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In this paper we suggest a possible theoretical way to produce negative energy that
is required to allow hyperfast interstellar travels. The term “Exotic Matter” was first
coined by K. Thorne and M. Morris to identify a material endowed with such energy
in their famous traversable space-time wormhole theory. This possibility relies on the
wave-particle dualism theory that was originally predicted by L. de Broglie and later
confirmed by electrons scattering experiments. In some circumstances, an electron in-
teracting with a specific dispersive and refracting medium, has its velocity direction
opposite to that of the phase velocity of its associated wave. However, it is here shown
that a positron placed in the same material exhibits a negative mass. Generalizing the
obtained equations leads to an energy density tensor which is de facto negative. This
tensor can be used to adequately fit in various “shortcut theories” without violating the
energy conditions.

Introduction

Introduction In this paper we show that it is possible to ob-
tain a negative energy provided the associated proper parti-
cle’s mass is variable. The basis for this study starts with
the associated wave that was originally detected on electrons
diffraction experiments [1]. In some circumstances, L. de
Broglie showed that a particular homogeneous refractive and
dispersive material may cause the tunnelling particle to re-
verse its velocity with respect to its wave phase propagat-
ing velocity [2]. In this case, and under the assumption that
the proper mass of the particle is subject to a ultra high fre-
quency vibration synchronized with the wave frequency, it is
formally shown that an anti-particle exhibits a negative mass
(energy). This energy could be extracted to sustain for ex-
ample the space-time wormhole, set forth by K. Thorne and
M. Morris [3, 4]. To be physically viable, it is well known
that it requires a so-called exotic matter endowed with a neg-
ative energy density which violates all energy conditions [5].
However, if the exotic matter threading the inner throat of
the wormhole is likened to the specific dispersive material
wherein circulates a stream of antiparticles, our model does-
not conflict with classical physics restrictions and can be fully
applied.

Notations

In this paper we will use a set of orthonormal vector basis
denoted by {e0, ea}, where the space-time indices are a, b =

0, 1, 2, 3, while the spatial indices are µ, ν = 1, 2, 3. The
space-time signature is {−2}.

1 Proper mass variation

1.1 Phase velocity and group velocity

It is well known that the classical wave with a frequency n

ψ = a(n) exp [2πi(νt − kr)] (1)

propagates along the direction given by the unit vector N.
Here k is the 3-wave vector, kr = φ is the wave spatial phase,
and n is the refractive index of the medium. Equation (1) is a
solution of the wave propagation equation

∆ψ =
1
w2

∂2ψ

c2∂t2 , (1)bis

where w is the wave phase velocity of the wave moving in
a dispersive medium whose refractive index is n(ν) generally
depending of the coordinates, and which is defined by:

1
w

=
n(ν)

c
. (2)

In our study, the medium is assumed to be homogeneous
but it can be anisotropic and ir will depend on the fequency ν.
In this material, the phase φ of the wave is progressing along
the given direction with a separation given by a distance

λ =
w

ν
=

c
nν

(2)bis

called the wavelength. Consider now the superposition of two
stationary waves along the x-axis having each close frequen-
cies ν′ = ν + δν and close velocities w′ = w + (dw/dν)δν, so
that their superposition can be expressed by:

sin 2π
(
νt −

νx
w

)
+ sin 2π

(
ν′t −

ν′x
w′

)
=

= 2 sin 2π
(
νt −

νx
w

)
cos 2π

[
δ
(
ν

2

)
t − x

d
dν

ν

w
δ
ν

2

]
.

The resulting wave displays a wave packet (or beat) that
varies along with the so-called group velocity (v = vµ):

1
vg

=
d
dν

ν

w
. (3)
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The wave mechanics shows that the momentum 3-vector of
an electron of a rest mass m0 (in vacuum) is given by the de
Broglie relation

p = m0v =
h
λ
. (4)

which completes the Einstein relation E = hν.

1.2 The plane wave spinor

Since we deal here with a spin 1/2-fermion, we must intro-
duce the four components wave function ΨA expressed with
the non local 4 × 4 Dirac trace free matrices γa (capital latin
spinor indices are A = B = 1, 2, 3, 0). They display here the
following real components [8]:

γ0 =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 , γ1 =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 ,

γ2 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , γ3 =


0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0

 .
These matrices are said standard representation as opposed
for example to the Majorana representation. Moreover, they
verify

γaγb + γbγa = −2ηabI (5)

where ηab is the Minkowski tensor and I is the unit matrix.
In what follows, Λ∗ is the complex conjugate of an arbitrary
matrix Λ, TΛ is the transpose of Λ, and Λ̃ is the classical
adjoint of Λ.

Introducing now the Hermitean matrix β = iγ0

β =


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

 ,
which verifies β2 = I, we derive the important relation

β γa β
−1 = −γ̃a (5)bis

with β and the spinor Ψ, we form the Dirac conjugate [9]

◦Ψ = t Ψ̃ β , (5)ter

where t is the time orientation. or the electron, the Dirac equa-
tion is written as

[W − (m0)elec c] Ψ = 0 , (6)

where W = γa A
B ∂a is the Dirac operator and it is customary

to omit the spinor indices A, B by simply writing γa = γ a
a B

so that this operator becomes γa∂a, or in the slash notation
(Feynman), −∂a. The monochromatic wave associated with the

electron can be approximated to a plane wave spinor without
loss of generality [10]:

ΨA = a (xa) exp 2πi (paxa) , (6)bis

where
paxa = Et − pµxµ. (6)ter

The 4-vector pa is the 4-momentum of the electron . The
spinor “amplitude” a(xa) satisfies the Dirac equation[

γa(pa)elec
]
a = [(m0)elec c] a (7)

where the operator [γa(pa)elec] is here substituted to the Dirac
operator γa∂a. We now re-write (6)bis as

Ψ = a(xa) exp(2πi/h) φ , (7)bis

where the global phase is φ = h[ν − (αx + βy + γz)/λ] t (here
α, β, γ are the direction cosines). The energy and momentum
of the electron located at xa are then related with the wave
phase by:

E = ∂t φ , p = −grad φ . (7)ter

Now, if the electron moves at a velocity v = β c within
a slight variation β, β + δβ, corresponding to the frequency
interval ν, ν + δν, w and ν are functions of β. The wave phase
velocity (in vacuum) can be expressed as w = c2/v = c/β and
since ν = (1/h) m0c2/

√
1 − β2, it is easy to infer that:

vg =
dν
dβ

1
d

dβ
ν
w

= β c = v . (8)

The group velocity vg of the wave packet associated with the
electron of rest mass m0, coincides with its velocity v. The
group velocity is thus also expressed by the Hamiltonian form
vg = ∂E/∂k which corresponds to the particle’s velocity v =

∂E/∂p. Recalling (2) and (2)bis to as 1/w = n(ν)/c, λ =

w/nν, we easily infer the Rayleigh’s formulae [11]:

1
vg

=
1
c
∂nν
∂ν

=
∂
(

1
λ

)
∂ν

. (9)

1.3 Making the electron vibrate

In the framework of the special theory of relativity, the proper
frequency ν0 of a plane monochromatic wave is transformed
as

ν =
ν0√

1 − v2/c2
. (10)

Constraint A: We assume that the electron is subject to an
ultra high stationary vibration having a proper frequen-
cy ν0.

When moving at the velocity v, this frequency is known
to transform according to:

νe = ν0

√
1 − v2/c2 . (11)
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We clearly see that its frequency νe differs from that of its
associated wave denoted here by ν.

If N is the unit vector normal to the associated wave
phase, the electron subject to the frequency ν0 = m0c2/h has
traveled a distance dN during a time interval dt, so that we
may define an electronic phase φe which has changed by:

dφe = hν0

√
(1 − v2/c2) dt = m0c2

√
(1 − v2/c2) dt. (12)

Simultaneously, the corresponding wave phase variation is

dφ = ∂tφdt + ∂NφdN =
(
∂tφ + v grad φ

)
dt (12)bis

and by analogy to the classical formula (7)ter, one may write

p = −grad φ =
m0v√

1 − v2/c2
, E = ∂tφ =

m0c2√
1 − v2/c2

so we find

dφ =

 m0c2√
1 − v2/c2

−
m0v2√

1 − v2/c2

 dt. (13)

Constraint B: We set the following phase synchronization:

dφ = dφe , (14)

which leads to: m0c2√
1 − v2/c2

−
m0v2√

1 − v2/c2

 dt =

=
[
m0c2

√
1 − v2/c2

]
dt .

(15)

Dividing through by dt , we retrieve the famous Planck-Laue
equation

m0c2√
1 − v2/c2

= m0c2
√

1 − v2/c2 +
m0v2√

1 − v2/c2
, (15)bis

which holds provided the proper mass is slightly variable.
(see proof in Appendix A). In the frameworks of our pos-
tulate, the ultra high frequency vibration imparted to the elec-
tron can be viewed as apparently reflecting its stationary mass
variation which is likened to a fluctuation.

From now on, ]m0 will denote the variable rest mass of
the electron so that the Planck-Laue relation becomes:

]E =
]m0c2√

1 − v2/c2
=

= ]m0c2
√

1 − v2/c2 +
]m0v

2√
1 − v2/c2

.

(15)ter

This formulae will be required to determine the explicit form
of the dispersive material which is the key point of our theory.

2 Exotic matter

2.1 Dynamics in a refracting material

Let us first recall the relativistic form of the Doppler formu-
lae:

ν0 =
ν (1 − v/w)√

1 − v2/c2
, (16)

where as before, ν0 is the wave’s frequency in the frame at-
tached to the electron. With the latter equation and taking into
account the classical Planck relation E = hν, we find

E =
E0

√
1 − v2/c2

1 − v/w
. (17)

However, inspection shows that the usual equation

E =
E0√

1 − v2/c2
(18)

holds only if

1 −
v
w

= 1 −
v2

c2 (19)

which implies
w v = c2. (20)

The latter relation is satisfied provided we set

]E =
]m0c2√

1 − v2/c2
, (21)

] p =
]m0v√

1 − v2/c2
. (22)

Constraint C: ]E depends on a specific dispersive and re-
fracting material through which the electron is tunnel-
ling.

Let us define this influence by a function Q(n) where n
is the refractive index of the material. Note: The variation
of the proper mass is independent on Q(n). Equation (21) is
modified to as

]E =
]m0c2√

1 − v2/c2
+ Q(n) (23)

from which Eq. (22) can be expressed as:

] p =
]m0v√

1 − v2/c2
=

v
[
]E − Q(n)

]
c2 . (24)

Now taking into account the Doppler formulae (16), and
the Planck-Laue relation (15)ter, we find

]E −
v2

[
]E − Q(n)

]
c2 = ]E

(
1 −

v
w

)
(25)
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wherefrom is inferred

Q(n) = ]E
(
1 −

c2

w v

)
= hν

(
1 −

c2

w v

)
(26)

and with the Rayleigh formulae (4), we eventually obtain the
explicit form of Q(n):

Q(n) = ]E
[
1 −

n∂(nν)
∂ν

]
. (27)

2.2 Specific dispersive material

Depending on the nature of the dispersive material, thus its
index (n), it is well known that the tunelling electron’s 3-
velocity v can be directed either in the direction of the associ-
ated wave phase velocity w or in the opposite direction. The
electron then moves backward through the specific material.

Let N be the 3-unit vector directed to the wave phase di-
rection (chosen positive) so that the wave number is given by:

k =
Nh
λ
. (28)

By applying the Rayleigh formulae (4) to this particular case
where v is opposite to the wave phase propagation, we have
v < 0. Hence, from Q(n) = ]E (1 − c2/w v), we find

]E − Q(n) =
]Ec2

w v
(29)

which is negative.
Then, with p = ]m0v/

√
1 − v2/c2, we infer from (24):

]m0√
1 − v2/c2

=
]E − Q(n)

c2 . (29)bis

In order to maintain the variable proper mass ]m0 positive
i.e.

]m0 =

√(
1 − v2/c2) ]E

w v
> 0 (30)

we must have necessarily: p = −k.

2.3 Matching the exotic matter definition

Now consider a stream of electrons and positrons placed in
the specific material whose respective associated wave (pos-
itive) direction is given by the same unit vector N (i.e. w >
0). From the Dirac theory, we kwnow that the electron mo-
mentum 3-vector pelec and that of the positron momentum 3-
vector p pos are opposed. (See proof in Appendix B). There-
fore we have here ppos = k, however the dispersive material
yet imposes vpos < 0, hence, we are led to the fundamental
conclusion:

A positron moving at the backward velocity vpos through
the specific dispersive refracting material defined above and

subject to Constraints A, B and C, will exhibit a negative mass
given by:

(]m0)pos =

√
1 − v2

pos/c2
]E
w v

< 0 , (30)bis

where ]E − Q(n) = ]Ec2/vpos w) < 0 in accordance with
Eq. (29).

Let us write the mass (30)bis as:

(]m0)pos =

∫
(]ρ0)pos

√
−g dV, (31)

where (]ρ0)pos is the variable proper density of the positronic
massive flow. The integral is performed over the 3-volume
V delimiting the variable proper mass (]m0)pos boundary. We
then readily infer the familiar form of the energy density ten-
sor in the static case

(]T 0
0 )pos = (]ρ0)pos c2, (32)

which is de facto negative.
So, within the scheme of the wave-particle picture, we

have been able to give a consistent picture of what could be
the united conditions to reach our goal :

The so-called “exotic matter” required to assemble a
space-time distortion can be provided by the negative energy
extracted from a stream of vibrating antifermions interacting
with a specific dispersive refracting material adequately en-
gineered.

3 Concluding remarks

Without going into details of a sound engineering, we have
here only scratched the surface of a basic theory describing
the ability of a system composed of antiparticles to interact
with a specific refracting and dispersive material in order to
exhibit a dynamical negative mass.

Thus, our approach mainly relies on de Broglie’s theory
which has been verified for the electron.

Upon Constraints A, B, and C, we might as well consider
other heavier particles such as the antiproton to produce neg-
ative energy.

Once these conditions are fulfilled, the concept of hyper-
fast interstellar tracel is viable if one can “handle” routinely
antimatter, and envision a sufficient amount of negative en-
ergy density. These orders of magnitude are beyond the scope
of this text.

Without any doubt, some advanced civilizations have al-
ready long mastered the negative energy obtained by this pro-
cess, to achieve superluminal travels as described by space-
time warp drive theories [12–14].

For us, a huge research work is still ahead, but if we have
contributed to open a small door, then the challenge is widely
available for physicists.
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Appendix A: The Planck-Laue relation

The Planck-Laue relation is a relativistic equation which has
been derived when the proper mass is assumed to sligthly
fluctuate. This proper mass is here denoted by ]m0. Under
this circumstance, the relativistic dynamics of ]m0 can now
be extended as follows.

We first write the Lagrange function for an observer who
see the particle moving at he velocity v

L = − ]m0c2
√

1 − v2/c2

so that the least action principle applied to this function is still
expressed by

δ

∫ t1

t0
Ldt = δ

∫ t1

t0
− ]m0c2

√
1 − v2/c2 = 0 .

From this principle the equations of motion

d
dt

(
∂L
∂ẋa

)
=
∂L
∂xa

, ẋa =
dxa

dt
,

are inferred, which lead to

d ]p
dt

= − c2
√

1 − v2/c2 grad ]m0 (A.1)

(since ]m0 is now variable). Hence, by differentiating the rel-
ativistic relation ]E2/c2 = ]p2 + ]m2

0c2, we obtain

d ]E
dt

= c2
√

1 − v2/c2 ∂
]m0

∂t
. (A.2)

Combining (A.1) and (A.2) readily gives

d ]E
dt
− v

d ] p
dt

= c2
√

1 − v2/c2 d ]m0

dt
, (A.3)

where d ]m0/dt = ∂ ]m0/∂t + grad ]m0 is the variation of the
mass in the course of its motion. On the other hand, we have

d (] p · v)
dt

=
v · d ] p

dt
+ ]m0c2 (v/c) d(v/c) dt√

1 − v2/c2
=

= v
d ]p
dt
− ]m0c2 d

dt

(
1 − v2/c2

) (A.4)

i.e.

d
dt

[
]m0c2

√
1 − v2/c2

]
=

= c2
√

1 − v2/c2 d ]m0

dt
+ ]m0c2 d

dt

√
1 − v2/c2

hence (A.3) can be re-written as

d
dt

[
]E − v · ] p− ]m0c2

√
1 − v2/c2

]
= 0 (A.5)

which is satisfied when the particle is at rest, that is: v = 0⇒
]E0 = ]m0c2. Therefore, we must always have:

]E =
]m0c2√
1− v2/c2

= ]m0c2
√

1− v2/c2 +
]m0v2√
1− v2/c2

. (A.6)

It is important to note that this variable (proper) mass,
]m0, is purely intrinsic, i.e. its motion is unaffected.

Equation (A.6) is known as the Planck-Laue formula.

Appendix B: Dirac currents

Let us consider the real Dirac current as

Ja = i ( ◦Ψ γ aΨ ) = (Ja) 1 − (Ja) 2 ,

where

(Ja) 1 = i ◦ΨA γ
aA
B ΨB, (Ja) 2 = i ΨB γaA

B
◦ΨA .

The charge conjugate of Ja is first calculated

[(Ja) 1](C) = i Ψ∗A γ
aA
B Ψ∗B = i t TΨA β

A
B γ

aB
C Ψ∗C

i.e.
[(Ja) 1](C) = i t ΨA TβB

A
TγaC

B
TΨ∗C .

From the antisymmetry of β, and remembering that the γa are
here real, we have

Tγa Tβ = − γ̃a β = β γa

from which we infer

[(Ja) 1](C) = i t ΨA γaB
A β

C
B
◦Ψ̃C = i ΨA γaB

A
◦ΨB

hence, we see that

[(Ja) 1](C) = (Ja) 2

and similarly
[(Ja) 2](C) = (Ja) 1

therefore, we obtain the most important relation:

−(Ja)(C) = Ja (B.1)

The Dirac current orientation is opposed to that of its
Dirac conjugate [15]. The Dirac conjugate ◦Ψ of the plane
wave spinor (6)bis is here:

◦Ψ = ◦a exp−2πi (pa xa) . (B.2)

With the Dirac conjugate spinor amplitude ◦a = a∗ γ0, that is
equivalent to (5)ter, we first set the normalization condition:

◦a a = m0c . (B.3)

Besides, the Dirac equation reads:

(γa pa)◦ a = m0c ◦a . (B.4)
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Due to the property of (γa)2, Equations (7) and (B.4) are both
satisfied for:

(pa)2 = (m0c)2. (B.5)

Multiplying now Equation (7) on the left with ◦a, we obtain
with (B.2) and (B.5)

(◦a γa a) pa = (m0c)2 = (pa)2 (B.6)

from which we infer:

◦a γa a = pa. (B.7)

The Dirac current density vector Ja = ◦Ψ γa Ψ will here yield

Ja = ◦a γa a = pa (B.8)

with
pa = m0c2 + pµ (B.9)

( [16]: compare with formulae (23.6) there).
From the charge conjugate Ψ(C) corresponding to the posi-

tron plane spinor, we define the Dirac current for the positron
(Ja)(C). However, it was shown that (Ja)(C) = −Ja. Therefore,
assuming that (m0)elec = (m0)posit in vacuum, we must then
have

(Jµ)(C) = (pµ)posit = −(pµ)elect . (B.10)

This clearly means that in vacuum, vposit = −velect.

Submitted on May 15, 2017
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