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We assume here a slightly varying cosmological term which readily induces a perma-
nent background field filling the physical vacuum. A precise form of the variable cos-
mological term is introduced containing an infinitesimal Killing vector which accounts
for the space-time variation of this term. As a result the term can be added to the Ein-
stein Lagrangian without affecting the varied action δS . As a result, we showed in an
earlier publications that the permanent background field filling the vaccum is excited in
the vicinity of matter which precisely corresponds to its gravitational field classically
described by a pseudo-tensor. With this preparation, the global energy-momentum ten-
sor of matter and gravity field is no longer a pseudo-tensor and is formally conserved
like the Einstein tensor. In the excited state, this antisymmetric tensor can be con-
veniently symmetrized by applying the Belinfante procedure which automatically self
excludes far from matter since the background field tensor is naturally symmetric.

Introduction

The substance of this study is inspired by the following con-
siderations. In the framework of the Theory of General Rel-
ativity (GR), the Einstein tensor exhibits a conceptually con-
served property, while any corresponding stress-energy tensor
does not, which leaves the theory with a major inconsistency.
When pure matter is the source, a so-called “pseudo-tensor”
describing its gravitational field is introduced so that the four-
momentum of both matter and its gravity field is conserved
[1]. Unfortunately in this approach, the gravitational field
maybe transformed away at any point and by essence, its
pseudo-tensor cannot appear in the Einstein’s field equations,
as it should be.

We will tackle the problem in another way : Restricting
our study to neutral massive flow, we proceed as follows. We
introduce a space-time variable term that supersedes the so-
called cosmological term Λgab in the Einstein’s field equa-
tions [2]. Under this latter assumption, we formally show that
the gravity field of a massive source is no longer described by
a vanishing pseudo-tensor, but it is represented by a true ten-
sor which can explicitly appear with the bare matter tensor
together with another specific field, on the right hand side of
the Einstein’s field equations. Inspection also shows that this
global stress-energy tensor now complies with the intrinsic
conservation property of the Einstein tensor as it should be.
As a result, the physical vacuum is here filled with a homoge-
neous vacuum background field which is always present in the
so-called Einstein’s “source free” equations and whose tensor
exhibits a conserved property. Our theory leads to admit that
matter causes the surrounding background field to produce
its gravitational field which decreases asymptotically to the
level of this vacuum field. Naturally, since we will deal with
energy-momentum canonical field tensors which are not sym-
metric, the total angular momentum of the isolated system is
not conserved. In this case, it is always possible to apply the

symmetrizing procedure to these tensors according to J. Be-
linfante [3]. In the absence of matter, the inferred Belinfante
tensor reduces to the symmetric background field tensor as it
should be.

Notations

Space-time Latin indices run from a = b: 0, 1, 2, 3, while
spatial Greek indices run from α = β: 1, 2, 3. The space-time
signature is −2. In the present text, κ is Einstein’s constant
4πG/c4, where G is Newton’s gravitational constant.

1 The field equations in General Relativity

1.1 The problem of the conserved gravity tensor

The General Theory of Relativity requires a 4-dimensional
pseudo-Riemannian manifold. A Riemannian manifold is
characterized by the line element ds2 = gab dxadxb. It is well
known that by varying the action S = LEd4x with respect to
the metric tensor gab with the Lagrangian density given by

LE =
√−g gab

[{
e

ab

} {
d

de

}
−
{
d

ae

} {
e

bd

}]
, (1.1)

g = det ∥ gab ∥. (1.2)

Also one infers the symmetric Einstein tensor

Gab = Rab −
1
2
gab R , (1.3)

where

Rbc = ∂a

{
a

bc

}
− ∂c

{
a

ba

}
−
{
d

bc

} {
a

da

}
−
{
d

ba

} {
a

dc

}
(1.4)

is the Ricci tensor with its contraction R, the curvature scalar
(the
{
e

ab

}
denote the Christoffel symbols of the second kind).

The 10 source free field equations are

Gab = 0 . (1.5)
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The second rank Einstein tensor Gab is symmetric and is only
function of the metric tensor components gab and their first
and second order derivatives. The relations

∇a Ga
b = 0 (1.6)

are the conservation identities provided that the tensor Gab

has the form [4]

Gab = k
[

Rab −
1
2
gab (R + 2Λ)

]
, (1.7)

where k is a constant, which is here assumed to be 1, while Λ
is usually named the cosmological constant.

Einstein’s field equations for a source free field are

Gab = Rab −
1
2
gab R − Λgab = 0 . (1.8)

In the case where the field source is present, the field equa-
tions become

Gab = Rab −
1
2
gab R − Λgab = κTab , (1.8 bis)

where Tab is the energy-momentum tensor of the source.
However, unlike the Einstein tensor Gab which is concep-

tually conserved, the conditions

∇a T a
b = 0 (1.9)

are never satisfied in a general coordinates system [5]. There-
fore, the Einstein tensor Gab which intrinsically obeys a con-
servation condition inferred from the Bianchi’s identities, is
generally related with a tensor Tab which obviously fails to
satisfy the same requirement.

Hence, we are faced here with a major inconsistency in
GR which can be removed in the case of a neutral massive
source upon a small constraint.

1.2 The tensor density representation

We first set
g

ab =
√−g gab (1.10)

thus the Einstein tensor density is

G
ab =

√−g Gab , (1.10 bis)

G
c
a =
√−g Gc

a , (1.10 ter)

R
ab =

√−g Rab . (1.11)

In the density notations, the field equations with a source
(1.8) will read

G
ab = Rab − 1

2
gab
R − √−g gabΛ = κTab , (1.12)

where Tab =
√−g T ab.

2 The new approach on gravity

2.1 The canonical gravity pseudo-tensor

Let us consider the energy momentum tensor for neutral mat-
ter density ρ

Tab = ρ c2uaub (2.1)

as the right hand side of the standard field equations

Gab = Rab −
1
2
gab R = κ Tab . (2.2)

The conservation condition for this tensor are written

∇a T a
b =
√−g ∂aT a

b −
1
2

Tac∂b gac = 0 (2.3)

with the tensor density

T
a
b =
√−g T a

b . (2.4)

However, across a given hypersurface dS b, the integral

Pa =
1
c

∫
T ab √−g dS b (2.5)

is conserved only if [6]

∂a T
a
b = 0 . (2.6)

This problem can be cured only if the metric admits a
Killing vector field [7]. If this is not so, we write (2.3) for the
bare matter tensor density

∂a(Ta
b)matter =

1
2

(Tcd)matter ∂b gcd . (2.7)

Inspection then shows that

Ril dgil =
√−g

[
−Rie +

1
2
gieR
]

dgie =

= − κ (Tie)matter dgie . (2.8)

Taking now into account the Lagrangian formulation for
Ril which is

Ril =
dLE

gil
= ∂k

[
∂LE

∂(∂k g
il)

]
− dLE

∂ gil
, (2.9)

we obtain

− κ (Til)matter dgil =

{
∂k

[
∂LE

∂ (∂k g
il)

]
− ∂LE

∂gil

}
dgil =

= ∂k

[
∂LE dgil

∂ (∂k g
il)

]
− dLE

or

− κ (Til)matter ∂m gil = ∂k

[
∂LE ∂m(∂gil)
∂(∂k g

il)
− δkm LE

]
=

= 2 κ ∂k(tkm)field , (2.10)
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where (tkm)field denotes the field tensor density extracted from

2 κ (tkm)field =
∂LE ∂m(∂gil)
∂(∂k g

il)
− δkm LE (2.11)

so that we have the explicit canonical form

(tkm)field =
1

2κ

{
∂LE ∂m(∂gil)
∂(∂k g

il)
− δkm LE

}
(2.12)

where

∂k(Tk
i )matter =

1
2

(Tek)matter ∂k gei = −∂k(tki )field

that is, the required conservation relation is

∂k

[
(Tk

i )matter + (tki )field

]
= 0 . (2.13)

Looking back of the deduction, (2.12) defines the canon-
ical gravity pseudo-tensor density of matter

(tkm)pseudogravity =
1

2κ

{
∂LE ∂m(∂gil)
∂(∂k g

il)
− δkm LE

}
. (2.14)

Expressed with the explicit form of the Lagrangian den-
sity LE (1.1), (2.14) can be written in the form

(tkm)pseudogravity =

=
1

2κ

({
k

il

}
∂m g

il −
{
i

il

}
∂m g

lk − δkm LE

)
. (2.15)

This is the mixed Einstein-Dirac pseudo-tensor density
[8] which is not symmetric on k and m, and therefore is not
suitable for basing a definition of angular momentum on.

Thus, our aim is to look for:

• A true tensor;
• A symmetric tensor.

2.2 The new canonical tensor

In the density notations, the field equations with a massive
source (1.8 bis) can be re-written as

G
ab = Rab − 1

2
g

ab
R − gab ζ = κ (Tab)matter , (2.16)

where in place of the constant cosmological term Λ
√−g, we

have introduced a scalar density denoted as

ζ = Ξ
√−g . (2.17)

Unlike Λ, the scalar Ξ is slightly space-time variable and
can be regarded as a Lagrangian characterizing a specific vac-
uum background field.

We will choose the variation of Ξ as follows

Ξ = ∇a κ
a, (2.17 bis)

where κa is a Killing vector. Hence

ζ =
√−g ∇a κ

a. (2.17 ter)

We will first write the field equations with a massive
source together with its gravity tensor density

G
ab = Rab − 1

2
gab
R = κ

[
(Tab)matter + (tab)gravity

]
(2.18)

where (tab)gravity is related to ζ as

G
ab = Rab − 1

2
gab
R = κ

[
(Tab)matter +

gabζ

2κ

]
. (2.19)

Re-instating the term ζ accordingly, the gravitational field
tensor density now reads

(tkm)gravity =
1

2κ

{
∂LE ∂m(∂gil)
∂(∂k g

il)
− δkm (LE − ζ)

}
. (2.20)

A first inspection shows that ζ represents the Lagrangian
density of the background field, therefore the modified field
equations (2.19) should be derived from an Einstein Lagran-
gian density different from LE (1.1) and which includes ζ.

By choosing the form (2.17 ter), we check that

ζ =
√−g ∇a κ

a = ∂a

(√−g κa) .
Now, if we write the new action as

SM =

∫
LM d4x =

∫
LE d4x +

∫
∂a

(√−g κa) d4x

due to Gauss’ theorem we see that the last integral can be
transformed in an integral extended to an hyperfurface which
does not contribute in the variation of SM and

δ

∫
LM d4x = δ

∫
LE d4x .

Therefore, it is legitimate to maintain (tkm)gravity as per (2.20).
The presence of the scalar density ζ characterizing the

background field is here of central importance, as it means
that (tkm)gravity can never be zero in contrast to the classical
theory where the gravitational field is only described by an
awkward pseudo-tensor.

The quantity (tkm)gravity constitutes thus a true tensor den-
sity describing the gravity field attached to the neighbouring
matter.

It is then easy to show that we have the conserved quantity

∂a

[
(Tb

a)matter + (tba)gravity

]
= 0 . (2.21)

In this picture and examining (2.20), we clearly see that
the gravitational field of matter appears as an excited state
of the homogeneous background energy field which perma-
nently fills the physical vacuum.
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Far from its matter source, the field sharply decreases
down to the level of the background field described by the
tensor density (tab)background field. Therefore the “source free”
field equations should always retain a non-zero right hand
side according to

G
ab = Rab − 1

2
gab
R = κ (tab)background field (2.22)

which are the equivalent of (1.8)

G
ab = Rab − 1

2
gab
R = κ

gab ζ

2κ
. (2.23)

In this case, the conservation law applied to the right hand
side of the tensor density field equations is straightforward

∂a(tba)background field = ∂a

(
ζ

2κ
δba

)
= 0 . (2.24)

2.3 Symmetrization of the gravity tensor

Let us consider the new gravity tensor expressed with the ex-
plicit form of the Lagrangian density LE (1.1):

(tkm)gravity =

=
1

2κ

[{
k

il

}
∂m g

il −
{
i

il

}
∂m g

lk − δkm (LE − ζ)
]
. (2.25)

Like we mentioned, this tensor includes the Einstein-
Dirac pseudo-tensor which is not symmetric. We can how-
ever follow the Belinfante procedure used to symmetrize the
canonical tensor (Θk

m)gravity that extracted from (tkm)gravity =√−g (Θk
m)gravity.

The total angular momentum is known to be the sum

Mcba = xb(Θca)gravity − xa(Θcb)gravity + S cab, (2.26)

where S cab is the contribution of the intrinsic angular mo-
mentum. By definition,

S cab = −S cba.

Local conservation of the total angular momentum, i.e.
∇c Mcab = 0, requires that

∇c S cab = (Θab)gravity − (Θba)gravity . (2.27)

We now add a tensor Υbca which is antisymmetric with
respect to the first two indices b, c:

(tca)gravity = (Θca)gravity + ∇b Υ
bca, (2.28)

where
Υcba =

1
2

(
S cba + S bab − S acb

)
. (2.29)

The (tab)gravity should be identified to the Belinfante-Rosenfeld
tensor [9] which is found to be symmetric.

In addition, the antisymmetry of Υcba guarantees that the
conservation law remains unchanged

∇a (Θa
b)gravity = ∇a (tab)gravity = 0 . (2.30)

Staying far distant from matter (unexcited state), we have

(Θab)gravity −→ (tab)background field , Υcba = 0 .

By essence, (tab)background field is thus symmetric.

Conclusions and outlook

Like we mentioned in an earlier publication, from the begin-
ning of General Relativity, the cosmological constant Λ has
played an unsavory rôle Einstein included this constant in his
theory, because he wanted to have a cosmological model of
the Universe which he wrongly thought static. Shortly after
the works published by De Sitter and Lemaı̂tre, he decided to
reject it.

But to-day, despite its smallness, a term like Λ seems
to be badly needed to explain some astronomical observa-
tions, all related with the basic dynamical expanding model
(Robertson-Walker et al.), even though its occurrence was
never clearly explained.

In the classical General Relativity, the space-time is ei-
ther filled with ponderomotive energy or devoid of source,
which is accepted as a physical vacuum. However, numer-
ous experiments predict that quantum vacuum is not “empty”
but permanently subjected to virtual particles exchanges of
energy.

Heisenberg’s Uncertainty Principle, which allows for this
process to take a place, has not been used in our demonstra-
tion, but it certainly plays a role in the variable property of
the cosmological background field which our study relied on.

To sum up all that above, we have eventually reached the
following important results:

• The gravitational energy can be represented by a true
tensor;
• Its nonlocalizability doesnot hold anymore;
• The existence of a vacuum field is inferred from GR,

which confirms the quantum predictions.

This last conclusion is noteworthy since our theory shows
that General Relativity and Quantum Physics have convergent
results.
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