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Here is revisited de Broglie’s Wave Mechanics Theory of Double Solution wherein a

particle endowed with a variable proper mass is required to propagate within a hidden

medium in order to describe a physical scalar wave carrying its own associated mass.

Since the experiment that detected the wave applied to electrons, we extend the de

Broglie’s theory to the Dirac spinor, so that we can outline the physical reality of this

fermion field.

Introduction

Some hundred years ago, was established the famous rela-

tion E = hν later verified for the photon. On this basis,

in 1924, Louis de Broglie extended the wave dualism to all

massive particles. The predicted original wave function as-

sociated with a given particle was soon detected in 1927 by

Davisson and Germer in their famous experience on electrons

diffraction by a nickel crystal lattice [1]. The wave produc-

ing physical effects, was an overwhelming evidence of its true

existence.

Nevertheless, since the Brussels Solvay Symposium was

held in 1927, official physics interpretation prevailed which

considered quantum mechanics on the pure statistical grounds

and then leading to accept the notion of non-real wave

functions.

Although it is unquestionable that use of a probabilistic

wave and its generalization did lead to accurate prediction

and fruitful theories, de Broglie could never believe that ob-

servable physical phenomena follow from abstract mathemat-

ical wave functions. In his opinion, the wave function had to

remain an objective physical entity which is intimately re-

lated with its mass, rather than the subjective probabilistic

representation currently adopted in modern quantum physics.

Since the real wave was detected by means of electrons scat-

tering, we will here formally show that there is a strict identity

between its phase and the one of its associated wave which

therefore physically carries the particle. To make this iden-

tity possible, the electron proper mass must be variable ac-

cording to the Planck-Laue relation [2]. Within this frame,

de Broglie’s theory inferred a so-called “guidance formulae”

which forces the electron to be always in motion. However,

because of the stationary property of energy levels inside an

atom, a static electron is not compatible with its dynamic

guided state. de Broglie then postulated the existence of a hid-

den medium which permanently exchanges energy and mo-

mentum with the electron causing it to oscillate and then

avoiding a motionless location.

When I first met Louis de Broglie in summer 1966, this

issue was debated with a great deal of speculation. Today,

another explanation can be pushed forward.

Notations

Space-time Latin indices run from a = b: 0, 1, 2, 3, while

spatial Greek indices run from α = β: 1, 2, 3. The space-time

signature is −2.

1 Spinor field-electron duality

1.1 The origins of the Double Solution Theory

1.1.1 Basics of the wave mechanics

From standard optics, we first recall the definition of the clas-

sical wave with a frequency v

ψ = a(n) exp [i(νt − k · r)] (1.1)

which propagates along the direction of the unit vector n.

(Here k is the 3-wave vector, k · r = φ is the wave spatial

phase, n is the refractive index of the medium.)

Formula (1.1) is a solution of the classical propagation

equation

∆ψ =
1

w2

∂2ψ

c2∂t2
, (1.2)

where w is the wave phase velocity of the wave moving in

a dispersive medium whose refractive index is n(ν) generally

depending on the coordinates, and which is defined by

1

w
=

n(ν)

c
. (1.3)

This medium is assumed to be homogeneous and only de-

pends on the frequency ν. The (constant) phase φ of the

wave is progressing along the given direction with a sepa-

ration given by a distance λ = w/ν, called wavelength.

Consider now the superposition of a group of stationary

(monochromatic) waves having each a very close frequency

along the x-axis

ψ =

∫ ν0+∆ν

ν0−∆ν

a(n) exp
[

i(νt − φ(ν))
]

. (1.4)

Such a group of waves moves with a constant velocity called

group velocity vg according to the Rayleigh’s formula

1

vg
=

d(ν/v)

dν
=

1

ν0

∂nν

∂ν
. (1.5)
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The wave mechanics eventually shows that the group veloc-

ity vg of waves associated with a particle of rest mass m0,

coincides with the velocity of this particle whose momen-

tum along the x-axis (in vacuum) is given by the famous de

Broglie’s relation [3]

px = m0 vx =
h

λ
. (1.6)

We clearly note that there is an obvious first physical link

between the particle and its associated wave which will be

further substantiated.

1.1.2 Double nature of the wave function

Like we mentioned above, de Broglie was firmly convinced

that the wave associated with a massive particle should be a

real observable quantity, therefore, he introduced a true plane

wave of the usual form

ψ = a(xα) exp

[

i

h
φ(xα)

]

, (1.7)

which is connected to a probabilistic Ω-wave by the relation

Ω = f ψ , (1.8)

where f is a constant normalizing factor.

The original wave mechanics is thus complemented with

the Double Solution Theory [4], forΩ and ψ are two solutions

of the same propagation equation. The Ω-wave (normed in

the usual quantum machanical formalism), has the nature of a

subjective probability representation formulated by means of

the objective ψ-wave.

Defining ψ∗ as the complex conjugate of ψ, it is well

known that ψ2dV = ψψ∗ dV gives the absolute value of find-

ing the particle in the volume element dV so that the normal-

ization condition is adapted with f as

∫

V

ΩΩ∗dV = 1 . (1.8 bis)

This guarantees that the particle is present in the arbitrary vol-

ume V .

The Ω and ψ have the same phase φ, but the constant f

ought to be much larger than 1. Indeed, the current theory

which only uses the Ω-function assumes this quantity to be

spread out over the whole wave, i.e. spread out over a related

physical quantity b (e.g. energy of the particle) according to

∫

V

ΩΩ∗dV = b . (1.8 ter)

In the double solution theory however, b should be con-

centrated in a very small region occupied by the particle and

the integral of a2bdV taken over the ψ-wave in the volume V

is much smaller than b, which eventually leads to |b| ≫ 1.

2 Extension to the spinor

2.1 The real spinor wave

2.1.1 The Dirac operators and Dirac equation (reminder)

In order to write the Schrödinger equation under a relativistic

form, P. A. M. Dirac has defined a specific four-components

wave function ΨA called spinor [5] which must necessarily

apply to any spin-1/2 particles thus in our case, the electron.

(Capital Latin spinorial indices are: A = B = 1, 2, 3, 4.)

To this effect, he introduced a system of (4 × 4) non local

trace free matrices γa = (γa
A

B
). (In the classical theory, it is

customary to omit the spinorial indices.)

The matrices γ a can display the standard following com-

ponents [6]:

γ0 =





















0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0





















, γ1 =





















0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0





















,

γ2 =





















1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1





















, γ3 =





















0 0 −1 0

0 0 0 −1

−1 0 0 0

0 −1 0 0





















(2.1)

in order to satisfy the fundamental relation

γaγb + γbγa = −2ηab I , (2.2)

where ηab is the Minkowskian tensor, and I is the unit matrix.

Formula W = γa∂a is known as the Dirac operator where

the Planck constant h is absorbed in the ∂a.

For a free massive spin 1/2-field, the Dirac equation is

eventually written as

(W − m0c)Ψ = 0 , (2.3)

where the proper mass m0 is attributed to the associated spin

1/2-electron.

2.1.2 The normed spinor density

Since we are here considering a spin 1/2-fermion particle we

must look for a wave which is a real spinor Ψ that physically

carries the electron. From the classical Dirac theory, it is well

known that the probability density of the electron’s presence.

is the time component of the (real) Dirac current vector den-

sity [7]

(Ja)D = i ( ♯ΨγaΨ ) , (2.4)

where ♯Ψ is the Dirac adjoint spinor Ψ+γ0, and Ψ+ is the

(complex) conjugate transpose of Ψ. So, this density of the

electron reads

(J0)D = i ( ♯Ψγ0Ψ ) (2.4 bis)

which is easily shown to be always definite and positive.

Without the loss of generality, we could express Ψ under the

form of a plane wave spinor [8] as

Ψ = ̟(xa) exp

[

i

h
φ (xa)

]

,
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where the wave spinor amplitude ̟ and the phase φ are real

local functions. The Dirac spinor amplitudes ̟ could then

be tuned so as to possess the orthogonality and completeness

properties that guarantee that the plane waves Ψ have the ad-

equate normalization to delta functions [9]. However, only

a single spinor Ψ can be considered as a physical wave func-

tion, whereas we are left with 4-componentsΨA. Then, at first

glance, one might be tempted to consider the simple combi-

nation

Ψ = Ψ1 + Ψ2 + Ψ3 + Ψ4.

Unfortunately, theΨ-components are defined with respect

to a spinorial frame S (V4) distinct from the structural Min-

kowski space, which renders those physically irrelevant. In-

stead, we will follow another extremely simple way: since ρ
is here a real value, we have always the freedom to define a

scalar wave function Φ such that

ΦΦ∗ = ρ . (2.5)

Moreover, we assume that this wave function has the same

form as ψ (1.7)

Φ = ω (xa) exp

[

i

h
φ (xa)

]

. (2.6)

We state that Φ is the true wave function of the electron

which was actually detected in the Davisson and Germer ex-

periment upon a given set of gamma matrices γa, simply be-

cause it is derived from a real quantity which is itself inferred

from the 1/2-spinor definition (2.4 bis) as it should.

Thus, we apply the same hypothesis conjectured by de

Broglie (1.8 bis), and we are now able to write the normed

expression as
∫

V

ΞΞ∗ dV = 1 , (2.7)

where

Ξ = gΦ (2.7 bis)

is the subjective wave function and g is a normalizing factor

which satisfies (2.7).

In all the following text, Φ will be denoted as the “spinor

wave”.

2.1.3 Internal frequency of the electron

From (2.6), the energy and momentum of the electron located

at xa are

E = ∂tφ , (2.8)

P = Pa = −gradφ . (2.9)

In order to outline the physical nature of the Φ-spinor

wave, we start from the following consideration: in the frame-

work of the Special Theory of Relativity, the frequency of a

plane monochromatic wave is transformed as

ν =
ν0

√

1 − v2/c2
, v = va , (2.10)

whereas the clock’s frequency νc is transformed according to

νc = ν0

√

1 − v2/c2 . (2.11)

If an electron is assumed to contain a rest energy m0c2 = hν0,

it is likened to a small clock of frequency ν0, so that when

moving with velocity v, its frequency νc differs from that of

the wave which is here noted ν.
In this concept, our main task will consist of showing that

the electron is permanently in phase with its associated spinor

wave, thus justifying the true nature of Φ that physically car-

ries the electron

2.2 The physical nature of the spinor-electron duality

2.2.1 The Planck-Laue relation

We now postulate that the electron possesses a variable proper

mass m′
0

from which an important useful equation will be in-

ferred.

Let us first write the Lagrange function for an observer

who sees the electron of variable proper mass m′
0

moving at

the 3-velocity v

L = −m′0c2
√

1 − v2/c2 (2.12)

so that the least action principle applied to this Lagrangian be

still expressed by

δ

∫ t1

t0

Ldt = δ

∫ t1

t0

(

−m′0 c2
√

1 − v2/c2
)

dt = 0 . (2.13)

From this principle are inferred the equations of motion

d

dt

∂L

∂ẋa

=
∂L

∂xa

(2.14)

with ẋa = dxa/dt. It leads to

dP
′

dt
= −c2

√

1 − v2/c2 grad m′0 (2.15)

(since m′
0

is now variable).

Hence, by differentiating the well know relativistic rela-

tion
E′ 2

c2
= P

′ 2 + m′0
2 c2 (2.16)

we obtain
dE′

dt
= c2
√

1 − v2/c2
∂m′

0

∂t
. (2.17)

Combining (2.15) and (2.17) readily gives

dE′

dt
−

vdP
′

dt
= c2
√

1 − v2/c2
dm′

0

dt
(2.18)

where
dm′

0

dt
=
∂m′

0

∂t
+ grad m′0
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is the variation of the mass in the course of its motion.

On the other hand, we have

d
(

P
′ · v
)

dt
=

vdP
′

dt
+

m′
0
c2

√

1 − v2/c2

v

c

d v
c

dt
=

=
vdP

′

dt
− m′0 c2 d

dt

√

1 − v2/c2 (2.19)

or

d

dt

(

m′0

√

1 − v2/c2
)

=

= c2
√

1 − v2/c2
dm′

0

dt
+ m′0 c2 d

dt

√

1 − v2/c2 .

Hence, (2.18) can be written as

d

dt

(

E′ − v · P′ − m′0c2
√

1 − v2/c2
)

= 0 (2.20)

which is satisfied when the electron is at rest (that is v = 0,

E′
0
= m′

0
c2).

Therefore, we must have always

E′ =
m′

0
c2

√

1−v2/c2
= m′0c2

√

1−v2/c2 +
m′

0
v2

√

1−v2/c2
. (2.21)

This is known as the Planck-Laue formula which plays a

central rôle in our present theory.

2.2.2 Phase identity of the electron and its spinor wave

Let us first recall the relativistic form of the Doppler formula

ν0 = ν
1 − v/w
√

1 − v2/c2
, (2.22)

where ν0 is the wave’s frequency in the frame attached to the

electron, ν and w are respectively the frequency and phase

velocity of the spinor wave in a reference frame where this

electron has a velocity v.

With this formula, and taking the classical Planck relation

E = hν into account, we find

E = E0

1 − v2/c2

1 − v/w
. (2.23)

However, inspection shows that the usual equation

E =
E0

√

1 − v2/c2
(2.24)

holds only if

1 − v/w = 1 − v2/c2 (2.25)

that implies

wv = c2. (2.26)

This latter relation is satisfied provided we set up

E′ =
m′

0
c2

√

1 − v2/c2
, (2.27)

P
′ =

m′
0
v

√

1 − v2/c2
. (2.28)

A variable proper mass is then required to insure that the

electron as it moves, remains constantly in phase with that of

the associated spinor wave. To see this, let us first multiply

the Planck-Laue equation by dt















m′
0
c2

√

1−v2/c2
−

m′
0

v2

√

1−v2/c2















dt = m′0c2
√

1−v2/c2 dt. (2.29)

If n is the unit vector normal to the phase surface, we

then consider that the electron whose internal frequency is

ν0 = m′
0
c2/h has travelled a distance dn during a time interval

dt, so that its internal phase φi has been changed by

dφi = hν0

√

1 − v2/c2 dt = m′0c2
√

1 − v2/c2 dt . (2.30)

At the same time, the corresponding spinor wave phase vari-

ation is

dφ = ∂tφ dt + ∂nφ dn =
(

∂t φ + v gradφ
)

dt

and, by analogy with the classical formulae (2.8) and (2.9),

one can write

P
′ = − gradφ =

m′
0
v

√

1 − v2/c2
,

E′ = ∂t φ =
m′

0
c2

√

1 − v2/c2
,

so we find

dφ =















m′
0
c2

√

1 − v2/c2
−

m′
0

v2

√

1 − v2/c2















dt. (2.31)

Hence, from (2.29) we obtain the fundamental result

which states that the internal phase of the electron is identical

to that of its associated spinor wave

dφ = dφi . (2.32)

With (1.6), there is an obvious second physical link be-

tween the electron and the spinor wave Φ which clearly car-

ries the lepton.

This is what we wanted to show.
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Conclusions and outlook

Within the above theory, the electron is guided by its spinor

wave which means that it is always in motion. In this case,

the electron doesnot apparently comply with atomic quantum

stationary states for which the electron is required to have

zero velocity. De Broglie et al. [10] thus postulated a vacuum

hidden thermostat whereby the electron is permanently ex-

changing energy and momenta. According to the authors this

sub-quantum medium would cause the electron to fluctuate in

a Brownian-like manner so as to exhibit a static situation only

at the atomic level. In this way, the wavy-electron would be

allowed to undergo perpetual infinitesimal propagation. Our

opinion however differs from this hypothesis which we be-

lieve, would mark the limitation of the Double Solution the-

ory. Preferably, we suggest that each energy level of an atom

be characterized by a stationary limited spinor wave packet

carrying a dynamical electron: the mean energy of the pair

wavepacket-moving electron would then represent the quan-

tized energy level of the atom.

“Squeezing” stepwise the wave packet (i.e. increasing the

frequency) would mean jumping to a higher energy level and

vice versa, which actually could reflect the excited/desexcited

states of the atom. This process tends to validate the spectro-

scopic sharpness of the atomic rays as it is observed. All in

all, the exposed theory seems to cope with an electron whose

physical wave interacts with a physical diffraction device,

and yet satisfies the established relativistic features of Dirac’s

theory.
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