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We present a symmetric spacetime, admitting closed timelike curves (CTCs) which
appear after a certain instant of time, i.e., a time-machine spacetime. These closed
timelike curves evolve from an initial spacelike hypersurface on the planes z = constant
in a causally well-behaved manner. The spacetime discussed here is free from curvature
singularities and a 4D generalization of the Misner space in curved spacetime. The
matter field is of pure radiation with cosmological constant.

1 Introduction

One of the most intriguing aspects of Einstein’s theory of
gravitation is that solutions of field equations admit closed
timelike curves (CTC). Presence of CTC in a spacetime leads
to time-travel which violates the causality condition. The first
one being Godel’s spacetime [1] which admits closed time-
like curves (CTC) everywhere and an eternal time-machine
spacetime. There are a considerable number of spacetimes
in literature that admitting closed timelike curves have been
constructed. A small sample would be [1-21]. One way of
classifying such causality violating spacetimes would be to
categorize the metrics as either eternal time-machine in which
CTC always exist (in this class would be [1,2]), or as time-
machine spacetimes in which CTC appear after a certain in-
stant of time. In the latter category would be the ones dis-
cussed in [18-20]. Many of the models, however, suffer from
one or more severe drawbacks. For instance, in some of these
solutions, for example [13, 14,20], the weak energy condition
(WEC) is violated indicating unrealistic matter-energy con-
tent and some other solutions have singularities.

Among the time-machine spacetimes, we mention two:
the first being Ori’s compact core [17] which is represented
by a vacuum metric locally isometric to pp waves and sec-
ond, which is more relevant to the present work, the Misner
space [22] in 2D. This is essentially a two dimensional metric
(hence flat) with peculiar identifications. The Misner space is
interesting in the context of CTC as it is a prime example of
a spacetime where CTC evolve from causally well-behaved
initial conditions.

The metric for the Misner space [22]

dsiy,, = —2dtdx —tdx* (1)
where —oo < t < oo but the co-ordinate x is periodic. The
metric (1) is regular everwhere as det g = —1 including at

t = 0. The curves t = ty, where 1y is a constant, are closed
since x is periodic. The curves ¢t < 0 are spacelike, but t > 0
are timelike and the null curves ¢ = fy = 0 form the chronol-
ogy horizon. The second type of curves, namely, t = 75 > 0
are closed timelike curves (CTC). This metric has been the
subject of intense study and quite recently, Levanony and
Ori [23], have studied the motion of extended bodies in the
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2D Misner space and its flat 4D generalizations. A non-
flat 4D spacetime, satisfying all the energy conditions, but
with causality violating properties of the Misner space, pri-
marily that CTC evolve smoothly from an initially causally
well-behaved stage, would be physically more acceptable as
a time-machine spacetime.

In this paper, we shall attempt to show that causality vio-
lating curves appear in non-vacuum spacetime with compar-
atively simple structure. In section 2, we analyze the space-
time; in section 3, the matter distribution and energy condi-
tion; in section 4, the spacetime is classified and its kinemat-
ical properties discussed; and concluding in section 5.

2 Analysis of the spacetime

Consider the following metric

ds® =47 dr? + &7 (d? - 1dg® - 2dtdg) +
2
+4,8zre_‘”2 drdg

where ¢ coordinate is assumed periodic 0 < ¢ < ¢o, where
a is an integer and S > 0 is a real number. We have used
co-ordinates x! = r, x> = ¢, x> = z and x* = t. The ranges
of the other co-ordinates are ¢,z € (—oco0,00) and 0 < r < oo.
The metric has signature (+, +, +, —) and the determinant of
the corresponding metric tensor g,,,, det g = —4 2% The
non-zero components of the Einstein tensor are

3)

Consider an azimuthal curve y defined by r = ry, z = 79 and
t = ty, where ry, 29, tp are constants, then we have from the
metric (2)

dS2 — _tEZ(trz d¢2 (4)

These curves are null for ¢ = 0, spacelike throughout for ¢ =
to < 0, but become timelike for ¢ = #y > 0, which indicates the
presence of closed timelike curves (CTC). Hence CTC form
at a definite instant of time satisfy r = 7y > 0.

It is crucial to have analysis that the above CTC evolve
from a spacelike ¢ = constant hypersurface (and thus 7 is a
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time coordinate) [17]. This can be ascertained by calculating
the norm of the vector V,f (or by determining the sign of the
component g” in the inverse metric tensor g*” [17]). We find
from (2) that

g" = re2er +,32 2 e bart

5)

A hypersurface t = constant is spacelike provided g" < 0 for
t =ty < 0, but becomes timelike provided g" > 0 for r = 1y >
0. Here we choose the z-planes defined by z = zo, (29, a con-
stant equal to zero) such that the above condition is satisfied.
Thus the spacelike t = constant < 0 hypersurface can be cho-
sen as initial conditions over which the initial may be speci-
fied. There is a Cauchy horizon for t = fy = 0 called Chronol-
ogy horizon which separates the causal and non-causal parts
of the spacetime. Hence the spacetime evolves from a par-
tial Cauchy hypersurface (initial spacelike hypersurface) in a
causally well-behaved manner, up to a moment, i.e., a null
hypersurface r = 0 and CTC form at a definite instant of time
on z = constant plane.

Consider the Killing vector 7 = 94 for metric (2) which
has the normal form

7 =(0,1,0,0) . (6)

Its co-vector is

—ar 2 2
Ny = (2,8zre ar’ 1?0, " ) .

@)

The (6) satisfies the Killing equation 7,,,, + 1,., = 0. For
cyclicly symmetric metric, the norm r, 7* of the Killing vec-
tor is spacelike, closed orbits [24-28]. We note that

7=~ ®

which is spacelike for ¢t < 0, closed orbits (¢ co-ordinate be-
ing periodic).

An important note is that the Riemann tensor R, can
be expressed in terms of the metric tensor g,,, as

R/,leO' =k (gpp 9vo — Guo gvp) 9)

where k = —a? for the spacetime (2).

Another important note is that if we take S = 0, then the
spacetime represented by (2) is maximally symmetric vac-
uum spacetime and locally isometric anti-de Sitter space in
four-dimension. One can easily show by a number of trans-
formations the standard form of locally isometric AdS 4 met-
ric [29]

ds* 3 (—dt2 +dx®+d* + dzz) (10)

GINES
where one of the co-ordinate ¢ being periodic.
3 Matter distribution of the spacetime and energy con-
dition
Einstein’s field equations taking into account the cosmologi-

cal constant

G +ANg™ =T", uv=123,4. (11)
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Consider the energy-momentum tensor of pure radiation field
(30]

™ =pntn” (12)
where n* is the null vector defined by
n* =(0,0,0,1) . (13)

The non-zero component of the energy-momentum tensor

2

ngb:_peZ()zr‘. (14)
Equating field equations (11) using (3) and (14), we get
A=-3d%
(15)
1 2 —8ar?
p=5 B e , 0<r<oo.

The energy-density of pure radiation or null dust decreases
exponentially with r and vanish at r — +oco. The matter
field pure radiation satisfy the energy condition and the en-
ergy density p is always positive.

4 Classification and kinematical properties of the space-
time

For classification of the spacetime (2), we can construct the
following set of null tetrads (k, [, m, m) as

k, =(0,1,0,0), (16)
2 1 2
I, = (_mzre*“, 2o, ezwz), (17)
1
mﬂ:@ 2r0,ie*",0), (18)
1 :
= — (2r,0,-ie"",0)., (19)

V2

where i = V—1. The set of null tetrads above are such that
the metric tensor for the line element (2) can be expressed as

v = —kul, = L, ky +my, i, +m,m,. (20)

The vectors (16)—(19) are null vectors and are orthogonal ex-
cept for k, * = —1 and m,m* = 1. Using this null tetrad
above, we have calculated the five Weyl scalars

l‘a,lBe—Z(zrz
2v2

Y, = —% ,Be_z‘”2 (i + 2aze‘”z)

P, =
2D

are non-vanishing, while ¥9 = ¥; = ¥3 = 0. The space-
time represented by (2) is of type III in the Petrov classifi-
cation scheme. Note that the non-zero Weyl scalars W3 and
Y, are finite at r — 0 and vanish as r — =*oco indicating
asymptotic flatness of the spacetime (2). The metric (2) is free
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from curvature singularities. The curvature invariant known
as Kretchsmann scalar is given by

RP7 Rypypo = 240 (22)

and the curvature scalar

R=-120" (23)

are constant being non-zero.

Using the null tetrad (16) we have calculated the Optical
scalars [30] the expansion, the twist and the shear and they
are

0= % u=0,
wzzék[ﬂ;ﬂk’“vzo, 24)
o= %k(,,;v)k’” -0*=0
and the null vector (16) satisfy the geodesics equation
kyykK"=0. (25)

Thus the spacetime represented by (2) is non-diverging, has
shear-free null geodesics congruence. One can easily show
that for constant r and z, the metric (2) reduces to conformal
Misner space in 2D

ds?

confo = st%/lisn (26)

2
2ar”

where Q = ¢ 1S a constant.

5 Conclusion

Our primary motivation in this paper is to write down a met-
ric for a spacetime that incorporates the Misner space and its
causality violating properties and to classify it. The solution
presented here is non-vacuum, cyclicly symmetric metric (2)
and serves as a model of time-machine spacetime in the sense
that CTC appear at a definite instant of time on the z-plane.
Most of the CTC spacetimes violate one or more energy con-
ditions or unrealistic matter source and are unphysical. The
model discussed here is free from all these problems and mat-
ter distribution is of pure radiation field with negative cosmo-
logical constant satisfying the energy condition.
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