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The currently accepted kinetic theory considers that a gas’ kinetic energy is purely trans-
lational and then applies equipartition/degrees of freedom. In order for accepted theory
to match known empirical finding, numerous exceptions have been proposed. By re-
defining the gas’ kinetic energy as translational plus rotational, an alternative explana-
tion for kinetic theory is obtained, resulting in a theory that is a better fit with empirical
findings. Moreover, exceptions are no longer required to explain known heat capacities.
Other plausible implications are discussed.

1 Introduction

The conceptualization of a gaseous system’s kinematics orig-
inated in the writings of the 19th century greats. In 1875,
Maxwell [1] expressed surprise at the ratio of energies (trans-
lational, rotational and/or vibrational) all being equal. Boltz-
mann’s work on statistical ensembles reinforced the current
acceptance of law of equipartition with a gas’s energy being
equally distributed among all of its degrees of freedom [2–3].
The net result being that the accepted mean energy for each
independent quadratic term being kT/2.

The accepted empirically verified value for the energy of
a /textitN molecule monatomic gas is kT/2 with its isomet-
ric molar heat capacity (Cv) being (3R/2). An implication
is that a monatomic gas only possesses translational energy
[4–5]. The reasoning for this exception is that the radius of a
monatomic gas is so small that its rotational energy remains
negligible, hence its energy contribution is simply ignored.

Mathematically speaking equipartition based kinetic the-
ory states that a molecule with n′′ atoms has 3n′′ degrees of
freedom (f ) [5–6] i.e.:

f = 3n′′. (1)

This leads to the isometric molar heat capacity (Cv) for large
polyatomic molecules:

Cv =
3
2

n′′R. (2)

Interestingly, the theoretical expected heat capacity for N di-
atomic molecules is 7NkT/2. This is the summation of the
following three energies a) three translational degrees, i.e.
3NkT/2. b) three rotational degrees of freedom, however
since the moment of inertia about the internuclear axis is van-
ishing small w.r.t. other moments, then it is excluded, i.e.
NkT . c) Vibrational energy, i.e. NkT . This implies a molar
heat capacity Cv =7NkT/2 = 29.3 J/(mol*K). However, em-
pirical findings indicate that the isometric molar heat capacity
for a diatomic gas is actually 20.8 J/(mol*K), which equates
to 5RT/2 [6]. This discrepancy for diatomic gases certainly
allows one to question the precise validity of accepted kinetic
theory! In 1875 Maxwell noted that since atoms have internal
parts then this discrepancy maybe worse than we believe [7].

Various explanations for equipartition’s failure in describ-
ing heat capacities have been proposed. Boltzmann suggested
that the gases might not be in thermal equilibrium [8]. Planck
[9] followed by Einstein and Stern [10] argued the possibility
of zero-point harmonic oscillator. More recently Dahl [11]
has shown that a zero point oscillator to be illusionary. Lord
Kelvin [12–13] realized that equipartition maybe wrongly de-
rived. The debate was somewhat ended by Einstein claiming
that equipartition’s failure demonstrated the need for quantum
theory [14–15]. Heat capacities of gases have been studied
throughout the 20th century [16–19] with significantly more
complex models being developed [20–21].

It becomes a goal of this paper to clearly show that an
alternative kinetic theory/model exists. A simple theory that
correlates better with empirical findings without relying on
exceptions while correlating with quantum theory.

2 Kinetic theory and heat capacity simplified

Consider wall molecules 1 through 8, in Fig. 1. The total
mean energy along the x-axis of a vibrating wall molecule is

Ex = kT. (3)

Half of a wall molecule’s mean energy would be kinetic en-
ergy, and half would be potential energy. Thus, the mean
kinetic energy along the x-axis, remains

Ex =
kT
2
. (4)

In equilibrium, the mean kinetic energy of a wall molecule, as
defined by equation (4) equals the mean kinetic energy of the
gas molecule along the same x-axis. Herein, the wall in the
y-z plane acts as a massive pump, pumping its mean kinetic
energy along the x-axis onto the much smaller gas molecules.

In equilibrium each gas molecule will have received a
component of kinetic energy along each orthogonal axis. Al-
though there are six possible directions, at any given instant,
a gas molecule can only have components of motion along
three directions, i.e. it cannot be moving along both the pos-
itive and negative x-axis at the same time. Therefore, the
total kinetic energy of the N molecule gas is defined by
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Fig. 1: Ideal monoatomic gas at pressure Pg and temperature Tg

sourrounded by walls at temperature Tw = Tg. Gas molecules have
no vibrational energy.

equation (4) i.e. 3NkT/2. Up to this point we remain in
agreement with accepted theory.

Consider that you hit a tennis ball with a suitable racquet.
If the ball impacts the racquet’s face at a 90 degree angle, then
the ball will have significant translational energy in compar-
ison to any rotational energy. Conversely, if the ball impacts
the racquet at an acute angle, although the same force is im-
parted onto that ball, the ball’s rotational energy can be sig-
nificant in comparison to its translational energy. The point
being, in real life both the translational and rotational energy,
are due to the same impact.

Now reconsider kinetic theory. Understandably, momen-
tum transfer between both the wall’s and gas’ molecules re-
sult in energy exchanges between the massive wall and small
gas molecules. Moreover, the exact nature of the impact will
vary, even though the exchanged mean energy is constant.

Case 1: Imagine that a monatomic gas molecule collides
head on with a wall molecule, e.g. the gas molecule
hitting wall molecule no. 3 in Fig. 1. Herein, the gas
molecule might only exchange translational energy
with the wall, resulting in the gas molecule’s mean ki-
netic energy being purely translational, and defined by
equation (4).

Case 2: Imagine that a monatomic gas molecule strikes wall
molecule no. 1 at an acute angle. The gas molecule
would obtain both rotational and translational energy
from the impact such that the total resultant mean en-
ergy of the gas molecule would be the same as it was
in Case 1, i.e. defined by equation (4).

Case 3: Imagine a rotating and translating monatomic gas
molecule striking the wall. Both the rotational and tran-
slational energies will be passed onto the wall molecu-
le. Since the wall molecule is bound to its neighbors,

Fig. 2: Ideal diatomic gas at pressure Pg and temperature Tg sour-
rounded by walls at temperature Tw = Tg. Gas molecules have vi-
brational energy.

it cannot rotate hence both energies can only result in
vibrational energy of the wall molecules along its three
orthogonal axis.

After numerous wall impacts, our model predicts that an
N molecule monatomic gas will have a total kinetic energy
(translational plus rotational) defined by

EkT (t,r) =
3
2

NkT. (5)

Fig. 2 illustrates a system of diatomic gas molecules in a con-
tainer. The wall molecules still pass the same mean kinetic
energy onto the diatomic gas molecule’s center of mass with
each collision. Therefore the diatomic gas’ kinetic energy is
defined by equation (5). The diatomic gas molecule’s vibra-
tional energy would be related to the absorption and emis-
sion of its surrounding blackbody/thermal radiation. There-
fore, the mean x-axis vibrational energy within a diatomic gas
molecule remains defined by equation (3) and the total mean
energy for a diatomic gas molecule becomes defined by

Etot = EkT (t,r) + Ev =
3
2

kT + kT =
5
2

kT. (6)

Therefore the total energy for an N molecule diatomic gas
becomes

Etot = EkT (t,r) + Ev =
3
2

NkT + NkT =
5
2

NkT. (7)

For an N molecule triatomic gas:

Etot = EkT (t,r) + Ev =
3
2

NkT + 2NkT =
7
2

NkT, (8)

n′′ signifies the polyatomic number. Therefore for N
molecules of n′′-polyatomic gas, the vibrational energy is

Ev = (n′′ − 1)NkT. (9)
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Therefore, the total energy for a polyatomic gas molecule is:

Etot = EkT (t,r) + Ev =
3
2

NkT + (n′′ − 1) NkT

=

(
n′′ +

1
2

)
NkT.

(10)

Dividing both sides by temperature and rewriting in terms of
per mole (N=6.02 × 1023) then equation (10) becomes:

Etot

T
= nk

(
n′′ +

1
2

)
= R

(
n′′ +

1
2

)
. (11)

For most temperature regimes, the heat capacity of gases
remains fairly constant, hence equation (11) can be rewritten
in terms of the isometric molar heat capacity (Cv), i.e.

Cv = R
(
n′′ +

1
2

)
. (12)

The difference between molar isobaric heat capacity (Cp) and
molar isometric heat capacity (Cv) for gases is the ideal gas
constant (R) [see equation (15)]. Therefore, a gas’s isobaric
heat capacity Cp becomes

Cp = R
(
n′′ +

1
2

)
+ R = R

(
n′′ +

3
2

)
. (13)

The adiabatic index is the ratio of heat capacities, i.e. dividing
equation (13) by equation (12) gives the adiabatic index

γ =
Cp

Cv
=

(
n′′ + 3

2

)(
n′′ + 1

2

) . (14)

Table 1 shows the accepted isometric and isobaric mo-
lar heat capacities for various substances for 0 > n′′ > 27.
These values were calculated using data (specific heats) from
an engineering table (Rolle [22]) that is shown in Table 2.
Note: Engineer’s use specific heats (per mass), physicists and
chemists prefer heat capacity (per mole).

In Fig. 3, both our theoretical molar isometric and isobaric
[equations (12) and (13)] heat capacities are plotted against
the number of atoms (n′′) in each molecule. The accepted
empirically determined values for heat capacities versus n′′

(from Table 1) are also plotted. The traditional theoretical
values for molar heat capacities [eq. (2)] are also plotted.

The theory/model proposed herein remains a better fit to
empirical findings for all polyatomic molecules. Importantly,
it does not rely upon the exceptions that plague the tradition-
ally accepted degrees of freedom based kinetic theory.

Interestingly, there is a discrepancy, between our model
and empirical known values for 4 < n′′ < 9. Moreover,
the slope of our theoretical values visually remains close to
the slope of empirically determined values for n′′ > 8. Fur-
thermore, hydrogen peroxide (H2O2, Cv= 37.8, n′′ = 4) and

acetylene (C2H2, n′′ = 4, Cv= 35.7) are linear bent molecules
and good fit, while pyramidal ammonia (NH3, n′′ = 4, Cv =

27.34) is not. Could the gas molecule’s shape influence how
it absorbs surrounding thermal radiation, hence its vibrational
energy?

Table 2 shows the accepted adiabatic index versus our
theoretical adiabatic index for most of the same substances
shown in Table 1. Our theoretical adiabatic index compares
rather well with the accepted empirical based values, espe-
cially for low n′′ < 4 and high n′′ > 11, as is clearly seen
in Fig. 4. Although not 100% perfect, this new theory/model
certainly warrants due consideration by others.

3 Kinetic theory and thermal equilibrium

Kinetic theory holds because the walls act as massive energy
pumps, i.e. gas molecules take on the wall’s energy with ev-
ery gas-wall collision. For sufficiently dilute gases, this re-
mains the dominant method of energy exchange. Mayhew
[23–24] has asserted that inter-gas molecular collisions tend
to obey conservation of momentum, rather than adhere to ki-
netic theory. Therefore, when inter-gas collisions dominate
over gas-wall collisions, then kinetic theory, the ideal gas law,
Avogadro’s hypothesis, Maxwell’s velocities etc. all can start
to lose their precise validity.

It is accepted that there are changes to heat capacity in
and around dissociation temperatures. Firstly, at such high
temperatures, the pressure tends to be high; hence the inter-
gas collisions may dominate. This author believes that this
actually helps explain why kinetic theory falters in polytropic
stars, wherein high-density gases collide in a condensed mat-
ter fashion hence one must use polytropic solutions. Sec-
ondly, at high temperatures a system’s thermal energy density
is no longer proportional to temperature, i.e. a blast furnace’s
thermal energy density is proportional to T 4 [22].

Blackbody radiation describes the radiation within an en-
closure. For an open system and/or none blackbody, the ther-
mal radiation surrounding the gas molecules may be better
to considered. Herein thermal radiation means radiation that
is readily absorbed and radiated by condensed matter and/or
polyatomic gases, resulting in both intramolecular and inter-
molecular vibrations.

For a system of dilute polyatomic gas e.g. Fig. 2, ther-
mal equilibrium requires that all of the following three states
remain related to the same temperature (T):

1. The walls are in thermal equilibrium with the enclosed
blackbody/thermal radiation.

2. The gas’ translational plus rotational energy is in me-
chanical equilibrium with the molecular vibrations of
the walls.

3. The gas’ vibrational energies are in thermal equilib-
rium with the enclosed blackbody/thermal radiation.

Imagine that a system of dilute polyatomic gas is taken
to remote outer space, and that the walls are magically re-
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Table 1: Accepted isometric and isobaric heat capacities versus theoretical i.e. empirical findings versus Eqn. (12), Eqn. (13), as well as
Eqn. (2). Note: Accepted heat capacities were calculated from the engineer’s specific heats in Table 2 (Rolle [22]), exception being H2O2

which was taken from Giguere [19].

n′′ Accepted Eqn. (12) Accepted Eqn. (13) Eqn. (2)
Cv Cv Cp Cp Cv

Substance [J/mol*K] [J/mol*K] [J/mol*K] [J/mol*K] [J/mol*K]
Helium He 1 12.48 12.47 20.80 20.78
Neon Ne 1 12.47 12.47 20.79 20.78
Argon Ar 1 12.46 12.47 20.81 20.78
Xenon Xe 1 12.47 12.47 20.58 20.78
Hydrogen H2 2 20.52 20.78 28.83 29.09
Nitrogen N2 2 20.82 20.78 29.14 29.09
Oxygen O2 2 21.02 20.78 29.34 29.09
Nitric oxide NO 2 21.55 20.78 29.86 29.09
Water vapor H2O 3 25.26 29.09 33.58 37.40 37.40
Carbon dioxide CO2 3 28.83 29.09 37.14 37.40 37.40
Sulfur dioxide SO2 3 31.46 29.09 39.78 37.40 37.40
Hydrogen peroxide H2O2 4 37.4 37.73 46.05 45.71 49.86
Ammonia NH3 4 27.37 37.40 35.70 45.71 49.86
Methane CH4 5 27.4 45.71 35.72 54.0 62.33
Ethylene C2H4 6 35.24 54.02 43.54 62.33 74.79
Ethane C2H6 8 44.35 70.64 52.65 78.95 99.72
Propylene C3H6 9 53.82 78.95 63.92 87.26 112.19
Propane C3H8 11 65.18 95.57 73.51 103.88 137.12
Benzene C6H6 12 73.50 103.88 81.63 112.19 149.58
Isobutene C4H8 12 77.09 103.88 85.68 112.19 149.58
n-Butane C4H10 14 89.10 120.50 97.42 128.81 174.51
Isobutane C4H10 14 88.52 120.50 96.84 128.81 174.51
n-Pentane C5H12 17 111.91 145.43 120.20 153.74 211.91
Isopentane C5H12 17 111.69 145.43 119.99 153.74 211.91
n-Hexane C6H14 20 134.78 170.36 143.06 178.67 249.30
n-Heptane C7H16 23 157.62 195.29 165.94 203.60 286.70
Octane C8H18 26 180.60 220.22 188.83 228.53 324.09

moved and the gas disperses. Spreading at the speed of light
the blackbody/thermal radiation density decreases faster than
the density of slower moving gas molecules. As the radia-
tion density decreases, the rate at which polyatomic gaseous
molecules absorbs blackbody/thermal radiation decreases in
time. Hence their vibrational energy decreases although their
mean velocity remains constant. Now place a thermome-
ter in the expanding wall-less gas, what will it read? Tra-
ditional kinetic theory claims that the temperature will be the
same because the gas molecule’s velocity remains constant
i.e. temperature is only associated with the system’s kinemat-

ics [2–3]. However, without walls the blackbody/thermal ra-
diation decouples from thermal equilibrium i.e. the mean ve-
locity of the gas molecules are associated with one tempera-
ture, but the radiation density is no longer associated with that
temperature. This bodes the question: What is the real tem-
perature? Of course this means accepting that the thermome-
ter not only exchanges kinetic energy with the gas molecules,
but it also exchanges blackbody/thermal radiation with its
surroundings.

The above is another reason that this author hypothesizes
that kinetic theory can falter in systems without walls. The
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Table 2: Engineer’s accepted adiabatic index compared to theoretical: Eqn. (14). Note: Data in first six columns after Rolle [22]. Rolle’s
reference: J.F. Masi, Trans. ASME, 76:1067 (October, 1954): National Source of Standards (U.S.) Circ. 500, Feb. 1952; Selected Values
of Properties of Hydrocarbons and Related Compounds, American Petroleum Institute Research Project 44, Thermodynamic Research
Center, Texas, A&M University, College Station, Texas.

Molar Engineer’s Engineer’s Engineer’s Accepted Theoretical
n′′ mass R Cp Cv adiabatic index (γ)

Substance [g/mol] [J/kg*K)] [kJ/mol*K)] [kJ/mol*K)] index(γ) Eqn. (14)
Helium He 1 4.00 2079 5.196 3.117 1.67 1.67
Neon Ne 1 20.18 412 1.030 0.618 1.67 1.67
Argon Ar 1 39.94 208 0.521 0.312 1.67 1.67
Xenon Xe 1 131.30 63 0.1568 0.095 1.67 1.67
Hydrogen H2 2 2.02 4124 14.302 10.178 1.41 1.4
Nitrogen N2 2 28.02 297 1.040 0.743 1.4 1.4
Oxygen O2 2 32.00 260 0.917 0.657 1.4 1.4
Nitric oxide NO 2 30.01 277 0.995 0.718 1.39 1.4
Water vapor H2O 3 18.02 462 1.864 1.402 1.33 1.29
Carbon dioxide CO2 3 44.01 189 0.844 0.655 1.29 1.29
Sulfur dioxide SO2 3 64.07 130 0.621 0.491 1.26 1.29
Ammonia NH3 4 17.03 488 2.096 1.607 1.30 1.22
Methane CH4 5 16.04 519 2.227 1.708 1.30 1.18
Ethylene C2H4 6 28.05 297 1.552 1.256 1.24 1.15
Ethane C2H6 8 30.07 277 1.751 1.475 1.19 1.12
Propylene C3H6 9 42.08 198 1.519 1.279 1.19 1.11
Propane C3H8 11 44.10 189 1.667 1.478 1.13 1.09
Benzene C6H6 12 78.11 106 1.045 0.939 1.11 1.08
Isobutene C4H8 12 56.11 148 1.527 1.374 1.11 1.08
n-Butane C4H10 14 58.12 143 1.676 1.533 1.09 1.07
Isobutane C4H10 14 58.12 143 1.666 1.523 1.09 1.07
n-Pentane C5H12 17 72.15 115 1.666 1.551 1.07 1.06
Isopentane C5H12 17 72.15 115 1.663 1.548 1.07 1.06
n-Hexane C6H14 20 86.18 96 1.660 1.564 1.06 1.05
n-Heptane C7H16 23 100.20 83 1.656 1.573 1.05 1.04
Octane C8H18 26 114.23 73 1.653 1.581 1.05 1.04

other reason kinetic theory may falter without walls is that
wall-gas interactions no longer exist, hence kinetic theory’s
complete virtues may be limited to systems with walls
[24–25] i.e. experimental systems.

4 Discussion of other implications

This author [24–25] has hypothesized that blackbody/thermal
radiation within a system has a temperature associated with
it. So although the total energy associated with radiation of-
ten is infinitesimally small in comparison to the total energy
associated with the kinematics of matter, the idea that black-

body radiation has a temperature associated with it, should no
longer be ignored. In other words, even a vacuum can have
a temperature, although it has no matter and comparatively
speaking only contains a minute amount of energy.

Pressure is traditionally envisioned as being solely due to
change in translational energy i.e. “every molecule that im-
pinges and rebounds exerts an impulse equal to the difference
in its momenta before and after impact” [pg. 32, 20]. In-
terestingly, the analysis given herein does alter such explana-
tions just because the rotational energy plus the translational
energy of the gas molecules now combine to exert pressure.
Moreover, consider the tennis ball impacting a wall. Ask
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Fig. 3: Theoretical molar heat capacity based on our theoretical equations (12) and (13) versus empir-
ical values, plus the traditional theoretical isometric molar heat capacity plot [based upon degrees of
freedom, equation (2)].

Fig. 4: Theoretical adiabatic index [eq. (14)] versus number of atoms (solid line). Adiabatic index data
points based upon engineering table for gases.

yourself: Are not both the rotational and translational en-
ergy of that ball exchanged with the wall. So why would
a gas molecule behave any differently? Just because wall
molecules are bound i.e. cannot rotate, does not mean that
they don’t exchange rotational energy/momentum with an im-
pacting gas! The gas’ mean translational velocity (mv2/2) can
no longer be simply equated in terms of Boltzmann’s con-
stant (kT/2). This has consequences to fundaments such as
Maxwell’s velocity distributions for gases. In our analysis,
the magnitude of translational energy compared to rotational
energy is not defined beyond that they add up to and equal, the
summation of the walls molecule’s kinetic energies! Since the

gas’ total kinetic energy remains the same, then most of what
is known in quantum theorem still applies with the change
being how a gas’ kinetic energy is expressed.

Consider the hypothesis that rotational energy of a gas is
frozen out at low temperatures [26]. This is like claiming
that gas molecules never impact a wall at acute angles, when
in a cold environment. This author thinks in terms of ther-
mal energy being energy that results in both intermolecular
and intramolecular vibrations within condensed matter. Just
consider the blackbody radiation curve for 3 K, whose peak
is located at wavelength of 1 mm. Compare this to 300 K,
where the radiation curves’ peak occurs in the infrared spec-
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trum, wavelength equals 10 micrometers. Accepting that the
majority of thermal energy is in the infrared then this author
also believes that somewhere between 3 K and 300 K, a sys-
tem’s thermal energy density will no longer proportional to
temperature i.e. probably aroound 100 K. Perhaps it is the
gas’ vibrational energy that is frozen out? Understandably, at
low temperatures the blackbody/thermal radiation within the
system may be such that it does not provide enough thermal
energy (infrared) for measurable gas vibration. However, this
should equally apply to the system’s walls, unless the walls
have more thermal energy relative to the gas i.e. apparatus
considerations? This is conjecture, as remains the current no-
tion that rotational energies are frozen out.

For gases the accepted difference between molar isobaric
heat capacity and molar isometric heat capacity is the ideal
gas constant (R). Accordingly [2–3]:

Cp −Cv = R. (15)

The difference in heat capacities is obviously independent
of the type of gas. This implies that the difference depends
upon the system’s surroundings and not the experimental sys-
tem, nor its contents. This fits this author’s assertion that “the
ideal gas constant is the molar ability of a gas to do work per
degree Kelvin” [27]. This is based upon the realization that
work is required by expanding systems to upwardly displace
our atmosphere’s weight, i.e. an expanding system does such
work, which becomes irreversibly lost into the surrounding
Earth’s atmosphere. The lost work being [24, 28–29]

Wlost = Patm dV. (16)

This does not mean that the atmosphere is always up-
wardly displaced, rather that the energy lost by an expanding
system is defined by equation (17). This lost energy can be
associated with a potential energy increase of the atmosphere,
or a regional pressure increase. Note: A regional pressure in-
crease will result in either a volume increase, or viscous dissi-
pation i.e. heat created = lost work. This requires the accep-
tance that the atmosphere has mass and resides in a gravita-
tional field. It is no different than realizing that an expanding
system at the bottom of an ocean, i.e. a nucleating bubble,
must displace the weight of the ocean plus atmosphere. Ac-
cordingly, any expanding system here on Earth’s surface must
expend energy/work to displace our atmosphere’s weight and
such lost work, is immediately or eventually lost into the sur-
rounding atmosphere. Accepting this then allows one to ques-
tion our understanding of entropy [24, 29].

5 Conclusions

Kinetic theory has been reconstructed with the understand-
ing that a gas’ kinetic energy has both translational and rota-
tional components that are obtained from the wall molecule’s
kinetic energy. Therefore, the gas’ translational plus rota-
tional energies along each of the x, y and z-axis, are added

and equated to the wall molecules’ kinetic energy along the
identical three axes. No knowledge pertaining to the magni-
tudes of the gas’ rotational energy versus translational energy
is claimed. This is then added to the gas’ internal energy e.g.
vibrational energy, in order to determine the gas’ total energy.

The empirically known heat capacity and adiabatic index
for all gases are clearly a better fit to this new theory/model,
when compared to accepted theory. The fit for monatomic
through triatomic gases is exceptional, without any reliance
upon traditionally accepted exceptions! Moreover, our model
treats all polyatomic molecules in the same manner as con-
densed matter.

Seemingly, Lord Kelvin’s assertion that equipartition was
wrongly derived, may have been right after all. Accepting
that the traditional degrees of freedom in equipartition the-
ory may be mathematical conjecture rather than constructive
reasoning will cause some displeasure. Certainly, one could
argue that what is said herein is really just an adjustment to
our understanding. Even so, it will alter how pressure is per-
ceived that being due to the gas molecules’ momenta from
both rotation and translation, which is imparted onto a sur-
face. Ditto for the consideration of a gas’ energy in quantum
theory.

The consequence of a polyatomic gas’ thermal vibrations
being related to its surrounding thermal radiation may alter
our conceptualization of temperature, i.e. a vacuum now has
a temperature. The notion that rotation in cold gases is frozen
out was also questioned. Perhaps it is a case that the thermal
energy density does not remain proportional to temperature,
as T approaches 0, which also is the case for very high tem-
perature gases.

The difference between isobaric and isometric heat capac-
ity is gas independent. This fits well with this author’s asser-
tion that lost work represents the energy lost by an expanding
system into the surrounding atmosphere. Interestingly, for a
mole of gas molecules this lost work can be related to the
ideal gas constant.

To some, the combining of a gas’ rotational and transla-
tional energy may seem like a minor alteration, however the
significance to the various realms of science maybe shatter-
ing. Not only may this help put to rest more than a century of
speculations, it also may alter the way that thermodynamics
is envisioned. If accepted it actually opens the door for a sim-
pler new thermodynamics vested in constructive logic, rather
than mathematical conjecture.

A thanks goes out to Chifu E. Ndikilar for his helpful pre-
liminary comments, as well as both Dmitri Rabounski and
Andreas Ries for their insights in finalizing the paper.

6 Example calculations

1. Table 1 for n′′ = 3; our theoretical values:
[equation (12)]: I.e. Cv = 7

2 R = 7
2 8.31 J/(mol*K)

= 29.09 J/(mol*K).
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[eq. (13)]: I.e. Cp = 9
2 R = 9

2 8.31 J/(mol*K)
= 37.40 J/(mol*K).
For n′′=3, traditional accepted theoretical value is eq-
uation (2): I.e. Cv = 9

2 R = 9
2 8.31 J/(mol*K)

= 37.40 J/(mol*K).
2. Table 2, for n′′ = 3. Accepted adiabatic index (γ) for

carbon dioxide (n′′ = 3) based upon engineering data
[22] is γ = 0.844/0.655 = 1.29. Our theoretical adia-
batic index (γ) is equation (14): I.e.

γ =

9
2
7
2

= 1.29.

Submitted on June 16, 2017
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