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Gravitational Waves from a Sinusoidially Varying Spherical Distribution of Mass
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A theory is developed for the study of spherical gravitational waves by constructing a

Generalized Gravitational Field Equation from Newton’s gravitational field equation.

The Euclidean Laplacian ∇2 is replaced with the Riemannian Laplacian ∇2
R. A general

gravitational field equation is obtained which resolves the incompleteness in Newton’s

gravitational field equation. The general gravitational field equation reduces to the pure

Newtonian gravitational field equation in the limit of c0 as required by the Principle of

Equivalence of Physics. It also contains post Newton correction terms of orders of c−2

and all degrees of nonlinearity in the gravitational scalar potential and its derivatives.

Considering a sinusoidally varying homogeneous spherical distribution of mass in the

frame work of the obtained general gravitational field equation, gravitational waves are

predicted with phase velocity equivalent to the speed of light in vacuo.

1 Introduction

According to General Relativity Theory, gravitational waves

are oscillations of spacetime or small distortions of spacetime

geometry, or ripples of spacetime curvature which propagate

in the time through space as waves. Gravitational waves are

produced mainly by extremely massive binary stellar objects,

such as binary neutron stars or binary black holes. Though

gravitational waves can be produced by all mass interactions,

the amplitude of these waves is far too small to be detected.

Normal solar systems produce gravitational waves when their

planets orbit their primary, but again, these are incredibly

tiny ripples. Even a binary black hole — which produces

the most powerful gravitational waves we can imagine — re-

quires measurements of distances of about 1/1000 of the di-

ameter of a proton [1].

The search for gravitational waves has been the centre of

current research in Astronomy and Cosmology. Higher pre-

cision and more sensitive detectors have been developed over

the years. Experiments on gravitational waves started with

Weber’s experiments on gravitational antennae; in which he

registered weak signals [2]. He concluded that some pro-

cesses at the centre of the Galaxy were the origin of the de-

tected signals. Other attempts were made in detecting grav-

itational waves such as [3-6]. The most recent experimental

attempt by Abbott et al. in 2015 [7] claims that two detec-

tors of the Laser Interferometer Gravitational-Wave Observa-

tory simultaneously observed a transient gravitational-wave

signal.

Much theoretical work has also been done to either proof

or disproof the existence of gravitational waves. In a nut-

shell, theoretical studies of gravitational waves can be classi-

fied into three main groups [2]:

• Research targeted at giving an invariant definition for

gravitational waves. These include Pirani [8], Bondi

[9], and others.

• Searching for solutions to Einstein gravitational field

equations by proceeding from physical considerations

to describe gravitational radiations. These include

studies by Einstein and Rosen [10], Petrov [11], Chifu

and Taura [1] and others.

• Studying gravitational inertial waves, covariant with re-

spect of transformations of spatial coordinates and also

invariant with respect of transformations of time [12].

This research article falls in the second group. The so-

called “Great Metric Tensor” [13-14] is used to deduce a gen-

eral gravitational wave equation; which is later applied to a

sinusoidally varying mass for a homogeneous spherical dis-

tribution of mass.

2 The general spherical gravitational field equation

Newton’s gravitational field equation is given by

∇2 f (r, t) = 4πGρ0(r, t) (1)

where, ρ0 is the density of proper mass in a distribution or

system, ∇2 is the pure Euclidean Laplacian, G is the universal

gravitational constant and f is the gravitational scalar poten-

tial.

The incompleteness of equation (1) are as follows:

1. The density of proper mass (source of gravitational

field) in equation (1) can vary with coordinate time and

the Euclidean Laplacian cannot account for this possi-

ble variation.
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2. Time variation of proper mass should result in the ra-

diation of energy possibly in the form of gravitational

waves or radiation that can propagate in space-time

with or without gravitational field.

3. Newton’s gravitational intensity vector g is given by

g = −∇ f (2)

where ∇ is the Euclidean gradient operator.

The Euclidean operator in equation (2) above has no vari-

ation with time and hence will not be sufficient for the com-

plete description of gravitational intensity vector of time de-

pendent gravitational fields.

From the foregoing it becomes necessary to seek a gen-

eral gravitational field equation which will be sufficient for

the description of all gravitational fields. Howusu in 2009

[13] proposed that a general gravitational field equation based

on Riemannian coordinate geometry may be obtained by re-

placing the Euclidean Laplacian with Riemannian Laplacian

to obtain

∇2
R f (r, t) = 4πGρ0(r, t) (3)

where ∇2
R

is the Riemannian Laplacian based on the great

metric tensor for all possible gravitational fields. The gravi-

tational intensity (acceleration due to gravity) for all possible

gravitational fields can also be defined in terms of the Rie-

mannian gradient operator ∇R. The most general form of the

Riemannian Laplacian is given as

∇2
R =

1
√
g

∂

∂xµ

(

√
ggµν

∂

∂xν

)

(4)

where gµν is the contravariant metric tensor. Thus, for any

function f (r, t) we can write

∇2
R f (r, t) =

1
√
g

∂

∂xi

(

√
ggi j ∂

∂x j

)

f (r, t)

+
1
√
g

∂

∂x0

(

√
gg00 ∂

∂x0

)

f (r, t).

(5)

Using Einstein’s coordinates with x0 = ct, equation (5)

can be written explicitly as

∇2
R f (r, t) =

1
√
g

∂

∂xi

(

√
ggi j ∂

∂x j

)

f (r, t)

+
1

c2
√
g

∂

∂t

(

√
gg00 ∂

∂t

)

f (r, t).

(6)

Hence equation (3) can be written more explicitly as

4πGρ0(r, t) =
1
√
g

∂

∂xi

(

√
ggi j ∂

∂x j

)

f (r, t)

+
1

c2
√
g

∂

∂t

(

√
gg00 ∂

∂t

)

f (r, t).

(7)

Equation (7) is the general field equation which resolves

the incompleteness of Newton’s gravitational field equation.

Remarkably, the general gravitational field equation reduces

to the pure Newton’s gravitational field equation in the limit

of c0 ( as required by the Principle of Equivalence of Physics).

It may also be noted that the gravitational field equation con-

tains post Newton correction terms of orders of c−2 and all de-

grees of nonlinearity in the gravitational scalar potential and

its derivatives.

The Great Metric Tensor for all spherical gravitational

fields in spherical polar coordinates (r, θ, φ, x0) is given as

[13-14]:

g11(r, θ, φ, x0) =

(

1 +
2

c2
f (r, θ, φ, x0)

)−1

, (8)

g22(r, θ, φ, x0) = r2, (9)

g33(r, θ, φ, x0) = r2 sin2 θ , (10)

g00(r, θ, φ, x0) = −
(

1 +
2

c2
f (r, θ, φ, x0)

)

(11)

where f is the gravitational scalar potential. From equation

(8) to (11) it can be deduced that

√
g = r2 sin θ. (12)

Equation (7) can thus be written as:

4πGρ0(r, t) =
1

r2

∂

∂r

[(

1 +
2

c2
f

)

r2

]

f

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

f

+
1

r2 sin2 θ

∂2

∂φ2
f

− 1

c2

∂

∂t















(

1 +
2

c2
f

)−1
∂

∂t
f















.

(13)

Equation (13) is the general spherical gravitational field

equation interms of the great metric tensor. The following

important facts can be drawn from equation (13):

1. It contains the
(

1 + 2
c2 f

)

term which is not found in

Newton’s gravitational field equation. The conse-

quence of this is that it predicts correction terms to the

gravitational field of all massive spherical bodies.

2. The time component of this equation predicts the ex-

istence of gravitational waves with velocity which is

equal to the speed of light in vacuo.

3 Special case: sinusoidally varying homogenous

spherical distribution of mass

Now, consider a sinusoidally varying homogenous spherical

distribution of mass. In this case, the mass varies in such a
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way that f is independent of the polar angle θ and the az-

imuthal angle φ, [15] such that equation (13) reduces to

4πGρ0(r, t) =
1

r2

∂

∂r

[(

1 +
2

c2
f

)

r2 ∂

∂r

]

f

− 1

c2

∂

∂t















(

1 +
2

c2
f

)−1
∂

∂t
f















.

(14)

Linearizing equation (14) we obtain:

f ′′ +
2

r
f ′ − 1

c2
f̈ = 4πGρ0. (15)

Suppose we have a dipole antenna which consists of two

spherical bodies where electrons are driven by an oscillator

[1]; then the movement of the electric charges driven by the

oscillator is equivalent to an exponential factor. We therefore

modify equation (15) in such a way that the proper mass den-

sity varies sinusoidally within a homogeneous spherical mass

distribution such that:

f ′′ +
2

r
f ′ −

1

c2
f̈ = 4πGρe eiωt. (16)

In order to solve equation (16) we seek a solution such that

f (r, t) = R(r) eiωt (17)

where R is the radius of the spherical mass distribution. Equa-

tion (15) will thus become

R′′(r) +
2

r
R′(r) +

1

c2
ω2R(r) = 4πGρe. (18)

Let

R(r) =
1

r
F(r),

then

R′ = − 1

r2
F(r),

and

R′′(r) =
1

r
F′′(r) − 2

r2
F′(r) +

2

r3
F(r).

It therefore follows that equation (18) becomes

1

r
F′′(r) +

ω2

c2r
F(r) = 4πGρe. (19)

Hence, the interior field equation for this distribution of mass

is given as

1

r
F′′(r) +

ω2

c2r
F(r) = 4πGρe ; r < R (20)

and the corresponding exterior field equation as:

1

r
F′′(r) +

ω2

c2r
F(r) = 0 ; r > R. (21)

Equation (21) is a simple harmonic function which can have

three solutions viz:

F(r) = Beikr, (22)

F(r) = D cos(kr), (23)

and

F(r) = E sin(kr). (24)

Taking the first and second derivatives of equation (22)

we have

F′(r) = ikB eikr

and

F′′(r) = −k2B eikr,

which can be substituted into (21) to yield

−k2B eikr +
ω2

c2
B eikr = 0, (25)

hence

k = ±ω
c
. (26)

We thus state the complimentary solution as

F−c (r) = E sin

(

ω

c
r

)

; r > R (27)

F+c (r) = D cos

(

ω

c
r

)

; r < R. (28)

The particular solution for the interior field equation is

given by

1

r
F′′(r) +

ω2

c2r
F(r) = 4πGρe; r < R. (29)

Let F(r) = Ar, then F′(r) = A and F′′(r) = 0 and equa-

tion(29) yields

A =
4πGc2ρe

ω2
, (30)

and hence

F−p (r) =
4πGc2ρe

ω2
r. (31)

Equation (31) is thus the particular solution for the exte-

rior field equation. The general solution for the exterior field

is then given as

R+(r) =
D

r
cos

(

ω

c
r

)

4πGc2ρe

ω2
. (32)

Equation (17) can thus be fully expressed as

f +(r, t) =
D

r
cos

(

ω

c
r

)

cos(ωt) +
iD

r
cos

(

ω

c
r

)

sin(ωt) (33)

with independent solutions

f +(r, t) =
D

r
cos

(

ω

c
r

)

cos(ωt) (34)
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and

f +(r, t) =
D

r
cos

(

ω

c
r

)

sin(ωt). (35)

The two solutions (34) and (35) can be combined to yield

f +(r, t) =
1

2

D

r

[

cos

(

ω

(

r

c
+ t

))

+ cos

(

ω

(

r

c
− t

))]

. (36)

From equation (36) it is clear that the phase of the wave equa-

tion φ is given by

φ =
ωr

c
± ωt, (37)

hence
dr

dt
= c. (38)

4 Concluding remarks

In this paper we have shown [equation (36)] that in the limit of

linear terms, the general gravitational field equation predicts

gravitational waves with phase velocity which is equal to the

speed of light in empty space. These waves will not vary with

any angle, hence they will move along radial lines from in-

side the sphere outwards(radial waves). A sinusoidally vary-

ing mass thus radiates spherical gravitational waves. The

obtained results gives similarlar predictions as in [1, 16] in

the limit c−2 though in the limit c0 [16] predicts gravitational

waves with imaginary phase.
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