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The identical bands (IB’s) phenomenon in normally deformed rare-earth nuclei has been
studied theoretically at low spins. Six neighboring even-even isotopes (N = 92) and the
isotopes 166,168,170Hf are proposed that may represent favorable cases for observation of
this phenomenon. A first step has been done by extracting the smoothed excitation en-
ergies of the yrast rotational bands in these nuclei using the variable moment of inertia
(VMI) model. The optimized parameters of the model have been deduced by using a
computer simulated search programm in order to obtain a minimum root mean square
deviation between the calculated theoretical excitation energies and the experimental
ones. Most of the identical parameters are extracted. It is observed that the nuclei hav-
ing NpNn/∆ values exhibit identical excitation energies and energy ratio R(4/2), R(6/4)
in their ground-state rotational bands, Np and Nn are the valence proton and neutron
number counted as particles or holes from the nearest spherical shell or spherical sub-
shell closure and ∆ is the average pairing gap. The nuclear kinematic and dynamic
moments of inertia for the ground state rotational bands have been calculated, a smooth
gradual increase in both moments of inertia as function of rotational frequency was
seen. The study indicates that each pair of conjugate nuclei have moments of inertia
nearly identical.

1 Introduction

One of the most remarkable properties so far discovered of ro-
tational bands in superdeformed (SD) nuclei is the extremely
close coincidence in the energies of the deexciting γ-ray tran-
sitions or rotational frequencies between certain pairs of ro-
tational bands in adjacent even and odd nuclei with different
mass number [1–5]. In a considerable number of nuclei in
the Dy region as well as in the Hg region one has found dif-
ferent in transition energies Eγ of only 1-3 KeV, i.e there exist
sequence of bands in neighboring nuclei, which are virtually
identical ∆Eγ/Eγ ∼ 10−3. This means that the rotational fre-
quencies of the two bands are very similar because the rota-
tional frequency (dE/dI) is approximately half the transition
energy, and also implies that the dynamical moments of in-
ertia are almost equal. Several groups have tried to under-
stand the phenomenon of SD identical bands (IB’s) or twin
bands [5–10] assuming the occurrence of such IB’s to be a
specific property of the SD states of nuclei.

Shortly afterwards, low spin IB’s were found in the
ground state rotational bands of normally deformed (ND) nu-
clei [11–14], which showed that the occurrence of IB’s is not
restricted to the phenomenon of superdeformation and high-
spin states. Since then, a vast amount of IB’s have been ob-
served both in SD and ND nuclei, and there have been a lot
of theoretical works presented based on various nuclear mod-
els [15–18]. All explantation to IB’s in SD nuclei differing
by one or two particle numbers factor to the odd-even dif-
ference in the moments of inertia, namely the pair force, is
substantially weakened for high-spin SD states. However,

these outlines would fail to explain IB’s at low spin, where
the blocking of the pairing contributions of the odd nucleon is
predicted to reduce the nuclear superfluidity, there by increas-
ing the moment of inertia of the odd-A nucleus. Because of
the known spins, configurations and excitations energies of
the ND bands, the systematic analysis of IB’s in ND nuclei
would be useful in investigation of the origin of IB’s.

It is the purpose of this paper to point out that existence
of low-spin IB’s in the well deformed rare-earth region is a
manifestation of a more general property of nuclear excitation
mechanism in this region, i.e, almost linear dependence of the
moment of inertia on a simple function of the valence pro-
ton and neutron number. The properties of rotational bands
in our selected normal deformed nuclei have been system-
atically analyzed by using the variables moment of inertia
(VIM) model [19, 20].

2 Description of VMI model

The excitation energy of the rotational level with angular mo-
ment I for an axially symmetric deformed nucleus is given
by

E(I) =
ℏ2

2J
I(I + 1), (1)

with J being the rigid moment of inertia. This rigid rotor
formula violated at high angular momenta. Bohr and Mottel-
son [21] introduced a correction term

∆E(I) = −B [I (I + 1)]2 (2)
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which is attributed to rotation-vibration interaction where J
and B are the model parameters.

In the variable moment of inertia (VMI) model [19] the
level energy is given by

E (I, J, J0, c) =
ℏ2

2J
I (I + 1) +

c
2

(J − J00)2 (3)

where J0 is the ground-state moment of inertia. The second
term represents the harmonic term with c in the stiffness pa-
rameter. The moment of inertia J is a function of the spin
I(J(I)).

The equiblirium condition

∂E
∂J
= 0 (4)

determines the values of the variable moment of inertia JI ,
one obtains

J3
I − J0J2

I =
1
2c

I (I + 1) . (5)

This equation has one real root for any finite positive
value of J0 and c can be solved algebraically to yield

J(J0, c, I) =
J0
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(6)

A softness parameter σ was introduced, which measures
the relative initial variation of J with respect to I. This quan-
tity is obtained from the equation (3)

σ =
1
J

dJ
dI
|I=0=

1
2cJ3

0

. (7)

To find the rotational frequency ℏω, the kinematic J(1) and
dynamic J(2) moments of inertia for VMI model, let Î =
[I(I + 1)]

1
2 . Equations (3,5) can be written in the form

E =
ℏ2

2J
Î2 +

c
2

(J − J0)2 , (8)

J3 − J0J2 − Î2

2c
= 0. (9)

Differentiating these two equations with respect to Î and
using the chain rule, we get

dE
dÎ
=

Î
J
+

[
c (J − J0) − Î2

2J2

]
dJ
dÎ
, (10)

d2E
dÎ2
=

1
J
− 2Î

J2

dJ
dÎ
+

(
c +

Î2

J3

) (
dJ
dÎ

2)
+

[
c (J − J0) − Ĵ2

2J2

]
d2J
dÎ2
,

(11)

dJ
dÎ
=

Î
cJ(3J − 2J0)

, (12)

d2J
dÎ2
=

1 − 2c(3J − J0)
cJ(3J − 2J0)

(
dJ
dÎ

)2

. (13)

Using the above differentiations, we can extract ℏω, J(1)

and J(2) from their definitions:

ℏω =
dE
dÎ
, (14)

J(1) = ℏ2 Î
(

dE
dÎ2

)−1

≃ 2I − 1
Eγ(I → I − 2)

, (15)

J(2) = ℏ2
(

d2E
dÎ2

)−1

≃ 4
Eγ(I + 2→ I) − Eγ(I → I − 2)

. (16)

The J(1) moment of inertia is a direct measure of the tran-
sition energies while J(2) is obtained from differences in tran-
sitions energies (relative change in transition energies).

3 Identical bands parameters

In the concept of F-spin [22], the Nπ proton bosons and Nν
neutron bosons are assigned intrinsic quantum number called
F-spin F = 1

2 , with projection F0 = +
1
2 for proton bosons and

F0 = − 1
2 for neutrons bosons.

Therefore, a given nucleus is then characterized by two
quantum numbers F =

∑
i Fi =

1
2 (Nπ + Nν) = 1

4 (Np + Nn) and
it’s projection F0 =

1
2 (Nπ − Nν) = 1

4 (Np − Nn). Squaring and
subtracting, yield 4(F2 − F2

0) = 4NπNν = NpNn.
That is any pairs of conjugate nuclei with the same F-spin

and ±F0 values in any F-spin multiplet have identical NpNn

values [23]. The product NpNn was used in classification the
changes occur in nuclear structure of transitional region [13,
24].

It was assumed that [14], the moment of inertia J has a
simple dependence on the product of valence proton and neu-
tron numbers (NpNn) written in the form

J ∝ S F · S P (17)

where SF and SP are called the structure factor and saturation
parameter given by

S F = NpNn(Np + Nn), (18)

S P =
[
1 +

S F
(S F)max

]−1

. (19)

A.M. Khalaf, M.D. Okasha, K.M. Abdelbased. Low Spin Identical Bands in Normal-Deformed Even-Even Nuclei 51



Volume 13 (2017) PROGRESS IN PHYSICS Issue 1 (January)

Computing by taking

Np = min [(Z − 50) , (82 − Z)] , (20)

Nn = min [(N − 82) , (126 − N)] , (21)

it was found that the low spin dynamical moment of inertia
defined as

J(2)(I = 2) =
4

Eγ(4+ → 2+) − Eγ(2+ → 0+)
(22)

shows an approximate dependence on SF

J(2)(I = 2) ∝ (S F)
1
2 . (23)

Since the nuclei having identical NpNn and |Np − Nn| val-
ues are found to have identical moment of inertia, the struc-
ture factor SF is related not only to the absolute value of
ground state moment of inertia but also to its angular mo-
mentum dependence.

Also it was shown [11, 25, 26] that the development of
collectivity and deformation in medium and heavy nuclei is
very smoothly parameterized by the p-factor defined as

P =
NpNn

Np + Nn
. (24)

The p-factor can be viewed as the ratio of the number
of valence p-n residual interaction to the number of valence
like-nucleon-pairing interaction, or, if the p-n and pairing in-
teractions are orbit independent, then p is proportional to the
ratio of the integrated p-n interaction strength.

Observables such as E(4+1 )/E(2+1 ) or B(E2, 0+1 → 2+1 ) that
are associated with the mean field vary smoothly with
p-factor.

The square of deformation parameter β2 is invariant under
rotations of the coordinate system fixed in the space. In the
SU(3) limit of the interacting boson model (IBM) [27], the
matrix elements of β2 in a state with angular momenta I are
given by

⟨β2⟩I =
1

6(2N − 1)

[
I (I + 1) + 8N2 + 22N − 15

]
(25)

where N is the total number of the valence bosons For the
expectations value of β2 in the ground state I = 0, yielding

⟨β2⟩I=0 =
1

6(2N − 1)

[
8N2 + 22N − 15

]
(26)

which is increasing function of N.
In order to determine β from equation (26) to a given ro-

tational region or grouped of isotopes, one should normalize
it, then

β0 = α

[
8N2 + 22N − 15

6(2N − 1)

] 1
2

(27)

where α is the normalization constant (α = 0.101 for rare
earth nuclei.)

Table 1: The simulated adopted best VMI parameters used in the
calculations for the identical bands in normal deformed even-even
158Dy, 160Er, 162Yb and 166−170Hf nuclei. σ denoting the softness
parameter of the VMI model. We also list the total percent root
mean square deviation.

Nucleus J0 c σ = 1/2cJ3
0 %

(ℏ2 MeV−1) (10−1MeV3) (10−1) rmsd
158Dy 28.8866 2.37364 8.7372 0.57
170Hf 29.9116 1.93836 9.6386 0.87
160Er 22.7538 2.65536 15.9839 0.86
168Hf 22.8761 2.48160 16.8303 0.70
162Yb 16.8587 2.83884 36.7584 0.60
166Hf 17.6941 2.76559 32.6359 0.82

4 Results and discussion

A fitting procedure has been applied to all measured values
of excitation energies E(I) in a given band. The parameters
J0, c and σ of the VMI model results from the fitting proce-
dure for our selected three pairs IB’s are listed in Table 1. The
percentage root mean square (rms) deviation of the calculated
from the experimental level energies is also given in the Table
and is within a fraction of 1%. To illustrate the quantitative
agreement obtained from the excitation energies, we present
in Table 2 the theoretical values of energies, transition ener-
gies, rotational frequencies kinematic J(1) and dynamic J(2)

moments of inertia and the variable moment of inertia JV MI

as a function of spin for our three pairs of IB’s which each
pair has identical Np Nn product. The calculated kinematic
J(1) and dynamic J(2) moments of inertia are plotted against
rotational frequency ℏω in Figure 1.

The similarities are striking, although the frequency range
covered in each two IB’s is smaller than that observed in the

Fig. 1: Plot of the calculated kinematic J(1) and dynamic J(2) mo-
ments of inertia versus the rotational frequency ℏω for the low lying
states in the conjugate pairs (158Dy, 170Hf), (160Er, 168Hf) and (162Yb,
166Hf).
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Table 2: Theoretical calculations to outline the properties of our selected even rare-earth nuclei in framework of VMI model for each
nucleus we list the energy E(I), the gamma ray transition energy Eγ(I → I −2), the rotational frequency ℏω, the dynamic moment of inertia
J(2), the kinematic moment of inertia J(1) and the variable moment of inertia JV MI

Eexp(I) Iπ Ecal(I) Eγ(I→I−2) ℏω J(2) J(1) JV MI
(keV) (ℏ) (keV) keV (MeV) (ℏ2 MeV−1) (ℏ2 MeV−1) (ℏ2 MeV−1)

158Dy92

99 2+ 101.379 101.379 0.0807 33.2515 29.5919 30
317 4+ 323.053 221.674 0.1354 40.5724 31.5779 33
638 6+ 643.316 320.263 0.1803 49.4620 34.3467 36
1044 8+ 1044.449 401.133 0.2175 58.8001 37.3940 39
1520 10+ 1513.609 469.160 0.2492 68.1419 40.4979 42
2050 12+ 2041.470 527.861 43.5720 45

170Hf92

100.8 2+ 104.135 104.135 0.0820 33.3828 28.8087 30
321.99 4+ 328.092 223.957 0.1356 42.2275 31.2560 33
642.9 6+ 646.774 318.682 0.1783 52.5513 34.5171 36
1043.3 8+ 1041.572 394.798 0.2132 63.1123 37.9941 40
1505.5 10+ 1499.749 458.177 0.2426 73.5077 41.4686 43
2016.4 12+ 2012.342 512.593 44.8699 47

160Er68

126 2+ 126.476 126.476 0.0983 28.4620 23.7199 25
390 4+ 393.490 267.014 0.1603 37.3148 26.2158 28
765 6+ 767.700 374.210 0.2082 47.2533 29.3452 31
1229 8+ 1226.560 458.860 0.2469 57.1845 32.6897 34
1761 10+ 1755.369 528.809 0.2793 66.8337 35.9297 37
2340 12+ 2344.028 588.659 39.0718 41

168Hf96

124 2+ 125.554 125.544 0.0974 28.8591 23.8941 25
386 4+ 389.712 264.158 0.1583 38.0709 26.4992 28
757 6+ 758.937 369.225 0.2052 48.3412 29.7921 31
1214 8+ 1210.907 451.970 0.2430 58.5677 33.1880 35
1736 10+ 1731.174 520.267 0.2747 68.4802 36.5194 38
2306 12+ 2309.582 578.678 39.7457 41

162Yb92

166 2+ 163.728 163.728 0.1220 24.9036 18.3230 20
487 4+ 488.075 324.347 0.1900 35.9266 21.5818 23
923 6+ 923.760 435.685 0.2390 47.0494 25.2475 27
1445 8+ 1444.462 520.702 0.2777 57.6036 28.8072 30
2023 10+ 2034.604 590.142 32.1936 34

166Hf94

159 2+ 157.173 157.173 0.1179 25.4281 19.0872 20
470 4+ 471.652 314.479 0.1848 36.2236 22.2590 24
897 6+ 896.556 424.904 0.2336 47.2768 25.8882 28
1406 8+ 1406.068 509.512 0.2720 57.8285 29.4399 31
1970 10+ 1984.750 578.682 32.8332 34

SD nuclei. The J(2) is significantly larger than J(1) over a
large rotational frequency range.For our three IB pairs, the IB
parameters are listed in Table 3.

5 Conclusion

The problem of identical bands(IB’s) in normal deformed nu-
clei is treated. We investigated three pairs of conjugate nor-
mal deformed nuclei in rare-earth region (158Dy,170Hf),
(160Er, 168Hf) and (162Yb, 166Hf) with the same F spin and
projections ±F0 values have identical product of valence pro-
ton and neutron numbers NpNn values. Also the values of

dynamical moment of inertia J(2) for each IB pair are approx-
imately the same. We extracted all the IB symmetry parame-
ters like p-factor, saturation factor SF, structure factor SP etc.
which all depending on the valence proton and neutron num-
bers. By using the VMI model, we find agreement between
experimental excitation energies and theoretical ones.

The optimized model free parameters for each nucleus
have been deduced by using a computer simulation search
programm to fit the calculated theoretical excitation energies
with the experimental energies.

Submitted on October 17, 2016 / Accepted on October 24, 2016

A.M. Khalaf, M.D. Okasha, K.M. Abdelbased. Low Spin Identical Bands in Normal-Deformed Even-Even Nuclei 53



Volume 13 (2017) PROGRESS IN PHYSICS Issue 1 (January)

Table 3: The calculated correlation factors for selected three pairs of even-even rare-earth nuclei having nearly identical bands.

158Dy 170Hf 160Er 168Hf 162Yb 166Hf

(Nπ, Nν) (8,5) (5,8) (7,5) (5,7) (6,5) (5,6)
NpNn 160 160 140 140 120 120

F 6.5 6.5 6 6 5.5 5.5
F0 1.5 -1.5 1 -1 0.5 -0.5
P 6.1538 6.1538 5.8333 5.8333 5.4545 5.4545

SF 4160 4160 3360 3360 2640 2640
SP 0.6176 0.6176 0.666 0.666 0.7179 0.7179
J(2)

S F 32.2643 32.2645 28.9966 28.9966 25.7027 25.7027
E(2)

S F 103.0160 103.0160 127.5437 127.5437 162.3283 162.3283
R(4/2) 3.2060 3.1943 3.0993 3.1096 2.9230 2.9671
R(6/2) 6.4468 6.3771 6.0866 6.1040 5.5430 5.6586
β0 0.3322 0.3322 0.3218 0.3218 0.3110 0.3110
∆ 0.9546 0.9203 0.9486 0.9258 0.9428 0.9313

NpNn/∆ 167.6094 173.8563 147.5859 151.2205 127.2804 128.8521
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