propagation. The time dependent perpendicular com-
ponent of velocity rotates about the direction of propagation
with an angular frequency ω equal to the frequency of the
electromagnetic wave. The finite special extension of inter-
nal rotation is equal to the reduced wavelength. The photon
spin is then identified as the internal angular momentum due
to zitterbewegung. Considering internal dynamical variables
in the configuration space the zitterbewegung is attributed to
the normal component of velocity vector oscillations about
the particle centre [24]. In the quantum field theory, it has
been shown that the zitterbewegung of a photon is attributed
to the virtual transition process corresponding to the contin-
uous creation and annihilation of virtual pairs of elementary
excitations [25, 26]. Recently, Zhang [27] proposed that zit-
terbewegung of the photons may appear near the Dirac point
in a two dimensional photonic crystal. In the case of an elec-
tron, the spin angular momentum is an intrinsic property. In
the same way both spin and orbital momenta of the photon
are intrinsic in nature [28, 29]. Thus one can anticipate that
the photon is also having an internal spin structure described
by the internal oscillations or rotations.

One of the most important applications of the photon an-
gular momentum lies in the exploitation of the photon spin
and angular momentum states for quantum computation and
quantum information processing [30]. Superposition of po-
larization states can be used to construct qubits and transmit
information. A standard approach to visualise the transfor-
mation of qubits is provided by the Poincaré sphere repre-
sentation. Generally, any completely polarized state can be
described as a linear superposition of spin states and corre-
sponds to a point on the surface of a unit sphere. Analogous
representation of orbital angular momentum states of the pho-
ton was introduced by Padgett and Courtial [31] and Agar-
wal [32]. Quantum entanglement of states is a consequence of
quantum non-locality. The entanglement involving the spatial
modes of electromagnetic field carrying orbital angular mo-
mentum was studied by Mair et al. [33] and Franke-Arnold
et al. [34]. The phase dependence of angular momentum may
provide multi-dimensional entangled states which are of con-
siderable interest in the field of quantum information.

In vector algebra, the angular momentum is defined by a
cross product of position and momentum vectors and identi-
fied as a vector normal to the plane containing the position
and momentum vectors. However, the angular momentum is
basically a planar quantity and better defined as a bivector in a
plane [35]. Note that the cross product cannot be defined in a
plane. In the case of the electron, the classical internal bivec-
tor spin was obtained from the multivector valued Lagrangian
by Barut and Zhangi [20]. It has been shown that the particle
executes internal complex rotations by absorbing zeropoint
field and the angular momentum of these internal rotations
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is identified as the bivector spin of the particle [36]. In an
analogous way, the photon spin is a bivector quantity. There-
fore, the photon spin may be visualised as a bivector prod-
uct between an internal finite extension of the photon and an
internal momentum. Similarly, one can visualise the orbital
angular momentum of the photon as a bivector. Considering
the electromagnetic field as a complex vector, it is possible
to express the set of Maxwell’s equations into a single form.
The basics of complex vector algebra have been discussed in
detail previously in references [37, 38].

Recently, the nature of the photon was discussed at length
by several authors in the book edited by Roychoudhuri et
al. [39]. The main views of understanding the nature or the
structure of the photon are as follows. Einstein viewed the
photon as a singular point which is surrounded by electro-
magnetic fields. In quantum electrodynamics, the photon is
introduced as a unit of excitation associated with the quan-
tised mode of the radiation field and it is associated with pre-
cise momentum, energy and polarization. In another view, the
photon is interpreted as neither a quantum nor a wave but it
can be a meson which produces off other hadronic matter and
attains physical status. Photons are just fluctuations of ran-
dom field or wave packets in the form of needles of radiation
superimposed in the zeropoint field. However, understanding
the photon structure still remains an open question.

The aim of this article is to explore the structure of the
photon in complex vector space. To understand the struc-
ture of the photon, the electromagnetic field is expressed as
a complex vector and the total energy momentum even mul-
tivector is developed in section 2. Section 3 deals with the
internal angular momentum structure of the photon and con-
clusions are presented in section 4. Throughout this article,
Lorentz–Heaviside units are used, i.e. ε0 = µ0 = 1 and en-
ergy terms are divided by 4π and conveniently we choose
c = 1 [1]. However, for clarification sake in some places c
is reintroduced.

2 Energy momentum multivector of the electromagnetic
field

In the complex vector formalism, we express the electric field
as a vector E and the magnetic field as a bivector iB and the
electromagnetic field F is expressed as a complex vector [37,
38]

F =
1
2

(E + iB) . (3)

Here, i is a pseudoscalar in geometric algebra of three dimen-
sions [40], it commutes with all elements of the algebra and
i2 = −1. A reversion operation changes the order of vectors
and is indicated by an overbar

F̄ =
1
2

(E − iB) . (4)

Now, the product F̄F is written as

F̄F =
1
4

(E2 + B2) +
1
2

(E ∧ iB) . (5)

Similarly, we find

FF̄ =
1
4

(E2 + B2) −
1
2

(E ∧ iB) . (6)

The energy density of the electromagnetic field can be ob-
tained from the scalar product

F̄ · F =
1
2

(F̄F + FF̄) =
1
4

(E2 + B2) . (7)

Further, the product F̄ ∧ F gives a vector of the form

p = −
1
c

F̄ ∧ F = −
1
2c

(F̄F − FF̄) = −
1
2c

(E ∧ iB) , (8)

and the dual of p is expressed as

ip =
1
2c

(E ∧ B) . (9)

From the above expression, one can express the energy den-
sity of internal electromagnetic flux flow in the bivector plane
normal to the propagation direction

ipc =
1
2

(E ∧ B) . (10)

This energy density of the photon can be identified as the ro-
tational energy density. However, the energy density obtained
in (7) represents the energy density of the photon as it prop-
agates and it may be treated as the kinetic energy density of
the photon. An even multivector is a sum of a vector and a
bivector. The energy terms in (7) and (10) combine to give
the total energy of the photon in even multivector form

E =
1

4π

∫
E2 + B2

4
d3r +

1
4π

∫
E ∧ B

2
d3r = Ekin +Erot. (11)

The scalar part shows the flow of energy in the direction of
propagation which can be identified as the kinetic part of en-
ergy Ekin and the bivector part can be identified as the rota-
tional energy Erot representing circulation of electromagnetic
energy in a plane normal to the direction of propagation. In
general, twice the kinetic energy is treated as the electromag-
netic energy per unit volume and it is the energy of the pho-
ton. Since the energy of a photon is expressed as momentum
times its velocity, we define kinetic momentum of a photon
as pk = Ekin/v, where the velocity v = nc and n is a unit
vector along the direction of propagation. Introducing an in-
ternal velocity u satisfying the condition u · v = 0 and |u| = c,
the internal momentum representing the rotational flux flow
can be defined as pr = Erot/u. From these definitions gen-
eralised photon velocity and momentum complex vectors can
be constructed as

U = v + iu , (12)
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P = pk + ipr . (13)

A reversion operation on P gives P̄ = pk − ipr. Since the mag-
nitudes |pk | and |pr | are equal, we have P2 = P̄2 = 0. There-
fore, the complex vector P is a complex null vector which
represents the lightlike nature of the photon. Similarly, the
complex velocity vector is also a complex null vector. Now,
the total energy of the photon is expressed as

E = pk · v + pr ∧ u . (14)

The even multivector form given in the above equation can
be compared to the symmetric energy momentum tensor Θµν

with the identification of the scalar part with Θ00 and bivector
part with Θi j . In three dimensions, the property of an even
multivector is that it represents rotations in the bivector plane
[35]. Then, the energy multivector can be expressed as a rotor
with angular frequency ω

E = E0 eĴωt , (15)

where Ĵ is a unit bivector in the plane normal to the prop-
agation direction. This relation shows that the photon con-
tains internal complex rotations and these rotations are anal-
ogous to the internal complex rotations or zitterbewegung of
the electron. The cause of these internal rotations is attributed
to the fluctuations of the zeropoint field [38]. In (15) the inter-
nal rotation represents the clockwise or right-handed rotation.
A reversion operation on E gives

Ē = E0 e−Ĵωt . (16)

In this case, the internal rotation represents counterclockwise
or left-handed rotation. The frequency of internal rotation is
the rate per unit energy flux flow within the photon

Ω = −Ĵωt = −
1
E

dE
dt

. (17)

Here, the frequency of internal rotation represents the coun-
terclockwise direction. The internal complex rotations sug-
gest that there exists an internal complex structure of the pho-
ton.

3 Internal structure of the photon

In general, the internal complex rotations represent the an-
gular momentum of the photon. The angular momentum of
a photon is defined as the ratio between the rotational en-
ergy of the photon and the frequency of internal rotation.
Since the energy of the photon is a sum of kinetic and ro-
tational energy components, we expect that the angular mo-
mentum of the photon contains two parts: one corresponding
to the rotational flow of energy and the other to the transla-
tional flow of energy. According to the definition given in
(2), the spin angular momentum bivector is in the orientation
of the plane A ∧ E which is a plane normal to the propaga-
tion direction. Let us consider a set of orthogonal unit vectors

{σk; k = 1, 2, 3} along x, y and z axes. If we choose the propa-
gation direction along the z-axis, then the unit bivector along
the spin orientation is iσ3. To understand the orientation of
spin and orbital angular momenta, let us consider circularly
polarized light waves propagating along the z-direction and
the waves have finite extent in the x− and y-directions. The
propagating wave has cylindrical symmetry about the z-axis.
The energy of the wave can be visualised as a sum of circu-
lating energy flow in the x-y plane and a translational energy
flow in the z-direction. In the case of circularly polarized light
the vector potential A contains only two components

A =
E0

ω
[σ1cos(k · r − ωt) + σ2sin(k · r − ωt)] . (18)

Here, k is the wave vector. The three vectors E, B and A
rotate in a plane normal to the propagation direction. Differ-
entiation of (18) with respect to time gives the electric field
vector

E = E0 [−σ1sin(k · r − ωt) + σ2cos(k · r − ωt)] . (19)

Then, the bivector product A ∧ E becomes

A ∧ E = iσ3
E2

0

ω
, (20)

where σ1σ2 = iσ3. The spin angular momentum of electro-
magnetic field or the photon is expressed as

S = iσ3
1

4π

∫
E2

0

ω
d3r = iσ3~ , (21)

where the energy density of the electromagnetic wave is nor-
malized so that the energy is one quantum. Normally, because
of the fact σ3 ∧ k = 0, the z-component of angular momen-
tum goes to zero but not the other components of the orbital
angular momentum. From the second term on the right of (2),
the angular momentum density is expressed as a sum of two
terms

r ∧ En∇An = r ∧ Ex∇Ax + r ∧ Ey∇Ay . (22)

Substituting individual components of E and ∇A in the above
equation, we find the orbital angular momentum density

r ∧ En∇An =
E2

0

ω
r ∧ k . (23)

Then the orbital angular momentum of the photon is express-
ed as

L = r ∧ k
1

4π

∫
E2

0

ω
d3r . (24)

In the above equation, the vector r is restricted to the plane
iσ3 and contains only x and y components. If the magni-
tude of r is equal to the reduced wavelength, then the product
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|r||k| = 1 for circularly polarized light. The orbital angular
momentum is now expressed as

L = r̂ ∧ σ3
1

4π

∫
E2

0

ω
d3r = im~ , (25)

where the unit vector r̂, in an arbitrary direction, lies in the
plane iσ3, the unit vector m is chosen normal to the orienta-
tion of r̂∧σ3 and the integral term in (25) represents the ratio
between the energy of the photon and the frequency. Thus the
orientation of the orbital angular momentum is always normal
to the orientation of spin angular momentum in a photon. In
the case the photon is propagating in an arbitrary direction say
n then from the above analysis, the spin angular momentum
and orbital angular momentum are expressed as

S = in~ , (26)

L = im~ . (27)

The vectors n and m satisfy the condition n · m = 0 and
the vector m lies in the plane of the unit bivector in. Since,
the direction of unit vector m or the orientation of the plane
im is arbitrary, the rotation of m is expressed by the relation
m′ = R̄mR. Here, R = einφ/2 is a rotor and in this way the
orbital angular momentum depends on the angle φ. The spin
angular momentum describes the intrinsic angular momen-
tum of a photon and commutes with the generator of trans-
lation n|k|. The spin angular momentum causes the complex
vector field F to rotate in the E ∧ B plane without chang-
ing the direction of propagation vector k. The photon spin
is the generator of rotations in the plane normal to the prop-
agation direction. Whereas, the orbital angular momentum
causes the plane having orientation defined by the bivector
r ∧ k to rotate without changing the direction of the vector k
and the orientation of the plane E ∧ B. The orbital angular
momentum does not commute with the generator of transla-
tion. The photon orbital angular momentum is the generator
of rotations in a plane normal to the spin plane. Thus one can
conclude that both the spin and orbital angular momenta of
a photon are intrinsic. The intrinsic nature of orbital angu-
lar momentum was discussed by Berry [28]. Further, Allen
and Padgett [29] argued that the spin and the orbital angular
momenta are intrinsic in nature in the case when the trans-
verse momentum is zero for the helical wave fronts. The spin
and orbital angular momenta of the photon are fundamental
quantities and produce complex rotations in space and such
rotations are actually produced by the fluctuating zeropoint
fields present throughout space [38, 41]. The internal com-
plex rotations are not only limited to the rotations pertain-
ing to the plane of spin angular momentum but also exists
in the plane of orbital angular momentum. In the Laguerre-
Gaussian modes of laser beams it has been shown explicitly
in the quantum mechanical approach that the orbital angular
momentum of light beams resembles the angular momentum
of the harmonic oscillator [42].

4 Conclusions

The electromagnetic field per unit volume is represented by
an energy momentum even multivector and expressed as a
sum of scalar and bivector components, and we identify the
scalar part as the kinetic part which shows the flow of energy
in the direction of propagation and the bivector part as the
rotational energy flow in the plane normal to the direction of
propagation over a finite extent. The even multivector form
of energy shows that there exist internal complex rotations
of the electromagnetic field. The cause of these internal ro-
tations is attributed to the fluctuations of the zeropoint field.
In general, the internal complex rotations represent the an-
gular momentum of the photon. The angular momentum of
the photon is defined as the ratio between the rotational en-
ergy of the photon and the angular frequency of rotation. The
spin angular momentum bivector represents a plane normal
to the propagation direction. We find that the orientation of
orbital angular momentum is always normal to the orientation
of spin angular momentum in a photon. The photon spin is the
generator of rotations in the plane normal to the propagation
direction. The photon orbital angular momentum is the gen-
erator of rotations in a plane normal to the spin plane. Thus,
one can conclude that both spin and orbital angular momenta
of a photon are intrinsic in nature. The internal structure of
the photon may be visualized as the superposition of elec-
tromagnetic field flow or rotation in two normal orientations
in complex vector space. Because of the formal similarity be-
tween gluons and photons, the conclusions obtained here may
be extended to the gluon structure.
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